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Highlights 

* Novel CSA-coated core-shell magnetite nanoparticles were prepared successfully. 

* The aggregation range of MNPs was shifted gradually to the lower pHs by CSA loading. 

* CSA stabilizes electrosterically the MNPs over wide pH-range relevant to biosystems. 

* The salt tolerance of CSA@MNP enables them to use under physiological condition. 

 

Abstract 

Polysaccharides are promising candidates for manufacturing biocompatible core-shell 

nanoparticles with potential in vivo use. Superparamagnetic magnetite nanoparticles (MNPs) 

have prospective application in both diagnosis and therapy, and so developing a novel 

polysaccharide shell on MNP core is of great challenge. MNPs were prepared by co-

precipitation, then the surface of purified MNPs was coated with chondroitin-sulfate-A (CSA) 

to obtain core-shell structured magnetite nanoparticles (CSA@MNP). The effect of the added 

amount of CSA on the surface charging and the aggregation state of MNPs at various pHs and 

10 mM NaCl was measured by electrophoresis and dynamic light scattering. The amphoteric 

behaviour of MNPs was fundamentally modified by adsorption of CSA polyanions. A very low 

CSA loading induces the aggregation of MNPs, while four times more stabilizes the dispersions 

over the whole pH-range studied. The coagulation kinetics experiments measured at 

pH=6.3±0.3 showed that salt tolerance of CSA@MNPs rises up to ~150 mM NaCl. 

 

Keywords: superparamagnetic iron oxide nanoparticle (SPION); magnetic fluid (MF) 

magnetite; chondroitin-sulfate; core-shell nanoparticles; colloidal stability; surface charge. 

 

 

1. Introduction 

Superparamagnetic iron oxide (magnetite, Fe3O4 and maghemite, -Fe2O3) 

nanoparticles (SPIONs) are in the focus of scientific interest because of their potential 

biomedical applications such as MRI contrasting, targeted drug delivery and magnetic 

hyperthermia [1-6]. Most of these applications require the SPIONs to be non-toxic, chemically 

stable, sufficiently uniform in size, and well-dispersed in aqueous media. The colloidal stability 

of water-based magnetic fluids (MFs) prepared from SPIONs is of crucial importance under 

physiological conditions (e.g. in blood pH~7.2-7.4 and salt concentration ~150 mM) because 

particle aggregation in blood vessels can be disastrous [1-7]. The SPIONs must be coated to 

prevent aggregation and dissolution of magnetite nanoparticles (MNPs) under physiological 

conditions [3]. Different organic compounds have been used to coat SPIONs, such as neutral 

polymers (e.g. natural dextran [8-11]) and polyelectrolytes (e.g. synthetic polyacrylic acid 

[8,12-14]). Innumerable SPION preparations have been synthesized for biomedical applications, 

but only a few of them were characterized systematically in respect of pH-dependent surface 
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charging and aggregation state of coated nanoparticles. Moreover, their salt tolerance would be 

also important regarding the salty medium and different pH values in the human body. 

Dextran- and modified dextran-coated iron oxide nanoparticles are very common 

magnetic products for biocompatible applications (e.g., Ferumoxides (Feridex or Endorem), 

Ferumoxtran-10 (Sinerem or Combidex), Ferucarbotran (Resovist) [14,15]). Other 

polysaccharides are frequently used as coating agents [16], too. One example is chondroitin-

sulfate (CS), patented under US 5427767 A [17] and EP-1-433-482-B1 [18]. Chondroitin-

sulfate is a natural polysaccharide, which contains a repeating unit of one glucuronic acid and 

one N-acetyl-galactoseamine, modified by sulfate groups replacing –OH groups. Depending on 

the positions and the quantities of the sulfate groups several types of CS can be distinguished, 

such as chondroitin-sulfate-A (CSA, chondroitin-4-sulfate) and chondroitin-sulfate-C (CSC, 

chondroitin-6-sulfate) [19] (see Fig. 1). The procedure of magnetic nanoparticle preparation in 

the presence of CS for potential MRI contrast agents has been patented [17]. Magnetic 

microspheres with CS-content are offered to use for magnetic targeting [20]. Furthermore, there 

is a potential for drug delivery, since some promising anticancer drugs, such as multivalent 

pseudopeptide, bind to chondroitin sulfate with high affinity [21]. Based on all these, well-

defined chondroitin-sulfate coated core-shell magnetite nanoparticles can be promising 

candidate for theranostic application. 

