

ACTA UNIV. SAPIENTIAE, INFORMATICA, 2, 2 (2010) 184–193

Score lists in multipartite hypertournaments

Shariefuddin Pirzada

Department of Mathematics, University of Kashmir, India, and King Fahd University of Petroleum and Minerals, Saudi Arabia email: sdpirzada@yahoo.co.in Guofei Zhou Department of Mathematics, Nanjing University, Nanjing, China email: gfzhou@nju.edu.cn

Antal Iványi

Department of Computer Algebra Eötvös Loránd University, Budapest, Hungary email: tony@inf.elte.hu

Abstract. Given non-negative integers n_i and α_i with $0 \leq \alpha_i \leq n_i$ $(i = 1, 2, \ldots, k)$, an $[\alpha_1, \alpha_2, \ldots, \alpha_k]$ -k-partite hypertournament on $\sum_1^k n_i$ vertices is a (k+1)-tuple $(U_1, U_2, \ldots, U_k, E)$, where U_i are k vertex sets with $|U_i| = n_i$, and E is a set of $\sum_1^k \alpha_i$ -tuples of vertices, called arcs, with exactly α_i vertices from U_i , such that any $\sum_1^k \alpha_i$ subset $\cup_1^k U_i'$ of $\cup_1^k U_i$, E contains exactly one of the $\left(\sum_1^k \alpha_i\right) ! \sum_1^k \alpha_i$ -tuples whose entries belong to $\cup_1^k U_i'$. We obtain necessary and sufficient conditions for k lists of non-negative integers in non-decreasing order to be the losing score lists and to be the score lists of some k-partite hypertournament.

1 Introduction

Hypergraphs are generalizations of graphs [1]. While edges of a graph are pairs of vertices of the graph, edges of a hypergraph are subsets of the vertex set,

Mathematics Subject Classification 2010: 05C65

Key words and phrases: hypergraph, hypertournament, multi hypertournament, score, losing score.

Computing Classification System 1998: G.2.2

consisting of at least two vertices. An edge consisting of k vertices is called a k-edge. A k-hypergraph is a hypergraph all of whose edges are k-edges. A k-hypertournament is a complete k-hypergraph with each k-edge endowed with an orientation, that is, a linear arrangement of the vertices contained in the hyperedge. Instead of scores of vertices in a tournament, Zhou et al. [13] considered scores and losing scores of vertices in a k-hypertournament, and derived a result analogous to Landau's theorem [6]. The score $s(v_i)$ or s_i of a vertex v_i is the number of arcs containing v_i and in which v_i is not the last element, and the losing score $r(v_i)$ or r_i of a vertex v_i is the number of arcs containing v_i and in which v_i is the last element. The score sequence (losing score sequence) is formed by listing the scores (losing scores) in non-decreasing order.

The following characterizations of score sequences and losing score sequences in k-hypertournaments can be found in G. Zhou et al. [12].

Theorem 1 Given two positive integers n and k with $n \ge k > 1$, a nondecreasing sequence $R = [r_1, r_2, ..., r_n]$ of non-negative integers is a losing score sequence of some k-hypertournament if and only if for each j,

$$\sum_{i=1}^{j} r_i \ge \binom{j}{k},$$

with equality when j = n.

Theorem 2 Given positive integers n and k with $n \ge k > 1$, a non-decreasing sequence $S = [s_1, s_2, ..., s_n]$ of non-negative integers is a score sequence of some k-hypertournament if and only if for each j,

$$\sum_{i=1}^{j} s_i \ge j \binom{n-1}{k-1} + \binom{n-j}{k} - \binom{n}{k},$$

with equality when j = n.

Some recent work on the reconstruction of tournaments can be found in the papers due to A. Iványi [3, 4]. Some more results on k-hypertournaments can be found in [2, 5, 9, 10, 11, 13]. The analogous results of Theorem 1 and Theorem 2 for [h, k]-bipartite hypertournaments can be found in [7] and for $[\alpha, \beta, \gamma]$ -tripartite hypertournaments in [8].

Throughout this paper i takes values from 1 to k and j_i takes values from 1 to n_i , unless otherwise stated.

