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Abstract. An open problem posed by the first author [36, 53, 54, 59, 100]
is the complexity to decide whether a sequence of nonnegative integer
numbers can be the final score of a football tournament. In this paper
we propose polynomial time approximate and exponential time exact
algorithms which solve the problem.

1 Introduction

Let a, b and n be nonnegative integers (b ≥ a ≥ 0, n ≥ 1), T (a, b, n) be
the set of directed multigraphs T = (V, E), where |V | = n, and each pair of
different vertices u, v ∈ V are connected with at least a and at most b arcs
[56, 57]. T ∈ T (a, b, n) is called (a, b, n)-tournament. (1, 1, n)-tournaments
are the usual tournaments, and (0, 1, n)-tournaments are also called oriented
graphs or simple directed graphs [45, 93]. The set T is defined by

T =
⋃

b≥a≥0, n≥1
T (a, b, n).

The definition of (undirected) (a, b, n)-graphs is similar. The (0, 1, n)-graphs
are the usual simple graphs.

Computing Classification System 1998: G.2.2.
Mathematics Subject Classification 2010: 05C85, 68R10
Key words and phrases: tournament, score sequence, football tournament, polynomial
algorithm

130

http://compalg.inf.elte.hu/tanszek/tony/oktato.php?oktato=tony&angolul=1
http://www.elte.hu/en
http://www.inf.elte.hu/english/Lapok/default.aspx
http://www.inf.elte.hu/english/Lapok/default.aspx
mailto:ivanyi.antal2@upcmail.hu
mailto:jonscho@hiwaay.net


Deciding football sequences 131

An (a, b, n)-tournament is called complete, if the set of permitted results is
{0 : c, 1 : c− 1, . . . , c : 0} for all possible c (a ≤ c ≤ b). If some of these results
are prohibited, then the tournament is called incomplete [55, 56, 57] .

For example football is an incomplete (2, 3, n)-tournament since the per-
mitted results are 0 : 3, 1 : 1 and 3 : 0, while 0 : 2, 1 : 2, 2 : 0, and 2 : 1 are
prohibited.

According to this definition T is the set of the finite directed loopless multi-
graphs. We remark, that if a ′ ≤ a ≤ b ≤ b ′ then an (a, b, n)-tournament is
also an (a ′, b ′, n)-tournament. The outdegree sequence of an (a, b, n)-tourna-
ment we call the score sequence of the tournament [45, 93, 95].

Let l, u, andm be integer numbers with u ≥ l andm ≥ 1. The sequence s =
(s1, . . . , sm) of integer numbers with l ≤ s1 ≤ · · · ≤ sm ≤ u is called (l, u,m)-
regular. It is well-known that the number of (l, u,m)-regular sequences is

R(l, u,m) =

(
u− l+m

m

)
. (1)

In this paper we consider only the graph theoretical aspects of the inves-
tigated problems, although they have many applications [1, 16, 17, 68, 76,
88, 108]. We analyze only sequential algorithms. The Reader can find parallel
results e.g. in [2, 29, 92, 102, 104].

The structure of the paper is as follows. After this introduction in Section
2 we deal with the filtering of potential complete sequences, then in Section
3 describe incomplete sequences. Section 4 contains filtering and Section 5
reconstruction algorithms of potential football sequences. Finally in Section 6
we deal with the enumeration of football sequences.

2 Filtering of potential complete sequences

We are seeking football sequences. Taking into account that a score sequence of
an incomplete (a, b, n)-tournament is at the same time a score sequence of the
complete (a, b, n)-tournament, the properties of score sequences of complete
tournaments allow some filtering among the regular sequences.

In 1953 Landau [75] proved the following popular theorem. About ten proofs
are summarized by Reid [95]. Further proofs are in [3, 18, 19, 20, 22, 44, 46,
101, 106, 110].

Theorem 1 (Landau [75]) A (0, n− 1, n)-regular sequence s = (s1, . . . , sn) is
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the outdegree sequence of some (1, 1, n)-tournament if and only if

k∑
i=1

si ≥
k(k− 1)

2
, 1 ≤ k ≤ n, (2)

with equality when k = n.

Proof. See [64, 75, 86]. �

Moon [85] proved the following generalization of Landau’s theorem (we
present it in reformulated form). Later Takahashi [107] reproved the theorem.

Theorem 2 (Moon [85]) A (0, b(n − 1), n)-regular sequence s = (s1, . . . , sn)
is the score sequence of some (b, b, n)-tournament if and only if

k∑
i=1

si ≥
bk(k− 1)

2
, 1 ≤ k ≤ n,

with equality when k = n.

Proof. See [85]. �

We define a point-loss function Pk (k = 0, . . . , n) by the following recursion:
P0 = 0 and if 1 ≤ k ≤ n, then

Pk = max

(
Pk−1,

bk(k− 1)

2
−

k∑
i=1

si

)
.

Now Pk gives a lower bound for the number of lost points in the matches
among the teams T1, . . . , Tk (not the exact value since the teams T1, . . . , Tk
could win points against Tk+1, . . . , Tn).

Theorem 3 (Iványi [56]) A (0, b(n− 1), n)-regular sequence s = (s1, . . . , sn)
is the score sequence of some complete (a, b, n)-tournament if and only if

ak(k− 1)

2
≤

k∑
i=1

si ≤
bn(n− 1)

2
− Pk − (n− k)sk (1 ≤ k ≤ n).

Proof. See [56]. �
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3 Incomplete tournaments

We know only the following three results on the score sequences of incomplete
tournaments.

Semicomplete digraphs (semicomplete tournaments) are defined as (1, 2, n)-
digraphs in which if two vertices are connected with two arcs then these arcs
have different directions.

Theorem 4 (Reid, Zhang [96]) A (0, n−1, n)-regular sequence s = (s1, . . . , sn)
is the score sequence of some semicomplete tournament if and only if

k∑
i=1

si ≥
k(k− 1)

2
and sk ≤ n− 1, 1 ≤ k ≤ n. (3)

Proof. See [96]. �

Antal Bege asked in 1999 [7] how many wins are necessary in a football
tournament of n teams to get a strictly monotone score sequence. If n = 2

then 1, if n = 3 then 1, and if n = 4 then 2 are sufficient and necessary. The
following assertion gives the general answer.

Theorem 5 (Iványi [55]) If N(n) denotes the minimal number of necessary
and sufficient wins for different scores in a football tournament of n teams
then

N(n) =

(
3

2
−
√
2

)
n2 +Θ(n). (4)

Recently Berger [10] published the following criterion for special incomplete
(0, 2, n)-tournaments.

Theorem 6 (Berger [10]) Sequence σ =
((
a1
b1

)
, . . . ,

(
an
bn

))
with a1 ≥ · · · ≥

an is the score sequence of special incomplete (0, 2, n)-tournaments—in which
0 : 0, 0 : 1, 1 : 0, and 1 : 1 are the permitted results—if and only if

k∑
i=1

ai ≤
k∑
i=1

min(bi,k− 1) +

n∑
i=k+1

min(bi, k) (5)

for all k = 1, . . . , n, with equality for n.

Proof. See [10]. �

Earlier (weaker) results can be found in [23, 41, 42, 99].
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4 Filtering of potential football sequences

There are many exact results deciding whether a given sequence is the de-
gree/outdegree sequence of a given type of undirected (e.g. [24, 25, 30, 31,
32, 33, 34, 35, 43, 46, 47, 48, 50, 51, 61, 69, 74, 83, 84, 90, 116, 118]) or di-
rected (e.g. [12, 13, 75, 85, 56, 57, 94, 115]) graphs. Several authors studied
the case when the indegree and outdegree sequences are together prescribed
[9, 10, 14, 33, 48, 91].

The score sequences of the football tournaments we call football sequences.
A (0, 3n − 3, n)-regular sequence s = (s1, . . . , sn) is called good if there exists
a football tournament whose score sequence is s, and s is called bad otherwise.
We denote the football sequences by f = (f1, . . . , fn).

In this section we present approximate algorithms which filter only some
part of the bad sequences. Since these filtering algorithms have short running
time they help to reduce the expected running time of the exact algorithms.

The filtering algorithms are classified according to their worst running time
as constant, linear, and other polynomial type ones.

4.1 Constant time filtering algorithms

The expected running time can be substantially decreased if we can filter some
part of the investigated sequences in constant time.

Let n ≥ 2 and f = (f1, . . . , fn) a football sequence.

Lemma 7 (C1 test) fn 6= 3n− 4.

Proof. If a team wins all matches then its score is 3n− 3. If not, then it loses
at least two points making a draw, so its score is at most 3n− 5. �

Lemma 8 (C2 test) If fn = 3n− 3 then fn−1 ≤ 3n− 6.

Proof. fn can be 3n − 3 only so, that Tn wins all matches. Then the score
Tn−1 is at most 3n− 6. �

Lemma 9 (C3 test) If f1 = 0 then f2 ≥ 3.

Proof. If f1 = 0 then T1 lost all matches therefore T2 has at least one win
and so f2 is at least 3. �

Lemma 10 (C4 test) If f1 = f2 = 1 then f3 ≥ 6.
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Proof. If f1 = f2 = 1 then the match of T1 and T2 ended with a draw implying
that T3 has at least two wins and so at least six points. �

Lemma 11 (C5 test) If fn = fn−1 = 3n− 5, then fn−2 ≤ 3n− 9.

Proof. If the joint score of Tn and Tn−1 is 3n − 5 then the result of their
match has to be a draw. In this case Tn−2 lost at least two matches and so
fn−2 ≤ 3n− 9. �

Lemma 12 (C6 test) If fn = 3n− 3 and fn−1 = 3n− 6, then fn−2 ≤ 3n− 9.

Proof. If fn = 3n − 3, then Tn won all matches. In this case the score of
Tn−1 can be 3n− 6 only then if Tn−1 loses against Tn but wins all remaining
matches. Then Tn−2 lost at least two matches and so fn−2 ≤ 3n− 9. �

Lemma 13 (C7 test) If f1 = 0 and f2 = 3 then f3 ≥ 6.

Proof. See the proof of Lemma 12. �

Lemma 14 (C8 test) If f1 = 1 and f2 = 2 then f3 ≥ 4.

Proof. Since T1 and T2 gathered points only with draws their match ended
with a draw. Therefore T3 won against T1 and either won against T2 or they
made a draw, so T3 has at least 4 points. �

Lemma 15 (C9 test) If fn = 3n− 5 and fn−1 = 3n− 7 then fn−2 ≤ 3n− 8.