The fundamental aim of our research is the preparation of novel chondroitin-sulfate 

coated core-shell magnetite nanoparticles (CSA@MNP) by post-coating method, which are 

presumably stable colloidally under physiological condition. We intend to synthesize magnetite 

nanoparticles by co-precipitation method and to coat them after their purification and 

characterisation. We plan to describe the adsorption of CSA on magnetite and to study the pH-

dependent surface charging and aggregation of the CSA@MNP particles. Finally we intend to 

test the feasibility of the prepared CSA@MNPs in biorelavant media by coagulation kinetics 

studies. 

 

 

2. Experimental section 

2.1. Materials 

The FeCl2, FeCl3 salts and NaOH for magnetite synthesis by co-precipitation [22-26] 

were analytical grade reagents obtained from Molar, Hungary. The prepared material was 

purified carefully through washing and dialysis, and it was stored as stable sol at pH~3 and 4 °C.  

The chondroitin-sulfate-A (CSA) was purchased from Sigma-Aldrich as sodium-salt 

(Na2CSA), which could contain a small amount of chondroitin-sulfate-C (CSC), too. One 

repeating unit of CSA (Fig. 1) contains one –COOH and one –SO3H group. The strongly acidic 

sulfate groups (–SO3
–) in CSA are fully deprotonated at a wide pH-range [27,28]. However, the 

–COOH groups in CSA have a pH-dependent dissociation (pKβ-glucuronic acid ~2.9) [29] given by 

Eq. (1). 

 –COOH ↔ –COO– + H+ (1) 

The notation "CSA" is used in this article for sodium-salt regardless of the actual degree of 

dissociation of the carboxylic groups α=[−COO−]/([−COO−]+[−COOH]). The amount of CSA 

is expressed through the mole of repeating units, which equals to the number of dissociable –

COOH groups. 

NaCl, HCl and NaOH, analytical grade products of Molar (Hungary) were used to adjust 

the pH and salt concentration in all experiments. Ultra pure water from a Milli-Q RG water 

purification system (Millipore) was used. All measurements were performed at 25±1 °C. 
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Fig. 1. The repeating unit of fully deprotonated CSA and CSC. 

 

 

2.2. X-ray diffraction (XRD)  

A Bruker D8 Advance X-ray diffractometer operating in the reflection mode with Cu-

Kα radiation was used to take the XRD patterns of synthesized iron oxides. The scanning range 

of 2 was between 20° and 80°. The samples of magnetite sol were dried on a glass holder 

before the measurements. The identification of magnetite was based on the characteristic peaks 

in the diffractograms using JCPDS database. The Scherrer equation (see Eq. (2)) was used to 

calculate the primary particle size:  

 d = (K · λ) / (B · cosΘ) (2) 

where d is the average particle size, K is the Scherrer constant (its value is 0.9 for magnetite), 

λ is the X-ray wavelength (0.154 nm), B is the peak broadening and Θ is the position of the 

peak maximum. 

 

2.3. Magnetic measurement 

A vibrating sample magnetometer VSM 880 (DMS/ADE Technologies-USA) was used 

to measure the magnetization curves at the NCESCF-UP Timisoara. The analysis was 

performed at room temperature on stable aqueous MNP sol at ~10% by weight; the maximum 

of the applied field was ~840 kA/m. The value of specific magnetization was related to the 

actual amount of MNP. 

