Periodic Perturbations of Non-Conservative
Second Order Differential Equations

A. Raouf Chouikha

Universite Paris-Nord
Institut Galilee, LAGA CNRS UMR 7539
93430 Villetaneuse, France
chouikha@math.univ-pris13.fr

Abstract

Consider the Lienard system «” + f(u)u’' 4+ g(u) = 0 with an
isolated periodic solution. This paper concerns the behavior of periodic
solutions of Lienard system under small periodic perturbations.
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1 Introduction
Consider the second order differential equation of type
(E.) " +gt,z, 2 ¢) =0

where ¢ > 0 is a small parameter, ¢ 1is a 7T-periodic function in ¢ and
g(t,z,0,0) = g(z) is independent of .

In the case where ¢ is independent of 2’ and is continuously differentiable in
x the existence problem of non constant periodic solutions of (E,) has been
studied by many authors.

Indeed, in the latter case certain among them proved existence of solutions
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of 2"+ g(t,z,e) =0. For a review see Chow-Hale [C-H| and Hale [H].
But many examples (as the one given by Hartman) proved non existence
cases of that equation if we suppose ¢ dependent on z’. We then cannot
expect to generalize their results.

Let the following equation, which is a perturbed Lienard type

(1) &+ f(2)e + g(x) = eh(%, 2.7, ¢)

where h is T-periodic in ¢, f and ¢ are functions only dependent on x, sat-
isfying conditions defined below. We look for periodic solutions of (1.) for
e small enough under some additional hypothesis. It is assumed that the
unperturbed system has an isolated periodic solution. The perturbation is
supposed to be controllably periodic in the Farkas sense [F2], i.e. it is periodic
with a period which can be chosen appropriately.

We shall prove an existence theorem for this equation.

Loud [L] already proves for the case f(x) = ¢, the existence of a periodic
solution of the equation

2"+ cx' + g(x) = eh(t), (1)

where the perturbation does not depend on the state. He uses for that
a variant of the implicit function theorem. More exactly, he considers a
function ¢(z) = zk(x) where k is continuously differentiable and k(z) >
0, x #0. Moreover,

x%k(az) >0, z#0
or
xik:(x) <0, x#0
dx ’

always holds with the possible exception of isolated points. Notice that the
above conditions imply on one hand the monotonicity of the period function
T for the system 2" + g(x) = 0. When ¢ is in addition differentiable these
conditions imply on the other hand ¢”(0) =0 .

Let wu(t) be a non-constant w-periodic solution of the equation

" +g(x) =0
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and define -
F(s) = /0 U (t+ 8) f(t)dt.

Also, [L] observes that if for some sy, F(sg) =0 while F'(sg) # 0 then
for sufficiently small € > 0 there exists an w-periodic solution v(¢,¢) of
the perturbed equation

v+ g(x) = ef(t) = ef(t+w)

2 Existence and non-existence of periodic solu-
tions of E,

2.1 A non existence result

According to P. Hartman ([H], p. 39), equation (1.) in general does not have
a non constant periodic solution, even if xg(¢, z, ') > 0.

The following example given by Moser proves the non existence of a non
constant periodic solution of

"+ ¢(t,x,2") = 0.

Let
o(t,z,y) =z +2° +ef(t,z,y), €>0

satisfying the following conditions for ¢ € CY(R?), f(t+1,z,y) = f(t,z,v),
with
f(0,0,0)=0,  f(t,z,y)=0if zy=0

- — 00 when T — o0
T

uniformly in ( € R?,

o
>0 vy >0, and —f = 0 otherwise.

t,y)
of
oy oy

x,y verifying |z |[<e¢, |y |<e.
In fact, we have xf(t,x,y) and yf(¢t,z,y)) > 0 if xy > 0,| z |< €,y arbitrary
and ¢ = 0 otherwise.
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The function V = 222 +2* +22/% satisfies V' = —dex’ f(t,x,2'), so that
V' <0if 22’ > 0,| 2 |< e and V' = 0 otherwise.
Thus z cannot be periodic unless V' =0 .