Proof. If fn = 3n − 5 then Tn has a draw and n − 2 wins. If fn−1 = 3n − 7
then Tn−1 has two draws and n−3 wins, and the match between Tn and Tn−1
ended with a draw. In this case Tn−2 has at least a loss and a draw implying
fn−2 ≤ 3n− 8. �

The following program Constant realizes the tests of the previous 9 lem-
mas. This and later programs are written using the pseudocode conventions de-
scribed in [27]. In this and in the further pseudocodes input variables are n: the
length of the investigated sequence (n ≥ 3); s = (s1, . . . , sn): a (0, 3n − 3, n)-
regular sequence; output variable is L: L = 0 means that the investigated input
is bad, L = 1 means that it is good while L = 2 shows that the given algorithm
could not decide.
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Constant(n, s)

01 L = 0 // line 01: initialization of L
02 if sn == 3n− 4 // line 02–03: C1
03 return L
04 if sn == 3n− 3 and sn−1 ≥ 3n− 5 // line 04–05: C2
05 return L
06 if s1 == 0 and s2 ≤ 2 // line 06–07: C3
07 return L
08 if s1 == 1 and s2 == 1 and s3 ≤ 5 // line 08–09: C4
09 return L
10 if sn == 3n− 5 and sn−1 = 3n− 5 and sn−2 ≥ 3n− 8 // line 10–11: C5
11 return L
12 if sn==3n− 3 and sn−2==3n− 6 and sn−3 ≥ 3n− 8 // line 12–13: C6
13 return L
14 if s1 == 0 and s2 == 3 and s3 ≤ 5 // line 14–15: C7
15 return L
16 if s1 == 1 and s2 == 2 and s3 ≤ 3 // line 16–17: C8
17 return L
18 if sn== 3n− 5 and sn−1==3n− 7 and sn−2 ≥ 3n− 8 // line 18–19: C9
19 return L
20 L = 2 // line 20–21: these tests can not decide
21 return 2

Tables 1, 2, and 3 show the filtering results of Constant. The numbers in
the tables show how many sequences are accepted from the sequences accepted
by the previous filtering algorithm. The exact results in these tables are printed
with bold font (such emphasizing will be used in the later tables too).

The programs are written in C by Loránd Lucz and run on an Inter Core i7
processor (3.4 GHz) with optimization level O3. The running times are given
in seconds.

Table 2 shows the filtering results of C4, C5, C6 and C7.
Table 3 shows the filtering results of algorithms C8 and C9, further the

number of football sequences (F) and the running time of Linear for n =
1, . . . , 15 teams. Column R in Table 1 and column t in Table 3 show that the
running time is approximately proportional with the number of the regular
sequences.

For example if n = 2 then C1, C2 and C3 filter 80 % of the regular and
100 % of the bad sequences. If n = 3 then they filter 54 from the 84 regular
sequences while C1, . . . , C9 filter 70 sequences which represent 90.90 % of the
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n R C1 C2 C3

1 1 1 1 1

2 10 7 4 2

3 84 63 45 30

4 715 550 414 311

5 6 188 4 823 3 718 2 911

6 54 264 42 636 33 320 26 650

7 480 700 379 753 299 421 242 624

8 4 292 145 3 404 115 2 700 775 2 207 800

9 38 567 375 30 678 375 24 452 220 20 116 030

10 348 330 136 277 722 676 222 146 496 183 629 160

11 3 159 461 960 2 523 716 572 2 024 386 180 1 679 655 640

12 28 760 021 745 23 008 017 396 18 498 140 232 15 394 304 500

13 262 596 783 764 210 345 382 913 169 436 070 190 141 355 053 635

14 2 403 979 904 200 1 927 719 734 500 1 555 302 958 664 1 300 210 775 786

15 22 057 981 462 440 17 704 432 489 590 14 303 680 429 990 11 978 596 958 384

Table 1: Number of (0, 3n − 3, n)-regular sequences (R) accepted by C1, C2,
and C3 for n = 1, . . . , 15 teams.

n C4 C5 C6 C7

1 1 1 1 1

2 2 2 2 2

3 26 22 19 17

4 281 255 237 222

5 2 691 2 501 2 374 2 271

6 24 000 23 373 22 302 21 596

7 227 770 215 227 207 042 200 609

8 2 700 775 2 207 800 2 097 803 1 972 783

9 19 155 258 18 065 694 17 460 916 16 989 609

10 175 138 885 165 526 269 160 206 767 156 070 967

11 1 591 808 376 1 518 385 621 1 471 133 714 1 434 460 309

12 14 605 778 836 13 947 629 921 13 524 714 862 13 196 925 716

13 134 230 657 710 128 305 394 396 124 497 616 840 121 549 435 860

14 1 235 669 598 354 1 181 962 750 733 1 147 511 569 252 1 208 609 923 538

15 11 391 620 617 874 10 903 053 416 141 10 590 098 238 918 10 348 178 700 655

Table 2: Number of (0, 3n − 3, n)-regular sequences accepted by C4, C5, C6,
and C7 for n = 1, . . . , 15 teams.

bad sequences. If n = 15 then the nine constant time algorithms filter 54.73 %
of the bad sequences. This is surprisingly high efficiency but smaller than the
sum of the individual asymptotic efficiency of the 9 algorithms. The reason is
simple: e. g. the sequence s = (0, 0, 5) would be filtered by C1 and C3 too.
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n C8 C9 F t

2 2 2 2 0.000

3 15 14 7 0.000

4 209 203 40 0.000

5 2 175 2 133 355 0.000

6 20 039 20 510 3 678 0.000

7 194 333 191 707 37 263 0.016

8 1 795 074 1 772 842 361 058 0.062

9 16 524 335 16 332 091 3 403 613 0.499

10 154 361 149 150 288 309 31 653 777 4.602

11 1 398 051 547 1 383 099 467 292 547 199 41.771

12 12 870 899 770 12 737 278 674 2 696 619 716 380.984

13 118 612 802 828 117 411 184 292 3 489.299

14 1 094 282 911 155 1 083 421 567 482 34 079.254

15 10 106 678 997 431 10 008 094 941 133 316 965.954

Table 3: Number of (0, 3n − 3, n)-regular sequences accepted by C8 and C9,
the number of football sequences (F), and the running time (t) of C9 for
n = 1, . . . , 15 teams.

4.2 Efficiency of the constant time testing algorithms

Using (1) we give the efficiency of the nine constant time filtering algorithms.

Lemma 16 (efficiency of C1) The ratio of sequences with sn = 3n− 4 among
(0, 3n− 3, n)-regular sequences is(

4n−5
n−1

)(
4n−3
n

) =
n(3n− 3)

(4n− 4)(4n− 3)
=
3

16
+

9

16(4n− 3)
=
3

16
+ o(1). (6)

Proof. The sequences satisfying the given condition are such (0, 3n − 3, n)-
regular ones, whose lower bound is l = 0, upper bound is u = 3n − 4, and
contain m = n− 1 elements. So according to (1) the required ratio is

R(0, 3n− 4, n− 1)

R(0, 3n− 3, n)
=

n(3n− 3)

(4n− 4)(4n− 3)
=
3

16
+ o(1). (7)

�

Lemma 17 (efficiency of C2) The ratio of the sequences satisfying the condi-
tions sn = 3n−3 and sn−1 ≥ 3n−5 among the (0, 3n−3, n)-regular sequences
is

37

256
+ o(1). (8)
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Proof. Since R(0, 3n− 3, n− 2) sequences satisfy the conditions sn = 3n− 3
and sn−1 = 3n− 3, the corresponding ratio is

R(0, 3n− 3, n− 2)

R(0, 3n− 3, n)
=

n(n− 1)

(4n− 4)(4n− 3)
=
1

16
+ o(1). (9)

R(0, 3n − 4, n − 2) sequences satisfy sn = 3n − 3 and sn−1 = 3n − 4, so the
corresponding ratio is

R(0, 3n− 4, n− 2)

R(0, 3n− 3, n)
=

n(n− 1)(3n− 3)

(4n− 3)(4n− 4)(4n− 5)
=
3

64
+ o(1). (10)

R(0, 3n−5, n−2) sequences have the properties sn = 3n−3 and sn−1 = 3n−5,
so the corresponding ratio is

R(0, 3n− 5, n− 2)

R(0, 3n− 3, n)
=

n(n− 1)(3n− 3)(3n− 4)

(4n− 3)(4n− 4)(4n− 5)(4n− 6)
=

9

256
+ o(1). (11)

Summing up the right sides (9), (10), and (11) we get the value (8). �

Lemma 18 (efficiency of C3) The ratio of the sequences satisfying the condi-
tions s1 = 0 and s2 ≤ 2 among the (0, 3n− 3, n)-regular sequences is

37

256
+ o(1). (12)

Proof. Similar to the proof of Lemma 8. �

Lemma 19 (efficiency of C4) The ratio of the sequences satisfying the condi-
tions s1 = 1 and s2 = 1 and s3 ≤ 5 among the (0, 3n− 3, n)-regular sequences
is

2343

48
+ o(1). (13)

Proof. Since R(1, 3n − 3, n − 3) sequences satisfy the conditions s1 = s2 =
s3 = 1 the corresponding ratio is

R(1, 3n− 3, n− 3)

R(0, 3n− 3, n)
=

n(n− 1)(n− 2)(3n− 3)

(4n− 3)(4n− 4)(4n− 5)(4n− 6)
=
3

44
+ o(1). (14)

The sequences with s1 = s2 = 1 and s3 = 2, s1 = s2 = 1 and s3 = 3,

s1 = s2 = 1 and s3 = 4, and s1 = s2 = 1 and s3 = 5 have the asymptotic ratio
3/45, 3/46, 3/47, and 3/48 resp.
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The sum of the received five ratios is

3

44
+
32

45
+
33

46
+
34

47
+
35

47
=
2343

48
, (15)

implying (13). �

Lemma 20 (efficiency of C5) The ratio of the sequences satisfying the condi-
tions of sn = sn−1 = 3n−5 and sn−3 ≥ 3n−8 among the (0, 3n−3, n)-regular
sequences is

1575

48
+ o(1). (16)

Proof. We have to sum the contributions of R(0, 3n−5, n−2), R(0, 3n−6, n−
2), R(0, 3n− 7, n− 2), and R(0, 3n− 8, n− 2) sequences:

32

45
+
33

46
+
35

47
+
36

48
=
1575

48
, (17)

implying (16). �

Lemma 21 (efficiency of C6) The ratio of the sequences satisfying the condi-
tions of sn = 3n−3, sn−1 = 3n−6, and sn−2 ≥ 3n−8 among the (0, 3n−3, n)-
regular sequences is

999

48
+ o(1). (18)

Proof. In this case we sum the contributions of R(0, 3n− 6, n− 3), R(0, 3n−
7, n− 1), and R(0, 3n− 8, n− 1) sequences:

33

46
+
34

47
+
35

48
=
999

48
, (19)

implying (18). �

Lemma 22 (efficiency of C7) The ratio of the sequences satisfying the condi-
tions of s1 = 0, s2 = 3, and s3 ≤ 5 among the (0, 3n− 3, n)-regular sequences
is

999

48
+ o(1). (20)

Proof. Similar to the proof of Lemma 21. �
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Lemma 23 (efficiency of C8) The ratio of the sequences satisfying the condi-
tions of s1 = 1, s2 = 2, and s3 ≤ 3 among the (0, 3n− 3, n)-regular sequences
is

63

46
+ o(1). (21)

Proof. We sum the contributions of R(2, 3n− 3, n− 3) and R(3, 3n− 3, n− 3)
sequences:

32

45
+
33

46
=
63

46
, (22)

implying (21). �

Lemma 24 (efficiency of C9) The ratio of the sequences satisfying the condi-
tions of sn = 3n−5, sn−1 = 3n−7, and sn−2 ≥ 3n−7 among the (0, 3n−3, n)-
regular sequences is

34

47
+ o(1). (23)

Proof. Similar to the proof of Lemma 23. �

The cumulated asymptotic efficiency of the constant time algorithms is

3

16
+
2 · 37
44

+
2343

48
+
1575

48
+
2 · 999
48

+
63

46
+
34

47
=
38480

48
. (24)

The cumulated efficiency of the nine constant time algorithms is about
58.72 %. According to Table 1 the practical joint efficiency of C1, C2 and
C3 is 64.28 % for n = 3 and 45.91 % for n = 14. According to Table 3 the
total practical efficiency of the nine constant time algorithms is 91.67 % for
n = 3 and 54.93 % for n = 14.

The practical cumulated efficiency is smaller than the theoretical one, since
some part of the sequences is filtered by several algorithms: e.g. the sequence
s = (0, 0, 5) is filtered by C1 and C3 too.

We remark that the algorithms of Constant are sorted on the base of their
nonincreasing asymptotic efficiency. We get the same order of the practical
efficiency of these algorithms shown on the small values of n.

4.3 Filtering algorithms with linear running time

We investigate the following filtering algorithms whose worst running time is
linear: Complete = L1, Point-Losses = L2, Reduction0 = L3, Reduc-
tion1 = L4, Draw-Unique = L5, Balanced = L6, Draw-Uniform = L7,
Draw-Sorted-Unique = L8.
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4.3.1 Linear filtering algorithm L1 = Complete

The first linear time filtering algorithm L1 = Complete is based on the
following special case of Lemma 3 in [56].

Corollary 25 ((2,3,n)-complete test, [56]) If n ≥ 1 and (f1, . . . , fn) is a foot-
ball sequence then

2

(
k

2

)
≤

k∑
i=1

fi ≤ 3
(
n

2

)
− (n− k)fk (k = 1, . . . , n). (25)

Basic parameters of Complete are the usual ones, further S: the current
sum of the first i elements of s.

Complete(n, s)

01 S = 0 // line 01: initialization of S
02 for i = 1 to n // line 02–06: test
03 S = S+ si
04 if (S < 2

(
i
2

)
)∨ (S > 3

(
n
2

)
− (n− i)si) = true

05 L = 0
06 return L
07 L = 2 // line 07–08: s is undecided
08 return L

4.3.2 Linear filtering algorithm L2 = Point-Losses

The second linear time filtering algorithm L2 = Point-Losses is based on
the following assertion which is an extension of Lemma 3 in [56]. The basic
idea is, that the small sums of the prefixes of s and the mod 3 remainders of
the elements of s signalize lost points.

Lemma 26 If (f1, . . . , fn) is a football sequence then

2

(
k

2

)
≤

k∑
i=1

fi ≤ 3
(
n

2

)
− (n− k)fk − Pk (k = 1, . . . , n), (26)

where P0 = 0 and

Pk = max

(
Pk−1, 3

(
k

2

)
−

k∑
i=1

fi,

⌈∑k
i=1(fi − 3bfi/3c)

2

⌉)
. (27)
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Proof. The sum of the k smallest scores is at least 2
(
k
2

)
and at most 3

(
n
2

)
minus the following point-losses:

1. the sum of the remaining scores, which is at least (n− k)fk;

2. the point-losses due to draws documented by the mod 3 remainders;

3. the point-losses documented by differences 3
(
k
2

)
−
∑k
i=1 fi;

�

Basic parameters of Point-Losses are the usual ones, further S: the current
sum of the first i elements of s, and P: the current value of the point-losses.

Point-Losses(n, s)

01 S = P = L = 0 // line 01: initialization of S, P, and L
02 for k = 1 to n // line 02–06: filtering
03 S = S+ sk

04 P = max
(
Pk−1, 3

(
k
2

)
− S,

⌈∑k
i=1(si−3bsi/3c

2

⌉)
05 if S > 3

(
n
2

)
− (n− k)sk − P

06 return L
07 L = 2
08 return L // line 08: s is undecided

4.3.3 Linear filtering algorithm L3 = Reduction0

The third linear test is based on the observation that if the sum of the k
smallest scores is minimal then all matches among the first k teams ended by
a draw and if the sum of the k largest scores is maximal then the corresponding
scores are multiples of 3 and further if k < n then fn−k ≤ 3(n− k− 1).

Lemma 27 If n ≥ 2, 1 ≤ k ≤ n, and f = (f1, . . . , fn) is a football sequence
then

1) if the sum of the first k scores is k(k− 1) then f1 = · · · = fk = k− 1 and
if further k < n then fk+1 ≥ 3k;

2) if the sum of the last k scores is 3(n− k)k+ 3
(
k
2

)
then fn−k+1, . . . , fn are

multiples of 3 and if further k < n then fn−k ≤ 3(n− k− 1).

Proof. If f1 + · · · + fk = k(k − 1) then all matches among T1, . . . , Tk ended
with a draw and these teams lost all matches against the remaining teams
implying assertions 1).
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If fk+1 + · · · + fn = 3(n − k)k + 3
(
k
2

)
then Tk+1, . . . , Tn won all matches

against the remaining teams and have no draws implying assertion 2. �

Parameters of Reduction0 are the usual ones, further S: the current sum
of the i smallest scores; Q: the current sum of the i largest scores; B is a logical
variable characterizing the remainders mod 3 of the i largest scores.

Reduction0(n, s)

01 L = B = S = Q = 0 // line 01: initialization of L, B, S, and Q
02 for i = 1 to n− 1 // line 02–12: test of the small scores
03 S = S+ si
04 if S == i(i− 1)
05 if s1 < i− 1∨ si > i− 1
06 return L
07 if si+1 < 3i
08 return L
09 S = S+ sn
10 if S == n(n− 1)
11 if s1 < n− 1
12 return L
13 for i = n downto 2 // line 13–25: test of the large scores
14 Q = Q+ si
15 if si−1 > 3(n− i− 1)
16 return L
17 if si − 3bsi/3c > 0
18 B = 1
19 if B == 1
20 return L
21 Q = Q+ s1
22 if s1 − bs1/3c > 0
23 B = 1
24 if B == 1
25 return L
26 L = 2 // line 26–27: s is undecided
27 return L

Even this simple filtering algorithm finds a football sequence: if the condition
of line 11 does not hold then the sum of all scores is minimal therefore all
matches ended with draw. For the sake of the simplicity of the program we
left this sequence undecided.
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4.3.4 Linear filtering algorithm L4 = Reduction1

The fourth linear test is based on the observations that if the sum of the i
smallest scores is i(i − 1) + 1 then either zero or one match among the first
i teams ended with a win and if the sum of the i largest scores has near the
maximal 3i(n− i) + 3i(i− 1)/2 value then among the i maximal scores i− 2
are multiples of 3 and 2 give 1 as remainder mod 3.

Lemma 28 If n ≥ 3, f = (f1, . . . , fn) is a football sequence, 1 ≤ k ≤ n then
1) if

k∑
i=1

fi = k(k− 1) + 1 (28)

then
a) either f1 = · · · = fk−1 = k−1, fk = k, and if k+1 ≤ n, and fk+1 ≥ 3k−2;
b) or f1 = k− 2, f2, . . . , fk−1 = k− 1, fk = k+ 1, and fk+1 ≥ 3k;
2) if

k∑
i=1

fn−i+1 = 3k(n− k) + 3

(
k

2

)
− 1 (29)

then
a)
∑k
i=1, fi−3bfi/3c=0 1 = k− 2;

b)
∑k
i=1, fi−3bfi/3c=1 1 = 2;

c)
∑k
i=1, fi−3bfi/3c=2 1 = 0;

d) if n− k > 0 then fn−k ≤ 3(n− k− 1).

Proof. 1) If f1 + · · · + fk = k(k − 1) + 1 then either all matches among T1,
. . . , Tk ended with a draw and these teams lost all but one matches against
the remaining teams and Tk made a draw with one of the teams Tk implying
assertions a) or Tk won against T1, the remaining matches among T1, . . . ,
Tk ended with a draw and the teams Tk+1, . . . , Tn has no draw and won all
matches against the first n− k teams implying assertions b).

2) In case 2) of the lemma the teams Tk+1, . . . , Tn won all matches against
the first n− k teams, and made exactly one draw. �

Parameters of Reduction1 are the usual ones, further S: the current sum
of the first i scores; Q: the current sum of the last i scores; L1 and L2: logical
variables; B is the number of scores giving remainder 1 mod 3; C is the number
of scores giving remainder 0 mod 3.