 

2.4. Transmission electron microscopy (TEM)  

A Philips CM-10 transmission electron microscope supplied with a Megaview-II 

camera was used to take the TEM micrographs of iron oxide nanoparticles. The accelerating 

voltage of 100 kV was applied; the maximum resolution of the instrument is 0.2 nm. One drop 

of highly diluted magnetite sol was dried on to Formwar-coated copper under infrared lamp. 

The average size distribution was determined by evaluating 100 particles using the 

JMicroVision 1.2.7 software. 

 

2.5. Surface modification of MNPs  

The surface of the purified, bare magnetite was modified by chondroitin-sulfate-A to 

prepare core-shell nanoparticles. The effect of the CSA-adsorption on the particle interaction 

was determined first in concentrated systems at pH=6.3±0.3 and 10 mM NaCl. The MNPs were 

equilibrated for 24 hours with CSA solutions of concentration between 0 and 10 mM at a 

solid/liquid ratio of 20 g/L. The pH was adjusted at the beginning of adsorption. The adsorption 

series was evaluated after a day. 

 

2.6. Particle Size Determination  

For characterization of the aggregation state of nanoparticles, the average hydrodynamic 

diameter (Z-Ave) of bare magnetite particle and of CSA-coated nanoparticles were determined 

at 25±0.1 °C using dynamic light scattering (DLS) method, an apparatus Nano ZS (Malvern) 

with a 4 mW He−Ne laser source (λ=633 nm) operating in backscattering mode at an angle of 
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173°. The dispersions were diluted to get an optimal intensity of ~105 counts per second, thus 

the samples contained 100 mg/L of magnetite. Prior to the measurements, the samples were 

homogenized in an ultrasonic bath for 10 s, after which 2 min relaxation was allowed. Any 

changes in the aggregation state of the bare or the CSA coated nanoparticles in aqueous 

dispersions was characterized by the hydrodynamic diameter (Z-Ave). The influence of the 

added CSA amount was determined at pH=6.3±0.3 and 10 mM NaCl. The effect of pH variation 

(between 3 and 10) at different CSA loadings (0.0, 0.05, 0.1, 0.2, and 0.4 mmol/g) was studied 

at 10 mM NaCl. For evaluation, we used the second- or third-order cumulant fit of the 

autocorrelation functions, depending on the degree of polydispersity. 

 

2.7. Electrokinetic potential measurements 

Electrophoretic mobilities of the pure magnetite and CSA@MNP dispersions were 

measured at 25±0.1 °C in the same Nano ZS (Malvern) apparatus using disposable zeta cells 

(DTS 1060). The zeta-standard of Malvern (-55±5 mV) was used for calibration. The added 

amounts of CSA, the pH range, and the ionic strength were identical to those in the DLS 

experiments. The Smoluchowski equation was applied to convert electrophoretic mobilities to 

electrokinetic potential values. The accuracy of the measurements was ±5 mV. 

 

2.8. Salt tolerance tests 

The CSA-adsorption can change the colloidal stability of the magnetite nanoparticles 

and this process can be tested accurately in coagulation kinetics experiments. These 

measurements were performed at different NaCl concentrations, 25±0.1 °C, pH=6.3±0.3 and 

0.2 mmol/g CSA loading. The change in the hydrodynamic diameter of kinetic units (Z-Ave) 

was measured by DLS for 15 min; the resolution was 1 min. At a given NaCl concentration, the 

measured Z-Ave data were plotted as a function of time. The initial slope of the curve is 

proportional to the coagulation rate [30,31] and the ratio of the fast and slow coagulation rates 

results in the stability ratio (W). The critical coagulation concentration (CCC) was determined 

from the stability plot (the dependence of the stability ratio on the NaCl concentration, log10 W 

= f(log10 c) [22,23]) as the intersection point of straight lines fitted to the experimental log10 W 

values belonging to the slow and fast coagulation regimes. 

