Table 3. Comparison of chironomid inferred temperatures (T_{VII} = July air temperature) and assemblage changes from Lake Brazi (Retezat Mts., South Carpathians) with other proxies from the Carpathians.

Age (cal yr BP)	Lake Brazi (South Carpathians)	Southern Carpathians	Eastern Carpathians	Western Carpathians
ca 11,500–10,200	inferred T _{VII} increase by 3.8°C;	rising temperatures (1; 2)	rising temperatures (3)	rising temperatures (4)
	<i>T. lugens-</i> and <i>M. insignilobus-</i> type are replaced by Chironomini taxa and <i>T. pallidicornis-</i> type 2			
ca 10,200–8500	higher than present T _{VII} by 1.5-2.5°C;	shallow lake conditions with	warm climate and shallow	rising temperatures (4)
	T. mendax-type dominates	high summer temperatures (1; 5; 6)	lake condition (3; 7)	
ca 8500–6500	inferred T _{VII} decreases by 1.0-1.2°C;	distinct lake level rise with still	relatively warm summer	
	T. mendax-type dominates and P.	high summer temperatures (5; 6)	temperatures (3)	
	sordidellus-type increases			
ca 6500–3000	inferred T _{VII} decreases further until	increasing water levels	cooling climate with	lower annual
	present-day value (~11.2°C);	associated with increasing	increasing lake levels (7)	temperatures (9)
	P. sordidellus-type dominates and T. mendax-type decreases	precipitation and temperature decline (1; 5; 8)		
ca 3000–2000	inferred T _{VII} is under present-day value	the highest lake levels (5)	cool climate with maximum	
	by 1.8-1.9°C;		precipitation (7; 10)	
	<i>T. lugens</i> -type dominate, while <i>T.</i>			
	mendax- and P. sordidellus- type			
	decrease			
ca 2000–	inferred T _{VII} increase until present-day	cooler summers with increased		
	value;	precipitation (2)		
	T. lugens-, T. mendax-, P. sordidellus-	in the last 1500 years increased human impact in the Romanian Carpathians (3; 7)		
	type and Zavrelimyia type A dominate			

^{1 =} Constantin et al., 2007; 2 = Magyari et al., 2012; 3 = Feurdean et al., 2008; 4 = Tămaş et al., 2005; 5 = Buczkó et al., 2013; 6 = Pál et al., *in press*; 7 = Magyari et al., 2009b; 8 = Magyari et al., 2009a; 9 = Onac et al., 2002; 10 = Schnitchen et al., 2006