Reduction1(n, s)

01 L = B = C = S = Q = 0 // line 01: initialization of L, B, C, S, and Q
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02 for i = 1 to n− 1 // line 02–12: test of the small scores
03 S = S+ si
04 if S == i(i− 1) + 1
05 L1 = (s1 == i− 1)∧ (si−1 == i− 1)∧ (si == i)∧ (si+1 ≥ 3i− 2)
06 L2 = (s1 == i− 2)∧ (s2 == i− 1)∧ (si−1 == i− 1)

∧ (si == i+ 1)∧ (si+1 ≥ 3i)
07 if (L1 == false)∧ (L2 == false) == true
08 return L // line 07–08: s is not good
09 S = S+ sn
10 if S == n(n− 1) + 1
11 if (s1 < n− 2)∧ (s2 == n− 1)∧ (sn−1 == n− 1)∧ (sn == n+ 1)

== false
12 return L
13 for i = n downto 2 // line 13–35: test of the large scores
14 Q = Q+ si
15 if si − 3bsi/3c == 2
16 return L
17 if si − 3bsi/3c == 1
18 B = B+ 1
19 if si − 3bsi/3c > 0
20 C = C+ 1
21 if Q == 3(n− i)i+ 3i(i− 1)/2− 1)
22 if sn−i > 3(n− i− 1)
23 return L
24 if (B == 2)∧ (C == i− 2) == false
25 return L
26 Q = Q+ s1
27 if si − 3bsi/3c == 2
28 return L
29 if si − 3bsi/3c == 1
30 B = B+ 1
31 if si − 3bsi/3c > 0
32 C = C+ 1
33 if Q == 3n(n− 1)/2− 1
34 if (B == 2)∧ (C == i− 2) == false
35 return L
36 L = 2 // line 36–37: s is undecided
37 return L
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4.3.5 Linear filtering algorithm L5 = Draw-Unique

A draw sequence d(s) = (d1, . . . , dn) belonging to a (0, 3(n − 1), n)-regular
sequence s accepted by L4 is defined as a sequence of nonnegative integers
having the following properties for i = 1, . . . , n:

1. 0 ≤ di ≤ 2;
2. di = si mod 3;

3. di ≤ min(si, n− 1);

4. di + 3(n− 1− di) ≥ si,

further
n∑
i=1

di = 2

(
3

(
n

2

)
−

n∑
i=1

si

)
. (30)

A draw sequence d = (d1, . . . , dn) is called (0, 1, n)-graphic (or simply
graphic or good), if there exists a (0, 1, n)-graph whose degree sequence is
d.

The fifth linear filtering algorithm is based on the following assertion.

Lemma 29 If a (2, 3, n)-regular sequence s has only a unique draw sequence
d(s) which is not graphical then s is not football sequence.

Proof. Since the football sequences have at least one graphical draw sequence,
the regular sequences without graphical draw sequence are not football se-
quences. �

Basic parameters of Draw-Unique are the usual ones, further S: ithe cur-
rent sum of the elements of s; R: the number of obligatory draws;Dn: the num-
ber of the draws in the investigated potential tournament; d = (d1, . . . , dn):
di is the number of draws allocated to Ti; r = (r1, . . . , rn): ri is the remainder
of si mod 3; y: is the current number of allocated draws; x: is the current
maximal number of draw packets acceptable by Ti.

Draw-Unique(n, s)

01 S = R = L = x = y = 0 // line 01: initialization of S, R, L, x and y
02 for i = 1 to n // line 02–03: computation of S
03 S = S+ si
04 Dn = 3

(
n
2

)
− S // line 04: computation of Dn

05 for i = 1 to n // line 05–17: allocation of draws
06 ri = si − 3b si3 c
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07 R = R+ ri

08 x = min
(
si−ri
3 , bn−1−ri3 c, b 3(n−1)−2ri−si6 c

)
09 di = ri + 3x
10 y = y+ di
11 if R > 2Dn
12 return L, d
13 if y < 2Dn
14 return L, d
15 if y ≥ 2Dn
16 L = 2
17 return L, d
18 sort d in decreasing order by Counting-Sort resulting d ′

19 HHL(d ′)
20 return L, d // line 20: s is undecided

Procedure HHL (Havel-Hakimi-Linear) is described in [60]. We remark
that the original Havel-Hakimi algorithm requires in worst case Θ(n2) time.
Recently Király [70] published a version which uses the data structure pro-
posed by van Emde Boas [71, 114] and requires O(n log logn) time. Our algo-
rithm is linear and works also for some multigraphs.

A natural requirement is di ≤ n − 1 but di > n − 1 can occur only in
the cases s = (0, 2) and s = (1, 2) which are filtered by the constant time
algorithms.

We get a stronger filtering algorithm Draw-Sorted-Unique using the def-
inition of the uniqueness of the sorted draw sequence. For example in the case
of the sequence s = (3, 3, 3, 5) we have three possibilities to allocate two draw
packets but only the teams having 3 points can accept a packet therefore we
get in each case the bad draw sequence (3, 3).

We remark that the problem of unicity of graphs determined in a unique
way by their degree sequences was studied for some graph classes (see e.g. the
papers of Tetali [109], Tyskevich [113], and Barrus [6]).

4.3.6 Linear filtering algorithm L6 = Balanced-Lin

The sixth linear filtering algorithm L6 = Balanced-Lin is based on the
observation that if the draw sequence is unique, then the victory sequence
w = (w1, . . . , wn) and the loss sequence l = (l1, . . . , ln) are also unique. The
following assertion gives a necessary condition for the reconstructability of the
sequence pair (w, l).
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Lemma 30 (Lucz [77]) If n ≥ 2, w = (w1, . . . , wn) is the win sequence and
l = (l1, . . . , ln) is the loss sequence of a football sequence f = (f1, . . . , fn) with∑n
i=1 fi > n(n− 1) then let

wi = max
1≤j≤n

wj and lj = max
1≤i≤n

li. (31)

In this case

wi ≤
i−1∑
j=1

⌈
lj

n− 1

⌉
+

n∑
j=i+1

⌈
lj

n− 1

⌉
(32)

and

lj ≤
j−1∑
i=1

⌈
wi
n− 1

⌉
+

n∑
i=j+1

⌈
wi
n− 1

⌉
(33)

for n = 1, . . . , n.

Proof. The wins (losses) of the team Ti (Tj) having the maximal number of
wins (losses) can be paired with losses (wins) only if there are at least wi (lj)
teams having at least one loss (win). �

4.3.7 Linear filtering algorithm L7 = Sport-Uniform

The seventh linear filtering algorithm L7 = Sport-Uniform is connected
with a popular concept called in the world of sport sport matrix. It is an n×5
sized matrix containing the basic data of the teams of a tournament. We use
the following formal definition of sport matrix for n teams.

Definition 31 Let n ≥ 1 and s = (s1, . . . , sn) be a (0, 3(n − 1), n)-regular
sequence. Then the sport matrices S(s) corresponding to s are defined by the
following properties:

1. the size of the matrix is n× 5, its elements are nonnegative integers;

2. wi + di + li = n− 1 for i = 1, . . . , n;

3. 3wi + di = si for i = 1, . . . , n;

4.
∑n
i=1wi =

∑n
i=1 li =

∑n
i=1 si − n(n− 1);

5.
∑n
i=1 di = 2

(
3
(
n
2

)
−
∑n
i=1 si

)
.
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We remark that the ith row of the sport matrices contains data of Ti for
i = 1, . . . , n: index i, number of wins wi, number of draws di, number of losses
li and number of points si (wi, di and li are estimated values). These formal
requirements are only necessary for S to contain the basic characteristics of
some football tournament.

A sequence s = (s1, . . . , sn) is called sport sequence if there exists at least
one sport matrix corresponding to s.

Another useful concept is the obligatory sport matrix belonging to given
regular sequence s.

Definition 32 Let n ≥ 1 be and s = (s1, . . . , sn) be a (0, 3(n − 1), n)-regular
sequence. Then the obligatory sport matrix O(s) corresponding to s is defined
by the following properties:

1. the size of the matrix is n× 5, its elements are nonnegative integers;

2. woi = max
(
0, d si−(n−1)

2 e
)

for i = 1, . . . , n;

3. doi = si − 3b si3 c for i = 1, . . . , n;

4. loi = max(0, n− 1− si) for i = 1, . . . , n. �

The i-th row of the matrix contains the (partially estimated) data of Ti for
i = 1, . . . , n: index i, number of obligatory wins woi, number of obligatory
draws doi, number of obligatory losses loi and number of points si (the oblig-
atory values are lower bounds for the correct values, the index and the number
of points are exact values).

Definition 33 We say that the obligatory sport matrix O(s) of s is extendable
to a sport matrix S(s) corresponding to s if

1. O(s) is a sport matrix belonging to s or

2. we can increase some wi, di and li values so that the result will be a
sport matrix S(s).

According to the following assertion we get a linear filtering algorithm using
the obligatory sport matrix.

Lemma 34 The obligatory sport matrix O(s) belonging to a (0, 3(n− 1), n)-
regular sequence s is unique. If O(s) is not extendable to a sport matrix S(s)
then s is not a football sequence.
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Proof. The obligatory sport matrix is defined by unique formulas therefore
it is unique. If s is a football sequence then its obligatory sport matrix O(s)
contains lower bounds for wi, di, and li of any sport matrix S(s) therefore
any sport matrix S(s) can be constructed by the extension of O(s). �

The following Sport-Uniform is a draw-based algorithm which at first
constructs the obligatory sport matrix belonging to s then tries to extend it
to a sport matrix so that it allocates the draw packets in a greedy way as
uniformly as possible. If the so received draw sequence is not graphic then the
investigated sequence is not good.

The base of the uniform allocation of the draws is the following assertion.

Lemma 35 If n ≥ 1, d = (d1, . . . , dn) is graphical and di < dj then the se-
quence d ′—received increasing di by 1 and decreasing dj by 1—is also graphi-
cal.

Proof. Let G be a (0, 1, n)-graph on vertices V1, . . . , Vn having the degree
sequence d = (d1, . . . , dn) in which di < dj. Then there exists a vertex Vk
which is connected with Vj and not connected with Vi. In G delete the edge
between Vj and Vk and add the edge between Vi and Vk. Then the received
new graph is graphical with the required degree sequence. �

This lemma has a useful corollary.

Corollary 36 If n ≥ 1, s = (s1, . . . , sn) is a (2, 3, n)-regular sequence, and
its uniform draw sequence u(s) = (u1, . . . , un) is not graphical, then s is not
a football sequence.

Proof. By the recursive application of Lemma 35 we get that if s has a graph-
ical draw sequence then its uniform draw sequence is also graphical. �

We remark that the problem of the pairing of the draws has a reach bibli-
ography as the problem of degree sequences of simple graphs [24, 32, 47, 50,
51, 62, 80, 89, 107, 110, 111, 112].

Basic parameters of Sport-Uniform are the usual ones further S: the sum
of the elements of s; S0: auxiliary variable; wo = (wo1, . . . , won): woi is the
number of obligatory wins of Ti; do = (do1, . . . , don): doi is the number of
obligatory draws of Ti; lo = (lo1, . . . , lon): loi is the number of obligatory
losses of Ti; WO = (WO0, . . . ,WOn): WOi is the total number of wins of the
first i teams; DO = (DO0, . . . , DOn). DOi is the total number of draws of
the first i teams; LO = (LO0, . . . , LOn). LOi is the total number of the first
i teams; wm = (wm1, . . . , wmn): wmi is the maximal number of wins of Ti;
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dm = (dm1, . . . , dmn): dmi is the maximal number of draw packets of Ti;
lm = (lm1, . . . , lmn): lmi is the maximal number of losses of Ti; Wn: the
number of the wins in the tournament; Ln: the number of the losses in the
tournaments; Dn: the number of draws in the tournament; D: the current
number of yet not allocated draws; da = (da1, . . . , dan): dai is the number
of allocated to Ti draw packets; wa = (wa1, . . . , wan): wai is the number of
allocated wins of Ti; la = (la1, . . . , lan): lai is the number of allocated losses
of Ti; R = (R0, R1, R2): Ri is the number of elements of s giving remainder i
mod 3; c: average number of draw packets to allocate for a team.