 

The majority of the experiments were performed at pH=6.3±0.3 and 10 mM NaCl. For 

the sake of simplicity, we take this pH value as pH~6.3 and omit the indication of pH and NaCl 

concentration unless it has special significance or the values are different. 

 

 

3. Results and discussion 

 

3.1. Characterization of the prepared magnetite nanoparticles 

XRD, TEM and VSM methods were used to characterize the crystalline phase, the 

primary particle size and the magnetic property of the prepared iron oxide particles. The results 

can be seen in Figs. 2a-c. 

The X-ray diffractogram (Fig. 2a) shows the crystalline structure of the synthesis 

product. The typical peaks can be found at 30.1°, 35.5°, 43.2°, 57.0° and 63.0°, which 

preferably correspond to the magnetite according to the JCPDS database. The Miller indices of 

these peaks are (220), (311), (400), (511) and (440), respectively. The primary particle size 

calculated from the peak at 35.5° with Scherrer equation was about 10 nm. The TEM picture 

(Fig. 2c) of the MNPs shows spherical particles and their calculable average size was around 

10 nm, too. The magnetization curve of the naked MNP (Fig. 2b) shows no hysteresis, and so 
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the magnetic behaviour of the synthesized nanoparticles is superparamagnetic at room 

temperature. This property is in a good agreement with the primary particle size, because the 

superparamagnetic limit of magnetite nanoparticles is ~20 nm [32,33]. The value of the 

saturation magnetization is ~75 emu/g. 

The pH-dependent surface charging and aggregation of naked magnetite were 

determined by electrokinetic potential and dynamic light scattering measurements (Fig. 2d). To 

understand the significant changes shown in Fig. 2d, first the surface charging of naked MNPs 

needs to be clarified in general. The surface of magnetite becomes charged, when particles are 

dispersed in aqueous media [22,23,32,34-40]. Charges develop on the amphoteric surface 

hydroxyls (Fe–OH) and this process is controlled by both the pH and the ionic strength of 

aqueous medium [22,23, 41-44]. The reactions of surface Fe–OH sites with H+ and OH− ions 

lead to the formation of positive (Fe–OH2
+) and negative (Fe–O−) surface charges (see Eq. 

(3-4)). 

 Fe–OH + H+ ↔ Fe–OH2
+  (3) 

 Fe–OH ↔ Fe–O− + H+    or    Fe–OH + OH− ↔ Fe–O− + H2O (4) 

At a characteristic pH, i.e., the pH of isoelectric point (IEP), the amounts of oppositely 

charged surface sites are equal to each other. At pHs lower than the IEP, the charge of MNP is 

positive due to the presence of excess ≡Fe–OH2
+ groups, while the particles are negatively 

charged above the pH of IEP because of the formation of ≡Fe–O– groups, the IEP of magnetite 

is often in wide pH range [32]. 

As shown on the inserted photos of Fig. 2d, colloidally stable dispersion of naked 

magnetite can only be observed at pH values below 5 or above 10, accompanied by a high 

absolute value of electrokinetic potential (+40 mV or -40 mV) and a low hydrodynamic 

diameter (~120 nm), because of the electrostatic stabilization of particles, caused by the 

presence of either ≡Fe–OH2
+ in the acid range or ≡Fe–O– surface groups in the basic range. The 

measured IEP of magnetite nanoparticles, where the electrokinetic potential of MNPs is zero is 

at pH~8. Around this pH, close to the physiological conditions (e.g. in blood pH 7.2-7.4 ), the 

naked MNPs are aggregated (the average particle size ~1600 nm). In biological milieu like 

blood, this would be dangerous because of embolism. So the pH range of aggregation must be 

shifted in order to have a chance for biomedical applications. Therefore the surface of MNPs 

should be modified to overcome this gap, here we use CSA to coat MNPs. 
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c)   d)  
Fig. 2. Characterization of the naked magnetite nanoparticles by (a) XRD pattern, (b) specific magnetization 

curve, (c) TEM image and by (d) the pH-dependent electrokinetic potential and average size measured (Z-Ave) 

at 10 mM NaCl by DLS. (Photos were taken after standing for 24 hours, the inserted pictures are the schematic 

illustration of the surface charging on MNPs. Lines are drawn as guides for the eye.)  