A k-partite hypergraph is a generalization of k-partite graph. Given nonnegative integers n_i and α_i , (i = 1, 2, ..., k) with $n_i \ge \alpha_i \ge 0$ for each i, an $[\alpha_1, \alpha_2, ..., \alpha_k]$ -k-partite hypertournament (or briefly k-partite hypertournament) M of order $\sum_{1}^{k} n_i$ consists of k vertex sets U_i with $|U_i| = n_i$ for each i, $(1 \le i \le k)$ together with an arc set E, a set of $\sum_{1}^{k} \alpha_i$ -tuples of vertices, with exactly α_i vertices from U_i , called arcs such that any $\sum_{1}^{k} \alpha_i$ subset $\cup_{1}^{k} U'_i$ of $\cup_{1}^{k} U_i$, E contains exactly one of the $(\sum_{1}^{k} \alpha_i) \sum_{1}^{k} \alpha_i$ -tuples whose α_i entries belong to U'_i .

Let $e = (u_{11}, u_{12}, \ldots, u_{1\alpha_1}, u_{21}, u_{22}, \ldots, u_{2\alpha_2}, \ldots, u_{k1}, u_{k2}, \ldots, u_{k\alpha_k})$, with $u_{ij_i} \in U_i$ for each $i, (1 \le i \le k, 1 \le j_i \le \alpha_i)$, be an arc in M and let h < t, we let $e(u_{1h}, u_{1t})$ denote to be the new arc obtained from e by interchanging u_{1h} and u_{1t} in e. An arc containing α_i vertices from U_i for each $i, (1 \le i \le k)$ is called an $(\alpha_1, \alpha_2, \ldots, \alpha_k)$ -arc.

For a given vertex $u_{ij_i} \in U_i$ for each $i, 1 \leq i \leq k$ and $1 \leq j_i \leq \alpha_i$, the score $d_M^+(u_{ij_i})$ (or simply $d^+(u_{ij_i})$) is the number of $\sum_{i=1}^k \alpha_i$ -arcs containing u_{ij_i} and in which u_{ij_i} is not the last element. The losing score $d_M^-(u_{ij_i})$ (or simply $d^-(u_{ij_i})$) is the number of $\sum_{i=1}^k \alpha_i$ -arcs containing u_{ij_i} and in which u_{ij_i} is the number of $\sum_{i=1}^k \alpha_i$ -arcs containing u_{ij_i} and in which u_{ij_i} is the last element. By arranging the losing scores of each vertex set U_i separately in non-decreasing order, we get k lists called losing score lists of M and these are denoted by $R_i = [r_{ij_i}]_{j_i=1}^{n_i}$ for each $i, (1 \leq i \leq k)$. Similarly, by arranging the score lists of each vertex set U_i separately in non-decreasing order, we get k lists called as $S_i = [s_{ij_i}]_{j_i=1}^{n_i}$ for each i ($1 \leq i \leq k$).

2 Main results

The following two theorems are the main results.

Theorem 3 Given k non-negative integers n_i and k non-negative integers α_i with $1 \leq \alpha_i \leq n_i$ for each $i \ (1 \leq i \leq k)$, the k non-decreasing lists $R_i = [r_{ij_i}]_{j_i=1}^{n_i}$ of non-negative integers are the losing score lists of a k-partite hypertournament if and only if for each $p_i \ (1 \leq i \leq k)$ with $p_i \leq n_i$,

$$\sum_{i=1}^{k} \sum_{j_i=1}^{p_i} r_{ij_i} \ge \prod_{i=1}^{k} \binom{p_i}{\alpha_i}, \qquad (1)$$

with equality when $p_i = n_i$ for each $i (1 \le i \le k)$.