Sport-Uniform(n, s)

01 S0 =WO0 = DO0 = LO0 = R0 = R1 = R2 = L = 0 // line 01: initialization
02 for i = 1 to n // line 02–03: computation of the parameters
03 S = S+ si

04 woi = max
(
0, d si−(n−1)

2 e
)

05 WOi =WOi−1 +woi
06 doi = si − 3b si3 c
07 DOi = DOi−1 + doi
08 Rdoi = Rdoi + 1
09 loi = max(n− 1− si, 0)
10 LOi = LOi−1 + loi

11 dmi = min
(
si−doi
3 , n− 1− doi, b 3(n−1)−2doi−si6 c

)
12 wmi =

si−doi
3

13 lmi =
⌊
3(n−1)−si

3

⌋
14 Wn = Ln = Sn − n(n− 1) // line 14: computation of Wn, Ln
15 Dn = D = 3n(n− 1)/2− S // line 15: computation of Dn, D

16 if D−DOn
3 >

⌊
D−DOn

3

⌋
// line 16–43: allocation of draw packets

17 return L
18 while D > 0

19 c =
⌊

D
R0+R1+R2

⌋
20 while c ≥ 1
21 R0 = R1 = R2 = 0
22 for i = 1 to n

23 dai = min( si−di3 , c)
24 di = doi + 3dai
25 D = D− 3dai
26 if di < dmi
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27 Rdoi = Rdoi + 1

28 c =
⌊

D
R0+R1+R2

⌋
29 if 0 < D

3 ≤ R0
30 for i = 1 to n
31 if (D > 0∧ doi == 0) == true
32 di = di + 3
33 D = D− 3

34 if R0 <
D
3 ≤ R0 + R1

35 for i = 1 to n
36 if (D > 0∧ doi == 0∨ doi == 1) == true
37 di = di + 3
38 D = D− 3

39 if R0 + R1 >
D
3

40 for i = 1 to n
41 if D > 0
42 di = di + 3
43 D = D− 3
44 sort d in decreasing order resulting d ′

45 HHL(d ′) // line 44–45: sorting of the draw sequence
46 return L, d // line 46: s is undecided (if L = 2) or bad (if L = 0)

4.3.8 Linear filtering algorithm L8 = Draw-Sorted-Unique

The fifth linear filtering algorithm Draw-Unique exploits the fact that some
football sequences have unique sport matrix implying the uniqueness of the
draw sequence. The eighth linear algorithm L8 = Draw-Sorted-Unique
exploits that the uniqueness of the sport matrix is not necessary to have a
unique sorted draw sequence.

Sorted version of a sport matrix S(s) is denoted by S(s) and is defined by
the following property: if 1 ≤ i < j ≤ n then either d ′i < d

′
j or d ′i = d ′j and

w ′i < w
′
j or d ′i = d

′
j and w ′i = w

′
j and i ′ < j ′ (d ′i is the draw value in the i-th

row of the sorted matrix and i ′ is the original index belonging to d ′i).
Draw-Sorted-Unique is based on the following assertion.

Lemma 37 If n ≥ 1, s = (s1, . . . , sn) is a (2, 3, n)-regular sequence, the sorted
versions of the sport matrices S(s) are identical and their joint draw sequence
is not graphical, then s is not a football sequence.

Basic parameters of Draw-Sorted-Unique are the usual ones, further
S: the current sum of the elements of s; D: the number of the draws in
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the investigated potential tournament; d = (d1, . . . , dn): di is the number
of draws allocated to Ti; do = (do1, . . . , don): doi is the number of oblig-
atory draws of Ti; DO: the number of the obligatory draws in the tourna-
ment; lo = (lo1, . . . , lon): loi is the number of obligatory losses of Ti; LO
is the number of obligatory losses in the tournament; wo = (wo1, . . . , won):
woi is the number of obligatory wins of Ti; WO is the number of obliga-
tory wins in the tournament; dm = (dm1, . . . , dmn): dmi is the maximal
number of draw packets which can be accepted by Ti; DM: the sum of the
dmi’s; lm = (lm1, . . . , lmn): lmi is of the maximal number of losses of Ti;
LM: the sum of the lmi’s; wm = (wm1, . . . , wmn): wmi is the maximal
number of wins of Ti; WM: the sum of the wmi’s; Wn: the number of the
wins in the tournament; Ln: the number of the losses in the tournaments;
Dn: the number of draws in the tournament; D: the number of yet not allo-
cated draws; da = (da1, . . . , dan): dai is the number of allocated to Ti draw
packets; wa = (wa1, . . . , wan): wi is the number of allocated to Ti wins;
la = (la1, . . . , lan): lai is the number of allocated to Ti losses; h: the maxi-
mal number of draw packets assigned to a team; R = Ri,j: a 3×h sized matrix,
where Ri,j gives the number of teams which are able at most i draw packets
and having score of form 3k+ j; A = (A0, A1, A2): Aj is the number of scores
giving i mod (3; B = (B0, . . . , Bh): Bi is the number of teams which are able to
accept at most i draw packets; z: number of draw pockets which the program
tries to allocate to all teams; fs: first score among the scores receiving maximal
number of draw pockets; Rm: critical value of the remainder (mod 3) of the
scores.

Draw-Sorted-Unique(n, s)

01 S =WO = DO = LO = A0 = A1 = A2 = L = 0 // line 01: initialization
02 for i = 1 to n // line 02–29: test of the obligatory sport matrix
03 S = S+ si
04 doi = si − 3bsi/3c
05 DO = DO+ doi

06 woi = max(0, d si−(n−1)
2 e

07 WO =WO+woi
08 loi = max(0, n− 1− si)
09 LO = LO+ loi

10 dmi = min
(
si−doi
3 , n−1−doi3 ,

3(n−1)−2di−si
6

)
11 DM = DM+ dmi

12 wmi = min
(
si−doi
3 , (N− 1) −DOi

)
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13 WM =WM+wmi

14 lmi = min
(
b 3(n−1)−si3 c, n− 1− doi

)
15 LM = LM+ lmi

16 Dn = 3
(
n
2

)
− S

17 Wn = Ln = S− 2
(
n
2

)
18 if DO > 2Dn
19 return L
20 if 3DM < 2Dn

21 return L
22 if WO > Wn
23 return L
24 if WM <Wn

25 return L
26 if LO > Ln
27 return L
28 if LM < Ln

29 return L
30 h = b(n− 1)/3c // line 30–45: preparation of the allocation
31 for i = 0 to h
32 Bi = 0
33 for j = 0 to 2
34 Rj,i = 0
35 for i = 1 to n
36 Rdoi,dmi

= Rdoi,dmi
+ 1

37 for i = 1 to h
38 for j = 0 to 2
39 Aj = Aj + Ri,j
40 Bi = Bi + Ri,j
41 q = 0
42 A = A0 +A1 +A2
43 D = 2Dn−DO

44 c = bDAc
45 q = q+ c
46 while c ≥ 1 // line 46–78: allocation of the draws
47 z = 0
48 for i = q− c+ 1 to q
49 z = z+ iBi
50 D = D− 3z
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51 for i = 0 to 2
52 for j = q− c+ 1 to q
53 Ai = Ai − Ri,j
54 A = A0 +A1 +A2
55 c = bDAc
56 if q > 0
57 for i = 1 to n
58 di = di − 3min(z, dmi)
59 if D == 0
60 go to 79
61 fs = −1
62 Rm = 2
63 if D ≤ A1 +A2
64 Rm = 1
65 if D ≤ A1
66 Rm = 0
67 for i = 1 to n
68 if (dmi > q)∧ (doi ≤ Rm) == true
69 if fs == −1
70 fs = si
71 else if si 6= fs
72 return L, d
73 if doi < Rm
74 di = di + 3
75 D = D− 3
76 if (doi == Rm)∧ (D > 0) == true
77 di = di + 3
78 D = D− 3
79 sort d in nonincreasing order resulting d ′ // line 79–80: sorting of d
80 HHL(d ′)
81 return L, d // line 81: return the result of HHL

Procedure HHL (Havel-Hakimi-Linear) is described in [60]. We remark
that the original Havel-Hakimi algorithm requires in worst case Θ(n2) time.
Recently Király [70] published a quicker algorithm which uses the data struc-
ture proposed by van Emde Boas [27, 71, 114] and requires only O(n log logn)
time. Our algorithm is linear and works also for some multigraphs.

A natural requirement is di ≤ n − 1 but di > n − 1 can occur only in
the cases s = (0, 2) and s = (1, 2) which are filtered by the constant time
algorithms.



Deciding football sequences 157

4.3.9 Efficiency of linear time filtering algorithms

Linear is the union of the described linear time algorithm.

Linear(n, s)
01 L = 0 // line 01: initialization of L
02 L1(n, s) // line 02–04: filtering by Complete
03 if L = 0
04 return L
05 L2(n, s) // line 05–07: filtering by Losses
06 if L = 0
07 return L
08 L3(n, s) // line 08–10: filtering by Reduction0
09 if L = 0
10 return L
11 L4(n, s) // line 11–13: filtering by Reduction1
12 if L = 0
13 return L
14 L5(n, s) // line 14–16: filtering by Draw-Unique
05 if L = 0
16 return L
17 L6(n, s) // line 17–19: filtering by Balanced
18 if L = 0
19 return L
20 L7(n, s) // line 20–22: filtering by Draw-Uniform
21 if L = 0
22 return L
23 L8(n, s) // line 23–25: filtering by Draw-Sorted-Unique
24 if L = 0
25 return L
26 L = 1 // line 26–27: the linear time algorithms can not decide
27 return L

Since all included algorithms have linear worst case running time, the total
running time of Linear is also O(n). Since the best running time of L1 is
O(1), therefore the best running time of Linear is also O(1).

Tables 4 and 5 show the concrete filtering results of the linear time filtering
algorithms. Table 4 contains the number of regular sequences (R), the number
of sequences, accepted by C9, L1 = Complete-Test, L2 = Losses and L3
= Reduction0.
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n C9 L1 L2 L3+ L4

1 1 1 1 1

2 2 2 2 2

3 14 12 10 10

4 203 134 94 87

5 2133 1230 901 814

6 20518 10947 8348 7526

7 191707 97427 76526 69349

8 1772842 872234 699344 637735

9 16332091 7851193 6387443 5859125

10 150288309 71001641 58367243 53817029

11 1383099467 644668154 538591486 494427384

12 12737278674 5873396400 4888701306 4544762304

13 117411184292 53669099755 44823480671 41804695971

14 1083421567402 491669304392 411496549436 384847810936

Table 4: Results of filtering by linear tests tests L1, L2, and L3 + L4 for
n = 1, . . . , 14 teams.