 

 

3.2. CSA-loading of magnetite nanoparticles 

The series of magnetite sols loaded with CSA at pH ~ 6.5 after standing for 24 hours 

is presented in Fig. 3. With increasing CSA concentration, the colloidal state of samples 

changes characteristically from aggregated to stable. In these samples, the solution 

concentration of CSA increases from 0 to 9 mmol/L (expressed through the molar amount of 

its repeating units), while its specific amount related to 1 g magnetite rises up to 0.45 mmol/g. 

To understand this significant change shown in Fig. 3, we have to evaluate the surface 

charging of naked magnetite at the given condition, i.e., at the pH~6.3 and 10 mM NaCl. Under 

these conditions the amount of the positive charge on MNPs is ~0.05 mmol/g from acid/base 

titration [12]. This is not enough to stabilize the particles electrostatically; therefore, the naked 

MNPs are aggregated and settled (see the first vial in Fig. 3). With increasing CSA-loading, 

firstly the CSA@MNP particles are still settled, but above ~0.25 mmol/g CSA-addition, the 

CSA-coated magnetite nanoparticles become dispersed (see the sixth vial in Fig. 3). The 

CSA@MNP samples seem to be stable at high CSA-loading (see the last three photos in Fig. 

3), but the signs of aggregation (particles on the glass surface and partial sedimentation) can be 

seen even under these conditions. However, stable magnetic fluid can be prepared from the 

CSA-coated MNPs by careful addition of CSA to magnetite sol under vigorous mixing. 

 
Fig. 3. Series of CSA adsorption on MNP, containing CSA in increasing amount up to 0.45 mmol/g  (see the 

numbers on the vials) at pH~6.3 and 10 mM NaCl at a solid/liquid ratio of 20 g/L. (The amount of CSA is 

expressed through the molar amount of repeating units given in mmol, normalized to 1 g magnetite). 

 

 

3.3. Surface charging and colloidal stability of CSA-coated core-shell MNPs 

The changes in the electrokinetic potential and the average size (Z-Ave) of the 

nanoparticles are plotted as a function of CSA addition in Fig. 4a. A few representative samples 

are shown in Fig. 4b along with a schematic illustration of the CSA coating of particles. As 

discussed earlier, the naked magnetite is positively charged at pH~6.3 and 10 mM NaCl, the 

electrokinetic potential of the particles is ~+25 mV, and the sample is aggregated (Z-Ave ~1500 

nm) and settled (see the first vial in Fig. 4b). The electrokinetic potential declines with the 

increasing amount of negatively charged CSA due to the –SO3
– and –COO– groups, added 
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gradually to the MNP sols. The charge neutralization levels at ~0.035 mmol/g CSA loading. 

This is a kind of isoelectric point (IEP), where negatively charged CSA patches exist on the 

positive MNPs and these patchwise charge heterogeneity induces particles aggregation and 

drives the Z-Ave of CSA@MNP aggregates to a maximum (~2300 nm). Further addition of 

chondroitin-sulfate-A caused charge reversal, decreased the value of the electrokinetic potential 

to ~-45 mV, and brought about the electrosteric stabilization of CSA@MNP samples (see in 

Fig. 4a). The particles become fully dispersed and colloidally stable (Z-Ave~120 nm) at ~0.2 

mmol/g of CSA addition (see the last vials in Fig. 4b). 