Theorem 4 Given k non-negative integers n_i and k non-negative integers α_i with $0 \leq \alpha_i \leq n_i$ for each $i \ (1 \leq i \leq k)$, the k non-decreasing lists $S_i = [s_{ij_i}]_{j_i=1}^{n_i}$ of non-negative integers are the score lists of a k-partite hypertournament if and only if for each p_i , $(1 \leq i \leq k)$ with $p_i \leq n_i$

$$\sum_{i=1}^{k} \sum_{j_i=1}^{p_i} s_{ij_i} \ge \left(\sum_{i=1}^{k} \frac{\alpha_i p_i}{n_i}\right) \left(\prod_{i=1}^{k} \binom{n_i}{\alpha_i}\right) + \prod_{i=1}^{k} \binom{n_i - p_i}{\alpha_i} - \prod_{i=1}^{k} \binom{n_i}{\alpha_i}, \quad (2)$$

with equality when $p_i = n_i$ for each $i \ (1 \le i \le k)$.

We note that in a k-partite hypertournament M, there are exactly $\prod_{i=1}^{k} {n_i \choose \alpha_i}$ arcs and in each arc only one vertex is at the last entry. Therefore,

$$\sum_{i=1}^k \sum_{j_i=1}^{n_i} d_M^-(u_{ij_i}) = \prod_{i=1}^k \binom{n_i}{\alpha_i}.$$

In order to prove the above two theorems, we need the following Lemmas.

Lemma 5 If M is a k-partite hypertournament of order $\sum_{i=1}^{k} n_i$ with score lists $S_i = [s_{ij_i}]_{j_i=1}^{n_i}$ for each $i \ (1 \le i \le k)$, then

$$\sum_{i=1}^{k} \sum_{j_i=1}^{n_i} s_{ij_i} = \left[\left(\sum_{1=1}^{k} \alpha_i \right) - 1 \right] \prod_{i=1}^{k} \binom{n_i}{\alpha_i}.$$

Proof. We have $n_i \ge \alpha_i$ for each $i \ (1 \le i \le k)$. If r_{ij_i} is the losing score of $u_{ij_i} \in U_i$, then

$$\sum_{i=1}^k \sum_{j_i=1}^{n_i} r_{ij_i} = \prod_{i=1}^k \binom{n_i}{\alpha_i}.$$

The number of $[\alpha_i]_1^k$ arcs containing $u_{ij_i} \in U_i$ for each $i, (1 \le i \le k)$, and $1 \le j_i \le n_i$ is

$$\frac{\alpha_i}{n_i}\prod_{t=1}^k \binom{n_t}{\alpha_t}.$$

Thus,

$$\sum_{i=1}^{k} \sum_{j_{i}=1}^{n_{i}} s_{ij_{i}} = \sum_{i=1}^{k} \sum_{j_{i}=1}^{n_{i}} \left(\frac{\alpha_{i}}{n_{i}}\right) \prod_{1}^{k} \binom{n_{t}}{\alpha_{t}} - \binom{n_{i}}{\alpha_{i}}$$
$$= \left(\sum_{i=1}^{k} \alpha_{i}\right) \prod_{1}^{k} \binom{n_{t}}{\alpha_{t}} - \prod_{1}^{k} \binom{n_{i}}{\alpha_{i}}$$
$$= \left[\left(\sum_{1=1}^{k} \alpha_{i}\right) - 1\right] \prod_{1}^{k} \binom{n_{i}}{\alpha_{i}}.$$

Lemma 6 If $R_i = [r_{ij_i}]_{j_i=1}^{n_i}$ $(1 \le i \le k)$ are k losing score lists of a k-partite hypertournament M, then there exists some h with $r_{1h} < \frac{\alpha_1}{n_1} \prod_{i=1}^{k} {n_p \choose \alpha_p}$ so that $R'_1 = [r_{11}, r_{12}, \dots, r_{1h}+1, \dots, r_{1n_1}], R'_s = [r_{s1}, r_{s2}, \dots, r_{st}-1, \dots, r_{sn_s}] (2 \le s \le k)$ and $R_i = [r_{ij_i}]_{j_i=1}^{n_i}, (2 \le i \le k), i \ne s$ are losing score lists of some k-partite hypertournament, t is the largest integer such that $r_{s(t-1)} < r_{st} = \ldots = r_{sn_s}$.

Proof. Let $R_i = [r_{ij_i}]_{i_i=1}^{n_i} (1 \le i \le k)$ be losing score lists of a k-partite hypertournament M with vertex sets $U_i = \{u_{i1}, u_{i2}, \dots, u_{ij_i}\}$ so that $d^-(u_{ij_i}) = r_{ij_i}$ for each $i (1 \le i \le k, 1 \le j_i \le n_i)$.