Table 5 contains the number of sequences accepted by L4 = Reduction1,
L5 = Draw-Unique, L6 = Balanced, L7 = Sport-Uniform and L8 =
Inner-Draw, further the number of the football sequences (F) and the cu-
mulated running time and (the exact values of L7 are bold).

4.4 Quadratic filtering algorithms

In this section the quadratic recursive filtering algorithms Q1 = Balanced-
Quad, Q2 = Reduction-Rec-Small, and Q3 = Reduction-Rec-Large
are described.

4.4.1 Quadratic filtering algorithm Q1 = Balanced-Quad

The filtering algorithm Q1 = Balanced-Quad is based on the observa-
tion that if the draw sequence is unique, then the victory sequence w =
(w1, . . . , wn) and the corresponding loss sequence l = (l1, . . . , ln) are also
unique, further that the wins (losses) of any subset of teams have to be paired
with inner and outer losses (wins). The following assertion gives a necessary
condition for the reconstructability of the sequence pair (v, l).
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n L5+ L6 L7+ L8 F t

1 1 1 1 0.000

2 2 2 2 0.000

3 7 7 7 0.000

4 46 40 40 0.000

5 475 365 355 0.000

6 4459 4086 3678 0.015

7 47867 44657 37263 0.047

8 460153 451213 361058 0.437

9 4371783 4348655 3403613 4.196

10 41261057 41166157 31653777 40.217

11 387821927 387416935 292547199 393.280

12 3635039265 3633749149 2696619716 3828.002

13 34011137972 33821636274 37611.185

14 317827900632 316291028902 364978.049

Table 5: Results of filtering by linear tests L5 + L6 and L7 + L8, further the
number of football sequences (F) and the running time of L8 (t) for 1, . . . , 14
teams.

Lemma 38 If (a1, . . . , an) is the monotone nonincreaing win sequence and
(b1, . . . , bn) is the corresponding loss sequence of a football tournament then

k∑
i=1

ai ≤
k∑
i=1

min(bi, k− 1) +

n∑
i=k+1

min(bi, k) (34)

for all k = 1, . . . , n, with equality for n.

Proof. The wins included in the sum of the left side of (34) have to be paired
with the ”inner losses“ (losses among T1, . . . , Tk) and ”outer losses“ (losses
of T1, . . . , Tk in the matches against the remaining teams). �

We remark that this lemma is a consequence of Theorem 3 of the recent
paper due to Berger [10] containing a necessary and sufficient condition for
some incomplete (0, 2, n)-tournaments. As the sequence (1, 1, 8, 9, 9) satisfying
34 shows, in our case (34) is only a necessary condition, since s has a unique
sport matrix shown in Table 6 which is not reconstructable.

The paper [33] contains an algorithm for our problem but the algorithm
does not terminate for some inputs.
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i wi di li si
1 0 1 3 1

2 0 1 3 1

3 2 2 0 8

4 3 0 1 9

5 3 0 1 9

Table 6: Unique sport matrix belonging to the sequence s = (1, 1, 8, 9, 9).

The following natural implementation Balanced-Quad of Lemma 38 re-
quires quadratic time.

Parameters of Balanced-Quad are the usual ones, further w = (w1, . . . ,
wn): wi is the number of wins allocated to Ti (0 ≤ wi ≤ n−1); l = (l1, . . . , ln):
li is the number of losses allocated to Ti (0 ≤ li ≤ n − 1); Sw: the current
number of the necessary wins; Ss: the maximal number of pairable losses of
teams having small indices; Sl: the maximal number of pairable losses of the
teams having large indices.

Balanced-Quad(n,w, l)

01 Sw = L = 0 // line 01: initialization of Sw and L
02 sort (w, l) nonincreasingly in w using Counting-Sort
03 for i = 1 to n // line 03–13: counting of wins and losses
04 Ss = Sl = 0
05 Sw = Sw = wi
06 for j = 1 to i // line 06–07: small indices
07 Ss = Ss+ min(wj, i− 1)
08 for j = i+ 1 to n // line 08–09: large indices
09 Sl = Sl+ min(wj, i)
10 if Sw > Ss+ Sl // line 10–13: (w, l) is not pairable
11 return L
12 if Sw < Ss+ Sl
13 return L
14 else L = 2 // line 14–15: s is undecided
15 return L

We yet did not implemented Balanced-Quad.
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4.4.2 Quadratic filtering algorithm Q2 = Reduction-Rec-Small

Algorithm Q2 = Reduction-Rec-Small is based on the recursive applica-
tion of Recursive0 and Recursive1. Using Q2 and the next Q3 we shorten
the input sequences and often can filter them.

Parameters are the usual ones, further e = (e1, . . . , eN): work version of the
investigated sequence; nl: smallest index of not deleted elements of s.

Reduction-Rec-Small(n, s)

01 L = S = 0 // line 01–04: initialization of L, S, nl, and e
02 for i = 1 to n
03 ei = si
04 nl = 1
05 while nl ≤ n
06 S = 0
07 for i = nl to n
08 S = S+ ei
09 if S == i(i− 1) // line 09–21: S is minimal
10 if i < n
11 if (enl

6= i− 1)∨ (enl+i−1 6= i− 1) == true
12 return L
13 if enl+i < 3i

14 return L
15 if i == n
16 if (enl

6= i− 1)∨ (en 6= i− 1) == true
17 return L
18 else L = 1
19 return L
20 nl = nl + i
21 for j = nl to n
22 ej = ej − 3i
23 go to 05
24 if S == i(i− 1) + 1 // line 22–35: S is minimum plus one
25 if i < n
26 L1 = (enl

= i− 1)∧ (enl+i−2 = i− 1)∧ (enl+i−1 = i)
∧(enl+i ≥ 3i− 2)

27 L2 = (enl
= i− 2)∧ (enl+i−2 = i− 1)∧ (enl+i−1 = i+ 1)

28 if (L1 == false)∧ (L2 == false) == true
29 return L // line 28–29: s is not football sequence
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30 if i == n
31 L2 = (enl

= n− 2)∧ (enl+1 = n− 1)∧ (en−1 = n+ 1)
32 if L2 == False // line 32–33: s is not football sequence
33 return L
34 nl = nl + i
35 for j = nl to n
36 ej = ej − 3i
37 go to 05
38 Reduction-Rec-Large(n− nl + 1, e)
39 if L == 0
40 return L
41 if nu > 0
42 Filter(nu, e)
43 if L == 0
44 return L
45 L = 2 // line 45–46: s is undecided
46 return L

Reduction-Rec-Small calls Filter which is a union of the constant and
linear time filtering algorithms and Reduction-Rec-Large which is the next
quadratic filtering algorithm.

Filter(n, e)

01 Constant(n, e) // line 01–03: filtering by the constant time algorithms
02 if L == 0
03 return L
04 Linear(n, e) // line 04–06: filtering by the linear time algorithms
05 if L == 0
06 return L
07 L = 2 // line 07–08: s is undecided
08 return L

4.4.3 Quadratic filtering algorithm Q3

Algorithm Q3 = Reduction-Rec-Large is based on the recursive applica-
tion of Recursive0 and Recursive1.

Parameters are the usual ones, further e = (e1, . . . , eN): work version of the
investigated sequence; nu: smallest index of the not deleted elements of s; Q:
the sum of the i largest scores; B: the number of investigated scores giving



Deciding football sequences 163

0 remainder mod 3; C: the number of investigated scores giving remainder 1
mod 3; D: the number of investigated scores giving remainder 2 mod 3.

Reduction-Rec-Large(n, e)

01 L = Q = B = C = D = 0 // line 01–02: initialization of L, Q, B, C, D, nu
02 nu = n
03 while nu ≤ 1 // line 03–25: recursive reduction
04 for i = nu downto 1 // line 04–09: preparing of the filtering
05 Q = Q+ ei
06 if ei − 3bei/3c == 0
07 B = B+ 1
08 if ei − 3bei/3c == 1
09 C = C+ 1
10 if ei − 3bei/3c == 2
11 D = D+ 1
12 if Q == 3i(nu − i) + 3i(i− 1)/2 // line 12–17: Q is maximal
13 if B 6= i
14 return L, nu
15 if i > 1
16 if enu−i > 3(nu − i− 1)
17 return L, nu
18 nu = nu − i
19 go to 03
20 if Q == 3i(nu − i) + 3i(i− 1)/2− 1
21 if (B == i− 2)∧ (C == 2) == false
22 return L, nu
23 if i > 1 // line 20–25: Q is maximum minus 1
24 if enu−i > 3(nu − i− 1)
25 return L, nu
26 L = 2 // line 26–27: s is not decided
27 return L, nu

The following Table 7 contains the results of quadratic filtering algorithms.

5 Reconstruction of potential football sequences

In this part we investigate polynomial reconstruction algorithms, as R1 =
Reduction, R2 = Draw-Uniform-Rec, and R3 = Draw-Inner-Rec.
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n Linear Q2+Q3 F t

1 1 1 1 0.000

2 2 2 2 0.000

3 7 7 7 0.000

4 40 40 40 0.000

5 365 355 355 0.000

6 4086 3760 3 678 0.015

7 44657 39417 37 273 0.109

8 451213 393072 361 058 1.264

9 4348655 3804485 3 403 613 15.226

10 41166157 36302148 31 653 777 179.249

11 387416935 344012885 292 547 199 2066.323

12 3633749149 3246651763 2 696 619 716 23429.877

13 33821636274 30405902165

Table 7: Results of filtering by Linear and quadratic algorithms Q2 + Q3,
further the number of football sequences (F) and the running time of Q3 (t)
for n = 1, . . . , 13 teams.

5.1 Reconstruction algorithm R1 = Reduction

R1 = Reduction is based on filtering algorithms Reduction0 and Reduc-
tion1.

5.2 Reconstruction algorithm R2 = Draw-Uniform-Rec

R2 = Draw-Uniform-Rec is based on filtering algorithms: it tries—using the
degree sequence d produced by Sport-Uniform or Draw-Sorted-Unique
and using a greedy pairing algorithm “largest wins with largest losses”—to
pair the wins and losses.