The pH-dependent electrokinetic potential, the average particle size and the photos 

showing the change in colloidal stability of the CSA@MNP particles at different CSA-loadings 

(0.0, 0.05, 0.1, 0.2 and 0.4 mmol/g) can be seen in Fig. 5. The pH-dependent properties of naked 

magnetite were already discussed in Section 3.1. Adding a small amount of CSA (0.05 mmol/g) 

to the MNP, the IEP decreases from pH ~8 to pH ~6 and the particles aggregate over the whole 

range of pH studied here, due to the patchwise adsorption of the negatively charged CSA on 

the originally positively charged MNP [22,23,45,46]. Increasing amounts of CSA shift the IEP 

gradually to a more acidic pH value (Fig. 5a) and narrow the pH-range of aggregation (Fig. 5b-

c). Further addition of CSA (above ~0.2 mmol/g) results in stable MNP dispersion with low 

particle size and electrokinetic potential almost over the whole pH-range studied. 

 

a)  

b)  

Fig. 4. Effect of CSA addition (a) on the electrokinetic potential and average size (Z-Ave) of MNPs and (b) on 

the colloidal stability of the dispersions at pH~6.3 and 10 mM NaCl (photos were taken after standing for 24 

hours) in parallel with the schematic illustration of CSA coating of particles. (Lines are drawn as guides for the 

eye. The amount of CSA is expressed through the molar amount of repeating units given in mmol.)  
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a)   b)  

c)  
Fig. 5. pH-dependent (a) electrokinetic potential, (b) average particle size and (c) colloidal stability of the 

dispersions at 10 mM NaCl after standing for 24 hours in parallel with the schematic illustration of CSA coating 

of particles. The series of MNPs at CSA loadings 0.0, 0.05, 0.1, 0.2 and 0.4 mmol/g are presented. (Lines are 

drawn as guides for the eye. Pictures were taken a day after the pH setting between 3 and 10.) 

 

3.4. Salt tolerance of CSA-coated core-shell MNPs 

The salt tolerance of MNPs coated with 0.2 mmol CSA /g was studied in coagulation 

kinetics experiments at pH~6.3. The particle size evolution was followed in time by DLS 

experiments (see Fig. 6a) and the calculated stability ratios (log10 W) are plotted as a function 

of NaCl concentration (log10 c) in Fig. 6b. The critical coagulation concentration (CCC) was 

determined (see Fig. 6b) to characterize accurately the salt tolerance of the CSA@MNP 

dispersion. The CCC of naked MNP is ~1 mM NaCl at pH~6.3 [12,47], however, the CCC of 

CSA@MNP at 0.2 mmol/g CSA-loading is much higher ~150 mM owing to the effective 

polyanionic coverage of MNP’s surface. This CCC value is high enough to enable the use of 

CSA@MNP at physiological concentration of NaCl. 

a) b)  
Fig. 6. Coagulation kinetics measured by dynamic light scattering: (a) time-dependent increase in average size 

and (b) stability plot indicating the slow and fast coagulation regimes to determine the CCC value of of the 

CSA@MNP sample (0.2 mmol CSA /g magnetite) at pH~6.3. (Lines are drawn as guides for the eye.) 
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4. Conclusion 

The aim of this work was to prepare novel CSA-coated core-shell magnetite 

nanoparticles stable colloidally under physiological condition and to characterize the surface 

coating process and the surface-properties of the CSA@MNP product as well. The solid 

experimental facts allow us to conclude that the CSA@MNP particles can be prepared, which 

are electrosterically stabilized at CSA-loading >0.2 mmol/g over the wide range of pH (>4) 

matching well with biological medium. The measured CCC guarantees that the salt tolerance 

of CSA@MNP is sufficiently high to resist aggregation in a physiological medium. So the CSA-

coated core-shell magnetite nanoparticles are promising candidates for biomedical applications 

like contrast agents in MRI diagnostics or well defined carriers in drug delivery for anticancer 

drugs. Furthermore, based on the potential combination of these medical diagnostic and 

therapeutic methods, even the theranostic application of CSA@MNP products can be feasible. 
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