Let h be the smallest integer such that

$$r_{11} = r_{12} = \ldots = r_{1h} < r_{1(h+1)} \le \ldots \le r_{1n_1}$$

and t be the largest integer such that

$$r_{s1} \leq r_{s2} \leq \ldots \leq r_{s(t-1)} < r_{st} = \ldots = r_{sn_s}$$

Now, let

$$R'_1 = [r_{11}, r_{12}, \dots, r_{1h} + 1, \dots, r_{1n_1}],$$

$$\mathsf{R}'_{\mathsf{s}} = [\mathsf{r}_{\mathsf{s}1}, \mathsf{r}_{\mathsf{s}2}, \dots, \mathsf{r}_{\mathsf{s}\mathsf{t}} - 1, \dots, \mathsf{r}_{\mathsf{s}\mathsf{n}_{\mathsf{s}}}]$$

 $\begin{array}{l} (2\leq s\leq k), \, {\rm and} \, R_i=[r_{ij_i}]_{j_i=1}^{n_i}, \, (2\leq i\leq k), \, i\neq s.\\ {\rm Clearly}, \, R_1' \, {\rm and} \, R_s' \, {\rm are \ both \ in \ non-decreasing \ order}. \end{array}$

Since $r_{1h} < \frac{\alpha_1}{n_1} \prod_{l=1}^{k} {n_p \choose \alpha_p}$, there is at least one $[\alpha_i]_{l=1}^{k-\alpha_l}$ arc e containing both u_{1h} and u_{st} with u_{st} as the last element in e, let $e' = (u_{1h}, u_{st})$. Clearly, R'_1 , R'_s

and $R_i = [r_{ij_i}]_{j_i=1}^{n_i}$ for each $i \ (2 \le i \le k), \ i \ne s$ are the k losing score lists of $M' = (M - e) \cup e'$.

The next observation follows from Lemma 6, and the proof can be easily established.

Lemma 7 Let $R_i = [r_{ij_i}]_{j_i=1}^{n_i}$, $(1 \le i \le k)$ be k non-decreasing sequences of non-negative integers satisfying (1). If $r_{1n_1} < \frac{\alpha_1}{n_1} \prod_{1}^k {n_i \choose \alpha_t}$, then there exists s and t $(2 \le s \le k)$, $1 \le t \le n_s$ such that $R'_1 = [r_{11}, r_{12}, \dots, r_{1h} + 1, \dots, r_{1n_1}]$, $R'_s = [r_{s1}, r_{s2}, \dots, r_{st} - 1, \dots, r_{sn_s}]$ and $R_i = [r_{ij_i}]_{j_i=1}^{n_i}$, $(2 \le i \le k)$, $i \ne s$ satisfy (1).

Proof of Theorem 3. Necessity. Let R_i , $(1 \le i \le k)$ be the k losing score lists of a k-partite hypertournament $M(U_i, 1 \le i \le k)$. For any p_i with $\alpha_i \le p_i \le n_i$, let $U'_i = \{u_{ij_i}\}_{j_i=1}^{p_i} (1 \le i \le k)$ be the sets of vertices such that $d^-(u_{ij_i}) = r_{ij_i}$ for each $1 \le j_i \le p_i$, $1 \le i \le k$. Let M' be the k-partite hypertournament formed by U'_i for each $i (1 \le i \le k)$.

Then,

$$\begin{split} \sum_{i=1}^k \sum_{j_i=1}^{p_i} r_{ij_i} \geq \sum_{i=1}^k \sum_{j_i=1}^{p_i} d_{M'}^-(u_{ij_i}) \\ = \prod_1^k \left(\begin{array}{c} p_t \\ \alpha_t \end{array} \right). \end{split}$$