This example is significant because it shows kind of difficulties encoun-
tered to establish existence results of periodic solutions for Equation E.. To
that end, the existence problem will be more convenient to study when ad-
ditional hypotheses on the period are required. For example, the period of
the perturbed Lienard equation z” + f(z)2' + g(z) = eh(t,z,2,€). has to
be ’controlled’ in order to state existence of periodic solution.

2.2 Case where ¢ is independent of 2/

Consider an equation of the type
"+ ¢(t,x,€) =0, (2)

where ¢ > 0 is a small parameter, ¢ is a continuous function, T'—periodic
in ¢ such that ¢(t,2,0) = g(x).

More precisely, under the following hypotheses for the function g defined
on R x («, 3)x]0, €. :

(1) ¢is T — periodic on t

(2) ot z,0) = g(z) (3)
(3) if x#0,we have g(x)z > 0.

That means for ¢ = 0 the autonomous system

=y
{ y' = —g() @
has the origin (0,0) as a center.

This means the flow induced by the vector field of the Hamiltonian system
(4) has a stationary point at the origin and is surrounded by a family of pe-
riodic orbits. Each orbit ~ of this family lies on an energy level, say ¢, and
v = 7(c). The period function 7'(c) depending on ¢ is the minimal period
of this orbit. We say T is monotone if the function 7'(c) is monotone. The
dependence of the period on the energy and the monotonicity conditions has
been studied by a number of authors. For these questions, we refer to [C-C].
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Using a version of the fixed point theorem due to W. Ding, P. Buttazzoni
and A. Fonda |B-F| proved that there are periodic solutions of (2) provided
that the period function 7'= T'(c) of the autonomous associated system is
monotone and that € is small enough. ¢ is assumed to be (only) continuous.
More precisely, they show that if the function ¢(t,x,¢€) is continuous, then
the periodic solutions of such equations may be located near solutions of the
autonomous equation, provided that periodic solutions of (4) exist and that
the period function is strictly monotone. Moreover, there is a solution mak-
ing exactly NV rotations around the origin in the time k7
Their results improve those of Loud [L|, who assumed that the function ¢
had to be continuously differentiable.

Moreover, in light of the preceding example [H|, it seems that the meth-
ods described above do not generalize if one supposes ¢ dependent on z’ :
o= o(t,x, 2 €).

So, another condition on the period appears to be necessary to obtain exis-
tence of periodic solutions of the perturbed equation.

Nevertheless, one can show an analogous result to the preceding one under
more restrictive hypotheses. By an appropriated choice of the period of a
periodic solution of the perturbed Lienard equation.

3 A controllably periodic perturbation

One refers to a method due to Farkas inspired by the one of Poincaré. The de-
termination of controllably periodic perturbed solution. This method proved
to be itself very effective particularly for the perturbations of various au-
tonomous systems. We know for example a good application for perturbed
Van der Pol equations type [F2|. The perturbation is supposed to be ‘con-
trollably periodic’, i.e., it is periodic with a period which can be chosen
appropriately. Under very mild conditions it is proved that to each small
enough amplitude of the perturbation there belongs a one parameter family
of periods such that the perturbed system has a unique periodic solution
with this period.

We logically may expect that the Farkas method can be again applied for
perturbed Lienard equations. This has been considered and proved in the
autonomous case by Farkas himself [F1] .

Our proof we give here made it more simple and contains some improvements

EJQTDE, 2002 No. 4, p. 5



in using in particular methods of [F1] to estimate existence regions of peri-
odic solutions for that equation.

Notice that the same problem has been considered before in the paper of
Farkas and Abdel Karim |F-A| but our results are more general.