Parameters of R2 are the usual ones further S: sport matrix computed using
the output draw sequence d of Sport-Uniform or Draw-Sorted-Unique
and sorted its rows so that either wi > wi+1 or wi = wi+1 and li ≤ li+1; d =
(d1, . . . , dn): draw sequence of S; Mn×n (result matrix): Mi,j is the number
of points received by Ti in the match against Tj; w = (w1, . . . , wn): wi is the
number of wins of Ti; l = (l1, . . . , ln): li is the number of losses of Ti.

Draw-Uniform-Rec(n, s, d)

01 for i = 1 to n // line 01–03: initialization of M
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02 for j = 1 to n
03 Mi,j = 0
04 Havel-Hakimi-Draws(n, s, d,M) // line 04: HHD allocates the draws
05 for i = 1 to n // line 05–07: computation of w and l
06 wi = (si − di)/3
07 li = n− 1− di −wi
08 for i = n downto 1 // line 08–24: allocation of wins and losses
09 j = n
10 while (wi > 0)∨ (Mij 6= 1)∨ (j > 0)∨ (i 6= j)∨ (lj > 0) == true
11 Mij = 3
12 wi = wi − 1
13 lj = lj − 1
14 j = j− 1
15 if wi > 0 // line 15–17: s is undecided
16 L = 2
17 return L, M
18 L = 1 // line 18–19: s is a football sequence
19 return L, M

R2 uses a special version of Havel-Hakimi algorithm called Havel-Hakimi-
Draws (or shortly HHD). While for the classical Havel-Hakimi algorithm the
equal scores are equivalent, in this application we have to distinguish them.

Additional parameters are d = (d1, . . . , dn): a draw sequence produced by
Draw-Rec;M: n×n sized matrix whereMij is the number of points received
by Ti in the match with Tj; E = (E1, . . . , En) = ((e1, h1), . . . , (en, hn)): current
extended and sorted version of d; H = (h1, . . . , hn): hi is the index of ei in
d; nl: lower index of the essential part of E ; nu: upper index of the essential
part of E ; c = (c0, . . . , cn): ci is the number of i’s among enl

, . . . , enu ; C =
(C0, . . . , Cn): Ci is the cumulated number of i’s among enl

, . . . , enu .

Havel-Hakimi-Draws(n, d,M)

01 nl = 1 // line 01–05: initialization of nl, nu, and E ;
02 nu = n
03 for i = nl to nu // line 03–07: initialization of G and nu;
04 ei = di
05 hi = i
07 nu = n
08 for i = 1 to n // line 08–15: pairing of the draws;
09 Counting-Sort-Draws(n, i, nu, E) // line 09: sorting
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10 if ei = 0
11 return M
12 for k = 1 to ei
13 Mhi,hi+k =Mhi+k,hi = 1 // line 13: a draw is fixed
14 ei+k = ei+k + 1
15 while nu == 0
16 nu = nu − hi
17 return M // line 17: return the matrix containing the paired draws

Counting-Sort-Draws is a modified version of the well-known linear time
sorting algorithm Counting-Sort [27].

Additional parameters are d = (d1, . . . , dn): a draw sequence produced by
Draw-Uniform-Rec; nl: lower index of the essential part of E ; nu: upper
index of the essential part of E ; M: n × n sized matrix where Mij is the
number of points received by Ti in the match with Tj; E = (E1, . . . , En) =
((g11, g12), . . . , (g1n, g2n): current extended and sorted version of d with the
corresponding indices; G: the working version of E ; nl : lower index of the
essential part of E ; nu: upper index of the essential part of E ; c = (c0, . . . , cn−1):
ci is the number of i’s among g1,nl

, . . . , g1,nu ; Cn = 0 working variable; C =
(C0, . . . , Cn−1): Ci is the number of investigated scores larger or equal with i.

Counting-Sort-Draws(n, d, nl, nu, E)
01 for i = nl to nu // line 01–05: initialization of G and c;
02 g1,i = e1,i
03 g2,i = e2,i
04 for i = 0 to n− 1
05 ci = 0
06 for i = nl to nu // line 06-10: computation of the counters
07 cg1i = cg1i + 1
08 Cn = 1
09 for n− 1 downto 0
10 Ci = Ci+1 + ci
11 for i = nl to nu // line 11-16: computation of the new E
12 x = Cg1,i + 1
13 e1,x = g1,i
14 e2,x = g2,i
15 Cx = Cx + 1
16 return E

The running time of Counting-Sort-Draw is Θ(n), of Havel-Hakimi-
Draw is O(n2) and the one of Draw-Uniform-Rec is also O(n2).
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As an example let s = (1, 1, 7, 7). Then s has a unique draw sequence
(1, 1, 1, 1) and unique sport matrix shown in Table 8.

i wi di li si
1 0 1 2 1

2 0 1 2 1

3 2 1 0 7

4 2 1 0 7

Table 8: Unique sport matrix belonging to the sequence s = (1, 1, 7, 7).

According to the relatively quick version Havel-Hakimi-Shifting [62] T1
plays a draw with T4 and T2 with T3 resulting the partial result matrix shown
in Table 9.

i T1 T2 T3 T4 si
1 − ? ? 1 1

2 ? − 1 ? 1

3 ? 1 − ? 7

4 1 ? ? − 7

Table 9: Partial result matrix belonging to the draws of s = (1, 1, 7, 7).

The partial result matrix containing the draws in Table 9 is not recon-
structible since no acceptable result for the match between T1 and T2.

If we use the classical Havel-Hakimi algorithm then the draws are between
T1 and T2, further between T3 and T4 and our greedy algorithm Draw-
Uniform-Rec reconstructs the received partial result matrix.

Another example let s = (1, 1, 8, 8, 10, 13). Then s has a unique draw se-
quence (1, 1, 2, 2, 1, 1) and a unique sport matrix shown in Table 10.

i wi di li si
1 0 1 4 1

2 0 1 4 1

3 2 2 1 8

4 2 2 1 8

5 3 1 1 10

6 4 1 0 13

Table 10: Unique sport matrix belonging to the sequence s = (1, 1, 8, 8, 10, 13).
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In this case at first E = ((2, 3), (2, 4), (1, 1), (1, 2), (1, 5), (1, 6)). The draws
allocated by HHD are shown in Table 11.

i T1 T2 T3 T4 T5 T6 si
1 − ? 1 ? ? ? 1

2 ? − ? 1 ? ? 1

3 1 ? − 1 ? ? 8

4 ? 1 1 − ? ? 8

5 ? ? ? ? − 1 10

6 ? ? ? ? 1 − 13

Table 11: Partial result matrix belonging to the draws of s = (1, 1, 8, 8, 10, 13).

The partial result matrix in Table 11 is not reconstructible since no accept-
able result for the match between T1 and T2.

5.3 Reconstruction algorithm R3 = Draw-Inner-Rec

Reconstruction algorithm R3 = Draw-Inner-Rec is an improved version of
R2: it takes into account the obligatory inner draws.

The base of Inner-Draws is the following lemma.

Lemma 39 If n ≥ 1, f = (f1, . . . , fn) is a football sequence, 1 ≤ k ≤ n and

k∑
i=1

fi < 3

(
k

2

)
, (35)

then among the teams T1, . . . , Tk there are at least⌈(
3

(
k

2

)
−

k∑
i=1

fi

)
/2

⌉
(36)

draws.

Proof. If ⌈
2

(
3

(
k

2

)
−

k∑
i=1

fi

)
/2

⌉
= q > 0, (37)

then the first k teams lost at least q points due to inner draws (or even more,
if they gathered points in the matches against the remaining teams). �
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Trying to reconstruct the sequence s = (1, 1, 8, 8, 10, 13) which was the last
example of the previous Section 5.2 Draw-Inner-Rec (see Table 10 and 11)
recognizes that s1 + s2 = 2 therefore according to Lemma 39 the obligatory
result between T1 and T2 is a draw. Then Draw-Inner-Rec finishes the
allocation of the draws as it is shown in Table 12.

1 − 1 ? ? ? ? 1

2 1 − ? ? ? ? 1

3 ? ? − 1 1 ? 8

4 ? ? 1 − ? 1 8

5 ? ? 1 ? − ? 10

6 ? ? ? 1 1? − 13

Table 12: Partial result matrix belonging to the draws of s = (1, 1, 8, 8, 10, 13)
allocated by Draw-Inner-Rec.

Using the matrix of the allocated draws shown in Table 12 Draw-Uniform-
Rec produces the complete result matrix shown in Table 13. proving that
s = (1, 1, 8, 8, 10, 13) is a football sequence.

i T1 T2 T3 T4 T5 T6 si
i T1 T2 T3 T4 T5 T6 si
1 − 1 0 0 0 0 1

2 1 − 0 0 0 0 1

3 3 3 − 1 1 0 8

4 3 3 1 − 0 1 8

5 3 3 1 3 − 0 10

6 3 3 3 1 3 − 13

Table 13: Partial result matrix belonging to the draws of s = (1, 1, 8, 8, 10, 13)
allocated by Draw-Inner-Rec.

The algorithm based on this lemma yet is is not implemented.

6 Enumeration of football sequences

There are many publications connected with the generation [5, 52, 58, 100]
and enumeration of degree sequences of graphs, e.g. [4, 5, 8, 21, 26, 49, 62,
63, 67, 72, 78, 79, 81, 87, 92, 97, 98, 105, 117]. The problems connected with
directed graphs sometimes are considered as problems of orientation of undi-
rected graphs [37, 36, 38, 39].
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The enumeration of degree [4, 21, 40, 62, 63] and score [49, 53] sequences
also has a reach literature.

The first published enumeration results connected with football score se-
quences belong to Gábor Kovács, Norbert Pataki, Zoltán Hernyák and Tamás
Hegyessy [73] who computed F(n) for n = 1, . . . , 8 in 2002. N. J. A. Sloane
in May 2007 determined F(9), then in June 2008 Min Li computed F(10).
The newest results were received by J. E. Schoenfield who computed F(11) in
September of 2008 and F(12) in December of 2008 [100].

Connected problems are the listing of all degree sequences and sampling of
degree sequences [11, 15, 28, 65, 66, 82].

Our basic method is similar as we enumerated the degree sequences of simple
graphs [62, 103].

¿From one side we try to test the elements of the possible smallest set, and
from the other side we try to use quick as possible testing and reconstruction
algorithms.

A natural idea is to investigate only the nonincreasing sequences of integers
having 0 as lower bound and 3(n− 1) as upper bound. Paul Erdős and Tibor
Gallai called such sequences regular [32]. The number of such sequences is
given by (1).

6.1 Decreasing of the number of the investigated sequences

A useful tool of the enumeration of the number of football sequences is the
decreasing of the number of the considered sequences.