Sufficiency. We induct on n_1 , keeping n_2, \ldots, n_k fixed. For $n_1 = \alpha_1$, the result is obviously true. So, let $n_1 > \alpha_1$, and similarly $n_2 > \alpha_2, \ldots, n_k > \alpha_k$. Now,

$$\begin{aligned} \mathbf{r}_{1\mathbf{n}_{1}} &= \sum_{i=1}^{k} \sum_{j_{i}=1}^{n_{i}} \mathbf{r}_{ij_{i}} - \left(\sum_{j_{1}=1}^{n_{1}-1} \mathbf{r}_{1j_{1}} + \sum_{i=2}^{k} \sum_{j_{i}=1}^{n_{i}} \mathbf{r}_{ij_{i}}\right) \\ &\leq \prod_{1}^{k} \left(\begin{array}{c} n_{t} \\ \alpha_{t} \end{array}\right) - \left(\begin{array}{c} n_{1}-1 \\ \alpha_{1} \end{array}\right) \prod_{2}^{k} \left(\begin{array}{c} n_{t} \\ \alpha_{t} \end{array}\right) \\ &= \left[\left(\begin{array}{c} n_{1} \\ \alpha_{1} \end{array}\right) - \left(\begin{array}{c} n_{1}-1 \\ \alpha_{1} \end{array}\right) \right] \prod_{2}^{k} \left(\begin{array}{c} n_{t} \\ \alpha_{t} \end{array}\right) \\ &= \left(\begin{array}{c} n_{1}-1 \\ \alpha_{1} - 1 \end{array}\right) \prod_{2}^{k} \left(\begin{array}{c} n_{t} \\ \alpha_{t} \end{array}\right). \end{aligned}$$

We consider the following two cases. **Case 1.** $r_{1n_1} = \begin{pmatrix} n_1 - 1 \\ \alpha_1 - 1 \end{pmatrix} \prod_2^k \begin{pmatrix} n_t \\ \alpha_t \end{pmatrix}$. Then, $\sum_{j_1=1}^{n_1-1} r_{1j_1} + \sum_{i=2}^k \sum_{j_i=1}^{n_i} r_{ij_i} = \sum_{i=1}^k \sum_{j_i=1}^{n_i} r_{ij_i} - r_{1n_1}$ $= \prod_1^k \begin{pmatrix} n_t \\ \alpha_t \end{pmatrix} - \begin{pmatrix} n_1 - 1 \\ \alpha_1 - 1 \end{pmatrix} \prod_2^k \begin{pmatrix} n_t \\ \alpha_t \end{pmatrix}$ $= \begin{bmatrix} \begin{pmatrix} n_1 \\ \alpha_1 \end{pmatrix} - \begin{pmatrix} n_1 - 1 \\ \alpha_1 - 1 \end{bmatrix} \prod_2^k \begin{pmatrix} n_t \\ \alpha_t \end{pmatrix}$ $= \begin{pmatrix} n_1 - 1 \\ \alpha_1 \end{pmatrix} \prod_2^k \begin{pmatrix} n_t \\ \alpha_t \end{pmatrix}.$

By induction hypothesis $[r_{11}, r_{12}, \ldots, r_{1(n_1-1)}]$, R_2, \ldots, R_k are losing score lists of a k-partite hypertournament $M'(U'_1, U_2, \ldots, U_k)$ of order $\left(\sum_{i=1}^k n_i\right) - 1$. Construct a k-partite hypertournament M of order $\sum_{i=1}^k n_i$ as follows. In M', let $U'_1 = \{u_{11}, u_{12}, \ldots, u_{1(n_1-1)}\}$, $U_i = \{u_{ij_i}\}_{j_i=1}^{n_i}$ for each i, $(2 \le i \le k)$. Adding a new vertex u_{1n_1} to U'_1 , for each $\left(\sum_{i=1}^k \alpha_i\right)$ -tuple containing u_{1n_1} , arrange u_{1n_1} on the last entry. Denote E_1 to be the set of all these $\left(\begin{array}{c}n_1-1\\\alpha_1-1\end{array}\right)\prod_2^k {n_t \atop \alpha_t} \left(\sum_{i=1}^k \alpha_i\right)$ -tuples. Let $E(M) = E(M') \cup E_1$. Clearly, R_i for each i, $(1 \le i \le k)$ are the k losing score lists of M. **Case 2.** $r_{1n_1} < \left(\begin{array}{c}n_1-1\\\alpha_1-1\end{array}\right)\prod_2^k {n_t \atop \alpha_t}$.