3.1 Basic hypotheses
Let us consider the (unperturbed) Lienard equation
(L) o+ f(u)u'+ g(u) =0.

In order to have a unique periodic solution we suppose the functions f and
g are of class C2. The integrals

Fla)= ["f@d,  G@) = [ g

of f and g respectively are such that lim, .. F(z) = oo, and lim, .G(z) =
oo. It is assumed that F' has a unique zero. Then it is known [C-L]| that
(L) has a stable non constant periodic solution wug(¢) with period .
Equation (L) is usually studied by means of an equivalent plane system. The
most used ones are :

1o 2 o) (e (5)

and also

(=t

In fact, they are equivalent to the 2-dimensional system
(5) &= h(z)
after introducing the notations x = col[xy, x]
ry = —u(t) — F(u(t))
{ xo = u(t) (™)
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where z = col[x1, 23] and h(x) = col[g(xs), —x1 — F(22(1)).
Suppose
up(0) = a, up(0) =0 >0

so that the periodic solution of period 7y of the variational system
y=h.(p(t))y
is
p(t) = collg(uo(t)), i (1)),
where
p(t) = col[—i(t) — F(uo(t)), uo(t)].

So, the initial conditions are

p(0) = col[=F(a),a],  p(0) = collg(a),0].

Let us consider the following perturbed Lienard equation of the form

(Ln) i+ fwi+ g(u) = (=,

where ¢t € R, ¢ €R is a small parameter, | ¢ |< ¢y, 7 is a real parameter

such that |7 — 7y |< 7 for some 0 <7 < 2.
Moreover, the closed orbit

{(u,v) €R*: u(t) = uo(t), v(t) =1o(t), t €[0,70]}

belongs to the region {(u,v) € R? : u* +v* < r?}.
In the same way as for (L), the 2-dimensional equivalent system for (L) is

(S1) & =hiz) + el 2)

where ¢ = col[qy, ¢a],

q1 = _’7(571‘27 —T — F(l‘g))
{2, (8)
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3.2 Existence of periodic solutions of (Lp)

Now we will use the Poincaré method for the determination of the approx-
imate solution of the perturbed equation (Lg). The existence of the funda-
mental matrix solution of the first variational system of & = h(x) and the
unique periodic solution p(t) corresponding to wug(t) is assumed.

In order to get estimates for the existence of periodic solutions we have to
calculate some constants. Following Farkas [F1], the Jacobi matrix J has
the following form

J(10) = -1+ <g(0a) 8) + Y (7o)

I = Idy, and Y(t) is the fundamental solution matrix of the varational
system with Y (0) =1

: O g'(uo(t))
= (5 I ®)

It is proved, that if detJ(7y) # O then there exist uniquely determined
functions 7(e, ¢) and h(e, ¢) defined in the neighborhood of (0,0) such that
the function

u(t; ¢, po + h(e, ¢), €, 7(¢, 9))

is a periodic solution of system (S;) with 7(0,0) = 75 and  h(0,0) = 0.
Moreover, an estimate is given for the region in which the the variables e
and ¢ may vary . For example in evaluating the norm of the difference of
Jacobi matrices J(e, ¢, 7, h) — J(0,0, 70, 0).

A trivial mp-periodic solution of (9) is col[g(uo(t)), uo(t)]. A trivial calcu-
lation gives the other linearly independent solution of (9)

colg(unlt))o(0). 0(e)0(0) + L2 eie)
where ,
o(t) = [ lonls)) 29/ (uo(®)ewpl= | fuo(o))dolds
for t €0, 7).
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Then the fundamental solution matrix of (9) with Y(0) = [ is

g(uo(t))
— [ 9@ g(a)g(uo(t))v(t) )
T ( W glayio(t)o(t) + gla) edlo(t) |

According to Liouville’s formula the Wronskian determinant W () with
W (o) =1 is given by

t
W(t) = eapl— [ f(uo(r))dr].
The characteristic multipliers of (9) are p; = 1 and

p2 = W(ro) = exp[— /OTO f(uo(7))dr].

po < 1 if and only if

/0 " flug(r))dr > 0. (10)

The initial conditions give

Vim) = (S0,

0 P2
Thus, we get
y= (50 o)
0 P2 — 1 ’
1 (9 (@) gHa)v(r)(l - pz)l) _
0 —(1—p2)7!
Therefore,

177 |I= 2 maz [g7 (a), (1 = p2) ™", g*(a)v(mo) (1 — p2)~'].

