
Acta Univ. Sapientiae, Informatica, 2, 2 (2010) 184–193

Score lists in multipartite

hypertournaments

Shariefuddin Pirzada
Department of Mathematics, University

of Kashmir, India, and King Fahd
University of Petroleum and Minerals,

Saudi Arabia
email: sdpirzada@yahoo.co.in

Guofei Zhou
Department of Mathematics, Nanjing

University, Nanjing, China
email: gfzhou@nju.edu.cn

Antal Iványi
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Abstract. Given non-negative integers ni and αi with 0 ≤ αi ≤ ni

(i = 1, 2, . . . , k), an [α1, α2, . . . , αk]-k-partite hypertournament on
∑k

1 ni

vertices is a (k+ 1)-tuple (U1, U2, . . . , Uk, E), where Ui are k vertex sets
with |Ui| = ni, and E is a set of

∑k
1 αi-tuples of vertices, called arcs, with

exactly αi vertices from Ui, such that any
∑k

1 αi subset ∪k
1U

′
i of ∪k

1Ui, E

contains exactly one of the
(∑k

1 αi

)
!
∑k

1 αi-tuples whose entries belong

to ∪k
1U

′
i. We obtain necessary and sufficient conditions for k lists of non-

negative integers in non-decreasing order to be the losing score lists and
to be the score lists of some k-partite hypertournament.

1 Introduction

Hypergraphs are generalizations of graphs [1]. While edges of a graph are pairs
of vertices of the graph, edges of a hypergraph are subsets of the vertex set,
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consisting of at least two vertices. An edge consisting of k vertices is called
a k-edge. A k-hypergraph is a hypergraph all of whose edges are k-edges.
A k-hypertournament is a complete k-hypergraph with each k-edge endowed
with an orientation, that is, a linear arrangement of the vertices contained in
the hyperedge. Instead of scores of vertices in a tournament, Zhou et al. [13]
considered scores and losing scores of vertices in a k-hypertournament, and
derived a result analogous to Landau’s theorem [6]. The score s(vi) or si of a
vertex vi is the number of arcs containing vi and in which vi is not the last
element, and the losing score r(vi) or ri of a vertex vi is the number of arcs
containing vi and in which vi is the last element. The score sequence (losing
score sequence) is formed by listing the scores (losing scores) in non-decreasing
order.

The following characterizations of score sequences and losing score sequences
in k-hypertournaments can be found in G. Zhou et al. [12].

Theorem 1 Given two positive integers n and k with n ≥ k > 1, a non-
decreasing sequence R = [r1, r2, . . . , rn] of non-negative integers is a losing
score sequence of some k-hypertournament if and only if for each j,

j∑
i=1

ri ≥
(
j

k

)
,

with equality when j = n.

Theorem 2 Given positive integers n and k with n ≥ k > 1, a non-decreasing
sequence S = [s1, s2, . . . , sn] of non-negative integers is a score sequence of
some k-hypertournament if and only if for each j,

j∑
i=1

si ≥ j
(
n− 1

k− 1

)
+

(
n− j

k

)
−

(
n

k

)
,

with equality when j = n.

Some recent work on the reconstruction of tournaments can be found in
the papers due to A. Iványi [3, 4]. Some more results on k-hypertournaments
can be found in [2, 5, 9, 10, 11, 13]. The analogous results of Theorem 1 and
Theorem 2 for [h, k]-bipartite hypertournaments can be found in [7] and for
[α,β, γ]-tripartite hypertournaments in [8].

Throughout this paper i takes values from 1 to k and ji takes values from 1
to ni, unless otherwise stated.
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A k-partite hypergraph is a generalization of k-partite graph. Given non-
negative integers ni and αi, (i = 1, 2, . . . , k) with ni ≥ αi ≥ 0 for each i, an
[α1, α2, . . . , αk]-k-partite hypertournament (or briefly k-partite hypertourna-
ment) M of order

∑k
1 ni consists of k vertex sets Ui with |Ui| = ni for each i,

(1 ≤ i ≤ k) together with an arc set E, a set of
∑k
1 αi-tuples of vertices, with

exactly αi vertices from Ui, called arcs such that any
∑k
1 αi subset ∪k1U′

i of

∪k1Ui, E contains exactly one of the
(∑k

1 αi

) ∑k
1 αi-tuples whose αi entries

belong to U′
i.