Applying Lemma 7 repeatedly on R_1 and keeping each R_i , $(2 \le i \le k)$ fixed until we get a new non-decreasing list $R'_1 = [r'_{11}, r'_{12}, \ldots, r'_{1n_1}]$ in which now ${}'_{1n_1} = \begin{pmatrix} n_1 - 1 \\ \alpha_1 - 1 \end{pmatrix} \prod_2^k \begin{pmatrix} n_t \\ \alpha_t \end{pmatrix}$. By Case 1, R'_1 , R_i $(2 \le i \le k)$ are the losing score lists of a k-partite hypertournament. Now, apply Lemma 6 on R'_1 , R_i $(2 \le i \le k)$ repeatedly until we obtain the initial non-decreasing lists R_i for each i $(1 \le i \le k)$. Then by Lemma 6, R_i for each i $(1 \le i \le k)$ are the losing score lists of a k-partite hypertournament. \Box

Proof of Theorem 4. Let $S_i = [s_{ij_i}]_{j_i=1}^{n_i} (1 \le i \le k)$ be the k score lists of a k-partite hypertournament $M(U_i, 1 \le i \le k)$, where $U_i = \{u_{ij_i}\}_{j_i=1}^{n_i}$ with

$$\begin{split} &d^+_M(u_{ij_i})=s_{ij_i},\, \mathrm{for \ each} \ i,\, (1\leq i\leq k). \quad \mathrm{Clearly},\\ &d^+(u_{ij_i})+d^-(u_{ij_i})=\frac{\alpha_i}{n_i}\prod_{i}^k \binom{n_t}{\alpha_t},\, (1\leq i\leq k,1\leq j_i\leq n_i).\\ &\mathrm{Let}\ r_{i(n_i+1-j_i)}=d^-(u_{ij_i}),\, (1\leq i\leq k,1\leq j_i\leq n_i). \end{split}$$

Let $r_{i(n_{i}+1-j_{i})} = d^{-}(u_{ij_{i}})$, $(1 \le i \le k, 1 \le j_{i} \le n_{i})$. Then $R_{i} = [r_{ij_{i}}]_{j_{i}=1}^{n_{i}} (i = 1, 2, ..., k)$ are the k losing score lists of M. Conversely, if R_{i} for each i $(1 \le i \le k)$ are the losing score lists of M, then S_{i} for each i, $(1 \le i \le k)$ are the score lists of M. Thus, it is enough to show that conditions (1) and (2) are equivalent provided $s_{ij_{i}} + r_{i(n_{i}+1-j_{i})} = \left(\frac{\alpha_{i}}{n_{i}}\right) \prod_{1}^{k} {n_{t} \choose \alpha_{t}}$, for each i $(1 \le i \le k$ and $1 \le j_{i} \le n_{i}$).