In Section 4 we proposed and analyzed filtering of regular sequences with
constant, linear and quadratic time algorithms. For 14 teams we excluded more
then the half of the regular sequences by the constant time algorithms. For
13 teams the linear and quadratic algorithms left less then 10.58 percent of
the regular sequences. In Section 5 the polynomial reconstruction algorithms
decreased the fraction of the undecided regular sequences to 4.68 percent of
the regular sequences.

6.2 Backtrack filtering and accepting test

This method is due to Antal Iványi [54, 73].
The results of the filtering algorithms are summarized in Table 14.
The running time of the filtering algorithms are presented in Table 15. The

times are cumulated and contain the time necessary for the generation of the
sequences too.
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n Constant Linear Quad Backtrack = F

1 1 1 1 1
2 2 2 2 2
3 14 7 7 7
4 203 40 40 40
5 2 133 365 355 355
6 20 518 4 086 3 760 3 678
7 191 707 44 657 39 417 27 263
8 1 772 442 451 213 393 072 361 058
9 16 332 091 4 348 655 3 804 485 3 403 613

10 150 288 309 41 166 157 36 302 148 31 653 777
11 1 383 099467 387 416 935 344 012 885 292 547 199
12 12 737 278 674 3 633 749 149 3 246 651 763 2 696 619 716
13 117 411 154 292 33 821 636 274 30 405 902 165
14 1 083 421 567 482

Table 14: Numbers of sequences accepted by constant, linear and quadratic
time and Backtrack filtering algorithms for n = 1, . . . , 14 teams.

n Constant Linear Quad Backtrack = F

1 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.015
7 0.016 0.031 0.042 0.172
8 0.046 0.375 0.577 52.603
9 0.468 3.572 5.772

10 4.134 34.632 54.741
11 37.612 329.816 525.752
12 343.575 3 145.494 4 998.831
13 3 142.469 30 541.260 49 035.625
14 29 438.094

Table 15: Running times of constant, linear and quadratic time filtering algo-
rithms for n = 1, . . . , 14 teams.

The individual results of the reconstruction algorithms are summarized in
Table 16.

The running times of the reconstruction algorithms are shown in Table 17.
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n R1 R2 + R3 Backtrack F

1 1 0 0 1

2 2 0 0 2

3 6 1 0 7

4 18 22 0 40

5 50 305 0 355

6 137 3 460 81 3 678

7 375 33 993 2 895 37 263

8 1 023 304 349 56 909 361 058

9 2 776 2 576 124 3 403 613

10 7 498 21 453 751 31 653 777

11 20 177 177 819 555 292 547 199

12 54 127 1 476 661 425 2 696 619 716

13 144 708 12 300 060 430

Table 16: Number of (0, 3n − 3, n)-regular sequences reconstructed by recon-
struction algorithms R1, R2 + R3 and Backtrack for n = 1, . . . , 14 teams.

n R1 R3 Backtrack

2 0.000 0.000 0.000

3 0.000 0.000 0.000

4 0.000 0.000 0.000

5 0.000 0.000 0.000

6 0.000 0.015 0.015

7 0.063 0.109 0.172

8 0.546 1.264 52.603

9 5.491 15.226

10 53.880 179.249

11 522.386 2 066.323

12 4 998.831 23 429.877

13 49 035.625 261 904.750

Table 17: Running times of the R1, R3 and Backtrack reconstructing algo-
rithms for n = 1, . . . , 13 teams.
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6.3 Recursive accepting test

This method is due to Schoenfield [100]. According to this method we compare
the sequences of length n passed through the filtering and accepting tests with
the good sequences of length n− 1 whether they can be derive from them.

Since if we omit a team with its results from a football matrix of size n×n,
then we get a football matrix of size (n− 1)× (n− 1), therefore we regularly
delete the first elements of the investigated n-length sequences.

Let n ≥ 2.We suppose that when we enumerate the n-length good sequences
then we know the F(n − 1)× (n − 1) sized matrix M containing the (n − 1)-
length good sequences in lexicographically increasing order, and also know
the vector (P0, . . . , Pk), where k = b3(n − 1)/2c and Pi gives the number of
(n− 1)-length good sequences starting with i.

Let start the recursion with n = 2. Matrix M1 contains only one row (0)
and P contains one element P(1) = 1.

The constant time filtering algorithms accept only the sequences (0, 3) and
(1, 1). At first we omit 0 from the first sequence and state that the remaining
sequence (3) can be derived from (0) only if the team having zero points in
the shorter sequence wins against the omitted player. So the omitted player
has to have zero points. Since the omitted score is exactly zero, (0,3) is a good
sequence.

Then we delete the first element from the sequence (1,1) and state that the
player having zero points has to play a draw with the omitted team. Since it
has exactly one point, therefore (1,1) is also a good sequence and so F(2) = 2.

Now let n = 3. Then M2 contains two rows: (0,3) and (1,1). In this case
the filtering algorithms accept only the seven good sequences: (0,3,6), (0,4,4),
(1,1,4), (1,2,4), (1,3,4), (2,2,2) and (3,3,3).

At first we delete 0 from (0, 3, 6) and compare the remaining (3, 6) with the
known good sequences. There are thee possibilities: the first team of the good
sequence received 3, 1 or 0 points against the omitted one. If 3, then the good
sequence has to start with 0. There is only one sequence (0, 3) requiring two
losses for the omitted team. Since the omitted element is exactly zero, (0, 3, 6)
is a good sequence.

The second accepted sequence is (0, 4, 4). Omitting 0 and comparing (4, 4)
with the good sequences we get, that (1, 1) is the only potential ancestor
requiring zero points for the deleted team. Since it has exactly zero points,
(0, 4, 4) is also a good sequence.

In a similar way we can prove that the remaining five accepted sequences
are also good.
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When n = 4 then M contains seven elements and P = (1, 3, 6, 7).
Reconstruct executes this recursive step. Its additional parameters are

F(n−1): the number of (n−1)-length good sequences;MF(n−1)×(n−1): matrix of
good sequences of length n−1 (this matrix consists of submatrices containing
the good sequences having identical first element; P = (P0, . . . , Pk), where k =
k = b3(n−1)/2cand Pi is the number of n−1 length football sequences starting
with i; NF(n)×n: matrix of good sequences of length n; m = (m1, . . . ,mn−1):
the current reduced version of s; d: the current score of the deleted team.

Reconstruct(n, s, F,M, P)

01 L = 1 line 01–02: initialization of L and u
02 u = b3(n− 1)/2c
03 if s2 ≤ u // line 03-21: omitted element starts with a loss
04 j← Ps2
05 while Mj,1 == s2
06 d← 0

07 k← 2

08 while k ≤ n
09 if sk −Mj,k == 3
10 d = d+ 0
11 go to 19
12 if sk −Mj,k == 1
13 d = d+ 1
14 go to 19
15 if sk −Mj,k == 0
16 d = d+ 3
17 go to 19
18 go to 22
19 k← k+ 1
20 if d == s1
21 return L
22 if 0 ≤ s2 − 1 // line 22-40: omitted element starts with a draw
23 j← Ps2−1
24 while Mj,1 == s2 − 1
25 d← 1

26 k← 2

27 while k ≤ n
28 if sk −Mj,k == 1
29 d = d+ 1
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30 go to 38
31 if sk −Mj,k == 1
32 d = d+ 1
33 go to 38
34 if sk −Mj,k == 1
35 d = d+ 1
36 go to 38
37 go to 39
38 k = k+ 1
39 if d == s1
40 return L
41 if 0 ≤ s2 − 3 // line 41-59: omitted element starts with a win
42 j← P[s2 − 3]
43 while Mj,1 == s2 − 3
44 d← 3

45 k← 2

46 while k ≤ n
47 if sk −Mj,k == 3
48 d = d+ 3
49 go to 57
50 if sk −Mj,k == 1
51 d = d+ 1
52 go to 57
53 if sk −Mj,k == 1
54 d = d+ 1
55 go to 57
56 go to 58
57 k← k+ 1
58 if d == s1
59 return L
60 L = 0
61 return L

Table 18 shows the number of regular sequences (R(n), the number of foot-
ball sequences (F(n), the ratio (R(n + 1)/R(n)), the ratio F(n + 1)/F(n), and
the ratio (F(n)/R(n) for n = 1, . . . , 12. In this table if n ≥ 2 then R(n) is
decreasing.

Lemma 40 If n tends to infinity then R(n+ 1)/R(n) tends to 256/27.
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n R(n) R(n+1)
R(n) F(n) F(n+1)

F(n)
F(n)
R(n)

1 1 10.000 1 2.000 1.0000

2 1 8.400 2 3.500 0.2000

3 84 8.512 7 5.714 0.0833

4 715 8.655 40 8.875 0.0559

5 6188 8.769 355 10.361 0.0574

6 54264 8.859 3678 10.131 0.0678

7 480700 8.929 37263 9.689 0.0775

8 4292145 8.986 361058 9.427 0.0841

9 38567100 9.032 3403613 9.300 0.0883

10 348330136 9.070 31653777 9.242 0.0909

11 3159461968 9.103 292547199 9.217 0.0926

12 28760021745 9.131 2696619716 0.0938

13 262596783864 9.155

14 240397990420

Table 18: Number of regular and football sequences and the ratio of these
numbers for neighboring numbers of teams

Proof. According to (1)

R(n+ 1)

R(n)
=

(4n+ 1)(4n)(4n− 1)(4n− 2)

(n+ 1)(3n)(3n− 1)(3n− 2)
=
256

27
+ o(1), (38)

implying the required limit. �

If n ≥ 1 then in Table 18 F(n+ 1)/F(n) is nondecreasing. We suppose that
it tends to 1.

If 5 ≤ n ≤ 12 then F(n)/R(n) is increasing. It is easy to see that

lim
n→∞ F(n+ 1)

F(n)
≤ R(n+ 1)

R(n)
. (39)

The behavior of F(n)/R(n) is a bit surprising since the similar relative den-
sity of tournaments score sequences tends to zero (see [21]). We suppose that
F(n)/R(n) also tends to zero but the convergence is slow.
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180 A. Iványi, J. E. Schoenfield

[53] G. Isaak, Tournaments and score sequences, in ed. by D. B. West REGS in
Combinatorics, 2010, No. 7,
http://www.math.uiuc.edu/ west/regs/fifa.html ⇒130, 170
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algorithms. Acta Univ. Sapientiae, Inform. 3, 2 (2011) 230–268. ⇒ 151, 167,
169, 170
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[71] Z. Király, Data Structures (Lecture notes in Hungarian), Eötvös Loránd
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[78] L. Lucz, A. Iványi, Testing and enumeration of football sequences, in: MaCS’12.
9th Joint Conference in Mathematics and Computer Science (Siófok, Hungary,
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