Let e = (u11, u12, . . . , u1α1
, u21, u22, . . . , u2α2

, . . . , uk1, uk2, . . . , ukαk
), with

uiji ∈ Ui for each i, (1 ≤ i ≤ k, 1 ≤ ji ≤ αi), be an arc in M and let h < t, we
let e(u1h, u1t) denote to be the new arc obtained from e by interchanging u1h
and u1t in e. An arc containing αi vertices from Ui for each i, (1 ≤ i ≤ k) is
called an (α1, α2, . . . , αk)-arc.

For a given vertex uiji ∈ Ui for each i, 1 ≤ i ≤ k and 1 ≤ ji ≤ αi, the score
d+
M(uiji) (or simply d+(uiji)) is the number of

∑k
1 αi-arcs containing uiji and

in which uiji is not the last element. The losing score d−
M(uiji) (or simply

d−(uiji)) is the number of
∑k
1 αi-arcs containing uiji and in which uiji is the

last element. By arranging the losing scores of each vertex set Ui separately
in non-decreasing order, we get k lists called losing score lists of M and these
are denoted by Ri = [riji ]

ni
ji=1

for each i, (1 ≤ i ≤ k). Similarly, by arranging
the score lists of each vertex set Ui separately in non-decreasing order, we get
k lists called score lists of M which are denoted as Si = [siji ]

ni
ji=1

for each i
(1 ≤ i ≤ k).

2 Main results

The following two theorems are the main results.

Theorem 3 Given k non-negative integers ni and k non-negative integers
αi with 1 ≤ αi ≤ ni for each i (1 ≤ i ≤ k), the k non-decreasing lists
Ri = [riji ]

ni
ji=1

of non-negative integers are the losing score lists of a k-partite
hypertournament if and only if for each pi (1 ≤ i ≤ k) with pi ≤ ni,

k∑
i=1

pi∑
ji=1

riji ≥
k∏
i=1

(
pi

αi

)
, (1)

with equality when pi = ni for each i (1 ≤ i ≤ k).
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Theorem 4 Given k non-negative integers ni and k non-negative integers
αi with 0 ≤ αi ≤ ni for each i (1 ≤ i ≤ k), the k non-decreasing lists
Si = [siji ]

ni
ji=1

of non-negative integers are the score lists of a k-partite hyper-
tournament if and only if for each pi, (1 ≤ i ≤ k) with pi ≤ ni

k∑
i=1

pi∑
ji=1

siji ≥

(
k∑
i=1

αipi

ni

)(
k∏
i=1

(
ni

αi

))
+

k∏
i=1

(
ni − pi
αi

)
−

k∏
i=1

(
ni

αi

)
, (2)

with equality when pi = ni for each i (1 ≤ i ≤ k).

We note that in a k-partite hypertournamentM, there are exactly
∏k
i=1

(
ni
αi

)
arcs and in each arc only one vertex is at the last entry. Therefore,

k∑
i=1

ni∑
ji=1

d−
M(uiji) =

k∏
i=1

(
ni

αi

)
.

In order to prove the above two theorems, we need the following Lemmas.

Lemma 5 If M is a k-partite hypertournament of order
∑k
1 ni with score lists

Si = [siji ]
ni
ji=1

for each i (1 ≤ i ≤ k), then

k∑
i=1

ni∑
ji=1

siji =

[(
k∑
1=1

αi

)
− 1

]
k∏
i=1

(
ni

αi

)
.

Proof. We have ni ≥ αi for each i (1 ≤ i ≤ k). If riji is the losing score of
uiji ∈ Ui, then

k∑
i=1

ni∑
ji=1

riji =

k∏
i=1

(
ni

αi

)
.

The number of [αi]
k
1 arcs containing uiji ∈ Ui for each i, (1 ≤ i ≤ k), and

1 ≤ ji ≤ ni is

αi

ni

k∏
t=1

(
nt

αt

)
.
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Thus,

k∑
i=1

ni∑
ji=1

siji =

k∑
i=1

ni∑
ji=1

(
αi

ni

) k∏
1

(
nt

αt

)
−

(
ni

αi

)

=

(
k∑
i=1

αi

)
k∏
1

(
nt

αt

)
−

k∏
1

(
ni

αi

)

=

[(
k∑
1=1

αi

)
− 1

]
k∏
1

(
ni

αi

)
.