The inverse matrix of Y'(t) is

» gla)io(t)o(t) + g(a) LoWhi(t)  —g(a)g(uo(t))v(t)
Y <t>=w<t>( ) (ol st )

Now we have to determine the constants for system (Lg). Following [F1]
let us denote

S={r=(21,12) ER* | 2> + [~21 — F(22(1))]* < r*}
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go ‘= MATrecs | 9(952) |7
g1 = mazes | g'(x2) |, (11)
g2 = mazzes | ¢"(z2) | -

fri=mazses | f(z2) [, foi=mazees | f'(x2) |

o ‘= MAT3eS,scR | q(s,x) |7
q1 ‘= MAT3eS,seR | q/m(S,.',U) ‘7 (12)
G2 ‘= MATyeS seR | q;(S,ZC) | .

K = Mazy —n | Y (%) |, K | := Mmazy - 1Y) ]
Thus, we may deduce that
) K
Pi=maz, = | p(t) |< 5

The initial phase ¢ and the period 7 have to verify the following, which can
be easily obtained from the above estimates, see [F1]

70 70
¢<§, |7'—T0|<§.

If in addition we suppose ¢ and h are such that

3 3
590 ‘ € ‘ -+ | h ‘< aexp(—égﬂo)

(here o is the distance between the path of the periodic solution and the
boundary of S) then a solution of (Lg) exists.
Then, we have proved the following

Theorem 1 If 1 is a simple characteristic multiplier of (9) (that
means inequality (10) holds) then there are two functions T,h:U — R and
a constant Ty < % such that the periodic solution u(t,®,a+h(e, ¢), €, 7(c))

of equation .
(Lr) i+ fluw)i+g(u) = ev(@, u, )

exists for (e,¢0) € U, and |17 — 1 |< 11, 7(0,0) =719, h(0,0) =0.
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3.3 Special cases

As a corollary we may deduce from the above some results about autonomous
perturbations of the Lienard system

(Lry) o+ flu)i+g(u) = ey

where the perturbation is independent on the time variable v = v(u, @, €, 7).
The equivalent plane system is of the form

T = h(z) + eq(é,x)

where ¢ = col|q1, ga]-
Consider the following autonomous perturbed Lienard equation of the form

(LRA) u+f(u)u+g(u) =€) = 7(u7u7 S 7_)

where t € R, € €R is a small parameter, |e|< ¢, 7 is a real parameter
such that |7 — 7 [< 7 for some 0 <7 < 2.
Moreover, the closed orbit

{(u,v) €R*: u(t) = uo(t), v(t) =1o(t), t €[0,70]}

belongs to the region S = {(u,v) € R? : v® +v? < r?}. ~ is a function of
class C?.

In this case the perturbation is independent on the initial phase ¢.

We then have the following

Corollary 2 Suppose inequality (10) holds, then there are constants
€ and 1 < % such that to each € € [—€g, €] there exist two functions

T,h only dependent on €: 7 =71(e), h = h(e) such that the problem
(En) i o) = = wine )
u(0) =a+ h(e), u(0)=0

has a unique periodic non constant solution wu(t,e) with period T(e).
Moreover, 7(0) =19, and |7 — 19 |< 11, 7(0) =79, h(0) = 0.

On other hand, a second special case may occur when the perturbation
does not depend on the state of the system. That means the perturbation is
independent on u
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Then the above estimates can be easely calculated.
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