REAL

H4octapa : Highly stable complexation of lanthanide(III) ions and copper(II)

Kálmán, Ferenc K. and Végh, Andrea and Regueiro-Figueroa, Martín and Tóth, Éva and Platas-Iglesias, Carlos and Tircsó, Gyula (2015) H4octapa : Highly stable complexation of lanthanide(III) ions and copper(II). INORGANIC CHEMISTRY, 54 (5). pp. 2345-56. ISSN 0020-1669

[img]
Preview
Text
IC_OCTAPA_2015_ASAP_ic502966m.pdf

Download (1MB) | Preview

Abstract

The acyclic ligand octapa4 (H4octapa = 6,6'-((ethane-1,2-diylbis((carboxymethyl)azanediyl))bis(methylene))dipicolinic acid) forms stable complexes with the Ln3+ ions in aqueous solution. The stability constants determined for the complexes with La3+, Gd3+ and Lu3+ using relaxometric methods are logKLaL = 20.13(7), logKGdL = 20.23(4) and logKLuL = 20.49(5) (I = 0.15 M NaCl). High stability constants were also determined for the complexes formed with divalent metal ions such as Zn2+ and Cu2+ (logKZnL = 18.91(3) and logKCuL = 22.08(2)). A UV-Vis and NMR spectroscopic study and DFT calculations point to hexadentate binding of the ligand to Zn2+ and Cu2+, the donor atoms of the acetate groups of the ligand remaining uncoordinated. The complexes formed with the Ln3+ ions are nine-coordinated thanks to the octadentate binding of the ligand and the presence of a coordinated water molecule. The stability constants of the complexes formed with the Ln3+ ions do not change significantly across the lanthanide series. A DFT investigation shows that this is the result of a subtle balance between the increased binding energies across the 4f period, which contribute to an increasing complex stability, and the parallel increase of the absolute values of the hydration free energies of the Ln3+ ions. In the case of the [Ln(octapa)(H2O)] complexes the interaction between the amine nitrogen atoms of the ligand and the Ln3+ ions is weakened along the lanthanide series, and therefore the increased electrostatic interaction does not overcome the increasing hydration energies. A detailed kinetic study of the dissociation of the [Gd(octapa)(H2O)] complex in the presence of Cu2+ shows that the metal-assisted pathway is the main responsible for complex dissociation at pH 7.4 and physiological [Cu2+] concentration (1 M).

Item Type: Article
Subjects: Q Science / természettudomány > QD Chemistry / kémia > QD01 Analytical chemistry / analitikai kémia
Q Science / természettudomány > QD Chemistry / kémia > QD02 Physical chemistry / fizikai kémia
Q Science / természettudomány > QD Chemistry / kémia > QD03 Inorganic chemistry / szervetlen kémia
Depositing User: Dr Tircsó Gyula
Date Deposited: 27 Feb 2015 08:25
Last Modified: 31 Jul 2023 08:56
URI: http://real.mtak.hu/id/eprint/22120

Actions (login required)

Edit Item Edit Item