�

Lemma 6 If Ri = [riji ]
ni
ji=1

(1 ≤ i ≤ k) are k losing score lists of a k-partite
hypertournament M, then there exists some h with r1h < α1

n1

∏k
1

(
np

αp

)
so that

R′
1 = [r11, r12, . . . , r1h+1, . . . , r1n1

], R′
s = [rs1, rs2, . . . , rst−1, . . . , rsns ] (2 ≤ s ≤

k) and Ri = [riji ]
ni
ji=1

, (2 ≤ i ≤ k), i 6= s are losing score lists of some k-partite
hypertournament, t is the largest integer such that rs(t−1) < rst = . . . = rsns.

Proof. Let Ri = [riji ]
ni
ji=1

(1 ≤ i ≤ k) be losing score lists of a k-partite hyper-
tournament M with vertex sets Ui = {ui1, ui2, . . . , uiji} so that d−(uiji) = riji
for each i (1 ≤ i ≤ k, 1 ≤ ji ≤ ni).

Let h be the smallest integer such that

r11 = r12 = . . . = r1h < r1(h+1) ≤ . . . ≤ r1n1

and t be the largest integer such that

rs1 ≤ rs2 ≤ . . . ≤ rs(t−1) < rst = . . . = rsns

Now, let
R′
1 = [r11, r12, . . . , r1h + 1, . . . , r1n1

],

R′
s = [rs1, rs2, . . . , rst − 1, . . . , rsns

(2 ≤ s ≤ k), and Ri = [riji ]
ni
ji=1

, (2 ≤ i ≤ k), i 6= s.
Clearly, R′

1 and R′
s are both in non-decreasing order.

Since r1h < α1
n1

∏k
1

(
np

αp

)
, there is at least one [αi]

k
1-arc e containing both u1h

and ust with ust as the last element in e, let e′ = (u1h, ust). Clearly, R′
1, R

′
s
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and Ri = [riji ]
ni
ji=1

for each i (2 ≤ i ≤ k), i 6= s are the k losing score lists of
M′ = (M− e) ∪ e′. �

The next observation follows from Lemma 6, and the proof can be easily
established.

Lemma 7 Let Ri = [riji ]
ni
ji=1

, (1 ≤ i ≤ k) be k non-decreasing sequences of
non-negative integers satisfying (1). If r1n1

< α1
n1

∏k
1

(
nt

αt

)
, then there exists s

and t (2 ≤ s ≤ k), 1 ≤ t ≤ ns such that R′
1 = [r11, r12, . . . , r1h + 1, . . . , r1n1

],
R′
s = [rs1, rs2, . . . , rst−1, . . . , rsns ] and Ri = [riji ]

ni
ji=1

, (2 ≤ i ≤ k), i 6= s satisfy
(1).

Proof of Theorem 3. Necessity. Let Ri, (1 ≤ i ≤ k) be the k losing score
lists of a k-partite hypertournament M(Ui, 1 ≤ i ≤ k). For any pi with αi
≤ pi ≤ ni, let U′

i = {uiji}
pi
ji=1

(1 ≤ i ≤ k) be the sets of vertices such that
d−(uiji) = riji for each 1 ≤ ji ≤ pi, 1 ≤ i ≤ k. Let M′ be the k-partite
hypertournament formed by U′

i for each i (1 ≤ i ≤ k).
Then,

k∑
i=1

pi∑
ji=1

riji ≥
k∑
i=1

pi∑
ji=1

d−
M′(uiji)

=

k∏
1

(
pt
αt

)
.

Sufficiency. We induct on n1, keeping n2, . . . , nk fixed. For n1 = α1, the
result is obviously true. So, let n1 > α1, and similarly n2 > α2, . . . , nk > αk.
Now,

r1n1
=

k∑
i=1

ni∑
ji=1

riji −

n1−1∑
j1=1

r1j1 +

k∑
i=2

ni∑
ji=1

riji


≤

k∏
1

(
nt
αt

)
−

(
n1 − 1

α1

) k∏
2

(
nt
αt

)

=

[(
n1
α1

)
−

(
n1 − 1

α1

)] k∏
2

(
nt
αt

)

=

(
n1 − 1

α1 − 1

) k∏
2

(
nt
αt

)
.
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We consider the following two cases.

Case 1. r1n1
=

(
n1 − 1

α1 − 1

)∏k
2

(
nt
αt

)
. Then,

n1−1∑
j1=1

r1j1 +

k∑
i=2

ni∑
ji=1

riji =

k∑
i=1

ni∑
ji=1

riji − r1n1

=

k∏
1

(
nt
αt

)
−

(
n1 − 1

α1 − 1

) k∏
2

(
nt
αt

)

=

[(
n1
α1

)
−

(
n1 − 1

α1 − 1

)] k∏
2

(
nt
αt

)

=

(
n1 − 1

α1

) k∏
2

(
nt
αt

)
.