First assume (2) holds. Then,

$$\begin{split} \sum_{i=1}^{k} \sum_{j_{i}=1}^{p_{i}} r_{ij_{i}} &= \sum_{i=1}^{k} \sum_{j_{i}=1}^{p_{i}} \left(\frac{\alpha_{i}}{n_{i}} \right) \left(\prod_{1}^{k} \left(\begin{array}{c} n_{t} \\ \alpha_{t} \end{array} \right) \right) - \sum_{i=1}^{k} \sum_{j_{i}=1}^{p_{i}} s_{i(n_{i}+1-j_{i})} \\ &= \sum_{i=1}^{k} \sum_{j_{i}=1}^{p_{i}} \left(\frac{\alpha_{i}}{n_{i}} \right) \left(\prod_{1}^{k} \left(\begin{array}{c} n_{t} \\ \alpha_{t} \end{array} \right) \right) - \left[\sum_{i=1}^{k} \sum_{j_{i}=1}^{n_{i}} r_{ij_{i}} - \sum_{i=1}^{k} \sum_{j_{i}=1}^{n_{i}-p_{i}} s_{ij_{i}} \right] \\ &\geq \left[\sum_{i=1}^{k} \sum_{j_{i}=1}^{p_{i}} \left(\frac{\alpha_{i}}{n_{i}} \right) \left(\prod_{1}^{k} \left(\begin{array}{c} n_{t} \\ \alpha_{t} \end{array} \right) \right) \right] \\ &- \left[\left(\left(\left(\sum_{1}^{k} \alpha_{i} \right) - 1 \right) \prod_{1}^{k} \left(\begin{array}{c} n_{i} \\ \alpha_{i} \end{array} \right) \right] \\ &+ \sum_{i=1}^{k} (n_{i} - p_{i}) \left(\begin{array}{c} \alpha_{i} \\ n_{i} \end{array} \right) \prod_{1}^{k} \left(\begin{array}{c} n_{i} \\ \alpha_{t} \end{array} \right) \\ &+ \prod_{1}^{k} \left(\begin{array}{c} n_{i} - (n_{i} - p_{i}) \\ \alpha_{i} \end{array} \right) - \prod_{1}^{k} \left(\begin{array}{c} n_{i} \\ \alpha_{i} \end{array} \right) \\ &= \prod_{1}^{k} \left(\begin{array}{c} n_{i} \\ \alpha_{i} \end{array} \right), \end{split}$$

with equality when $p_i = n_i$ for each $i \ (1 \le i \le k)$. Thus (1) holds.

Now, when (1) holds, using a similar argument as above, we can show that (2) holds. This completes the proof. \Box

Acknowledgements

The research of the third author was supported by the European Union and the European Social Fund under the grant agreement no. TÁMOP 4.2.1/B-09/1/KMR-2010-0003.

References

- [1] C. Berge, Graphs and hypergraphs, translated from French by E. Minieka, North-Holland Mathematical Library 6, North-Holland Publishing Co., Amsterdam, London, 1973. $\Rightarrow 184$
- [2] D. Brcanov, V. Petrovic, Kings in multipartite tournaments and hypertournaments, Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics 2009:
 1, 2, AIP Conference Proceedings, 1168 (2009) 1255–1257. ⇒185
- [3] A. Iványi Reconstruction of complete interval tournaments, Acta Univ. Sapientiae Inform., 1, 1 (2009) 71–88. \Rightarrow 185
- [4] A. Iványi, Reconstruction of complete interval tournaments II, Acta Univ. Sapientiae Math., 2, 1 (2010) 47–71. \Rightarrow 185
- [5] Y. Koh, S. Ree, Score sequences of hypertournament matrices, On k-hypertournament matrices, *Linear Algebra Appl.*, **373** (2003) 183–195. $\Rightarrow 185$
- [6] H. G. Landau, On dominance relations and the structure of animal societies. III. The condition for a score structure, Bull. Math. Biophys., 15 (1953) 143–148. ⇒185
- [7] S. Pirzada, T. A. Chishti, T. A. Naikoo, Score lists in [h, k]-bipartite hypertournaments, *Discrete Math. Appl.*, **19**, 3 (2009) 321–328. \Rightarrow 185
- [8] S. Pirzada, T. A. Naikoo, G. Zhou, Score lists in tripartite hypertournaments, *Graphs and Comb.*, **23**, 4 (2007) 445–454. \Rightarrow 185
- [9] S. Pirzada G. Zhou, Score sequences in oriented k-hypergraphs, *Eur. J. Pure Appl. Math.*, **1**, 3 (2008) 10–20. \Rightarrow 185
- [10] S. Pirzada, G. Zhou, On k-hypertournament losing scores, Acta Univ. Sapientiae Inform., 2, 1 (2010) 5–9. \Rightarrow 185

- [11] C. Wang, G. Zhou, Note on degree sequences of k-hypertournaments. Discrete Math., 308, 11 (2008) 2292–2296. \Rightarrow 185
- [12] G. Zhou, T. Yao, K. Zhang, On score sequences of k-tournaments. *European J. Comb.*, 21, 8 (2000) 993–1000. ⇒185
- [13] G. Zhou, On score sequences of k-tournaments. J. Appl. Math. Comput., **27** (2008) 149–158. \Rightarrow 185

Received: June 23, 2010 • Revised: October 21, 2010