By induction hypothesis [r11, r12, . . . , r1(n1−1)], R2, . . . , Rk are losing score

lists of a k-partite hypertournament M′(U′
1, U2, . . . , Uk) of order

(∑k
i=1 ni

)
−

1. Construct a k-partite hypertournament M of order
∑k
i=1 ni as follows. In

M′, let U′
1 = {u11, u12, . . . , u1(n1−1)}, Ui = {uiji}

ni
ji=1

for each i, (2 ≤ i ≤
k). Adding a new vertex u1n1

to U′
1, for each

(∑k
i=1 αi

)
-tuple containing

u1n1
, arrange u1n1

on the last entry. Denote E1 to be the set of all these(
n1 − 1

α1 − 1

)∏k
2

(
nt
αt

) (∑k
i=1 αi

)
-tuples. Let E(M) = E(M′) ∪ E1. Clearly,

Ri for each i, (1 ≤ i ≤ k) are the k losing score lists of M.

Case 2. r1n1
<

(
n1 − 1

α1 − 1

)∏k
2

(
nt
αt

)
.

Applying Lemma 7 repeatedly on R1 and keeping each Ri, (2 ≤ i ≤ k) fixed
until we get a new non-decreasing list R′

1 = [r′11, r
′
12, . . . , r

′
1n1

] in which now

′
1n1

=

(
n1 − 1

α1 − 1

)∏k
2

(
nt
αt

)
. By Case 1, R′

1, Ri (2 ≤ i ≤ k) are the losing

score lists of a k-partite hypertournament. Now, apply Lemma 6 on R′
1, Ri

(2 ≤ i ≤ k) repeatedly until we obtain the initial non-decreasing lists Ri for
each i (1 ≤ i ≤ k). Then by Lemma 6, Ri for each i (1 ≤ i ≤ k) are the losing
score lists of a k-partite hypertournament. �

Proof of Theorem 4. Let Si = [siji ]
ni
ji=1

(1 ≤ i ≤ k) be the k score lists of
a k-partite hypertournament M(Ui, 1 ≤ i ≤ k), where Ui = {uiji}

ni
ji=1

with
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d+
M(uiji) = siji , for each i, (1 ≤ i ≤ k). Clearly,

d+(uiji) + d−(uiji) = αi
ni

∏k
1

(
nt
αt

)
, (1 ≤ i ≤ k, 1 ≤ ji ≤ ni).

Let ri(ni+1−ji) = d−(uiji), (1 ≤ i ≤ k, 1 ≤ ji ≤ ni).
Then Ri = [riji ]

ni
ji=1

(i = 1, 2, . . . , k) are the k losing score lists of M. Con-
versely, if Ri for each i (1 ≤ i ≤ k) are the losing score lists of M, then
Si for each i, (1 ≤ i ≤ k) are the score lists of M. Thus, it is enough to
show that conditions (1) and (2) are equivalent provided siji + ri(ni+1−ji) =(
αi
ni

)∏k
1

(
nt
αt

)
, for each i (1 ≤ i ≤ k and 1 ≤ ji ≤ ni).

First assume (2) holds. Then,

k∑
i=1

pi∑
ji=1

riji =

k∑
i=1

pi∑
ji=1

(
αi

ni

)( k∏
1

(
nt
αt

))
−

k∑
i=1

pi∑
ji=1

si(ni+1−ji)

=

k∑
i=1

pi∑
ji=1

(
αi

ni

)( k∏
1

(
nt
αt

))
−

 k∑
i=1

ni∑
ji=1

riji −

k∑
i=1

ni−pi∑
ji=1

siji


≥

 k∑
i=1

pi∑
ji=1

(
αi

ni

)( k∏
1

(
nt
αt

))
−

[((
k∑
1

αi

)
− 1

)
k∏
1

(
ni
αi

)]

+

k∑
i=1

(ni − pi)

(
αi

ni

) k∏
1

(
nt
αt

)

+

k∏
1

(
ni − (ni − pi)

αi

)
−

k∏
1

(
ni
αi

)

=

k∏
1

(
ni
αi

)
,

with equality when pi = ni for each i (1 ≤ i ≤ k). Thus (1) holds.
Now, when (1) holds, using a similar argument as above, we can show that

(2) holds. This completes the proof. �
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