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1. Introduction

Differential equation with fractional order have recently proved valuable tools in the mod-

eling of many phenomena in various fields of science and engineering [1-5]. Recently, many

researchers paid attention to existence result of solution of the boundary value problems for

fractional differential equations at nonresonance, see for examples [6-15]. But, there are few

papers which consider the boundary value problem at resonance for nonlinear ordinary differ-

ential equations of fractional order. In [16], N. Kosmatov studied the boundary value problems

of fractional differential equations at resonance with dimKerL = 1. More recently, Jiang [17]

investigated the existence of solutions for the fractional differential equation at resonance with

dimKerL = 2 :

Dα
0+u(t) = f(t, u(t),Dα−1u(t)), a.e. t ∈ [0, 1],

u(0) = 0, Dα−1
0+ u(0) =

m
∑

j=1

ajD
α−1
0+ u(ξj), Dα−2

0+ u(1) =
n
∑

j=1

bjD
α−2
0+ u(ηj),

where 2 < α < 3, 0 < ξ1 < ξ2 < · · · < ξm < 1,
∑m

i=1 ai = 1,
∑n

j=1 bj = 1,
∑n

j=1 bjηj = 1,

f : [0, 1] × R × R → R satisfies Caratheodory condition.
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To the best of the author knowledge, the solvability of resonance boundary value problems

for impulsive fractional differential equations has not been well studied till now. We will fill

this gap in the literature. Motivated by the excellent results of [17], [18], [19] and [20], in

this paper, we investigate the existence of solutions for boundary value problems of nonlinear

impulsive fractional differential equation at resonance

Dα
0+u(t) = f(t, u(t),Dα−1u(t)), t ∈ (0, 1), t 6= ti, i = 1, ..., k, (1.1)

lim
t→0+

t2−αu(t) =
n
∑

j=1

aju(ξj), u(1) =
n
∑

j=1

bju(ηj), (1.2)

△u(ti) = Ii(u(ti),D
α−1
0+ u(ti)), △Dα−1

0+ u(ti) = Ji(u(ti),D
α−1
0+ u(ti)), (1.3)

where Dα
0+ is the standard Riemann-Liouville fractional derivative, 1 < α < 2, f : [0, 1]×R2 →

R, and Ii, Ji : R×R → R are continuous, k is a fixed positive integer, ti (i = 1, 2, ..., k) are fixed

points with 0 < t1 < t2 < · · · < tk < 1, △u(ti) = u(ti + 0)− u(ti − 0), △Dα
0+u(ti) = Dα

0+u(ti +

0) − Dα
0+u(ti − 0), i = 1, .., k, ξj , ηj ∈ (0, 1) (j = 1, ..., n) be given 0 < ξ1 < · · · < ξn < 1,

0 < η1 < · · · < ηn < 1, and ξj, ηj 6= ti (1 ≤ j ≤ n, 1 ≤ i ≤ k),
n
∑

j=1
ajξ

α−2
j =

n
∑

j=1
bjη

α−2
j = 1,

n
∑

j=1
ajξ

α−1
j = 0, and

n
∑

j=1
bjη

α−1
j = 1.

The BVP (1.1)-(1.3) happens to be at resonance in the sense that its associated linear

homogeneous nonimpulse boundary value problem

Dα
0+u(t) = 0, 0 < t < 1, (1.4)

lim
t→0+

t2−αu(t) =

n
∑

j=1

aju(ξj), u(1) =

n
∑

j=1

bju(ηj), (1.5)

has u(t) = h1t
α−1 + h2t

α−2, h1, h2 ∈ R as a nontrivial solution.

By the way, the theory of impulsive differential equation may be seen in [21] and [22].

The rest of this paper is organized as follows. In Section 2, we give some notations and

lemmas. In Section 3, we establish an existence theorem for boundary value problem (1.1)-(1.3)

at resonance case.

2. Preliminaries

For the convenience of the reader, we first briefly recall some fundamental tools of fractional

calculus and the coincidence degree theory.
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The Riemann-Liouville fractional integral of order α > 0 of a function u : (0,∞) → R is

given by

Iα
0+u(t) =

1

Γ(α)

∫ t

0
(t − s)α−1u(s)ds

provided the right side is pointwise defined on (0,∞). The Riemann-Liouville fractional deriva-

tive of order α > 0 of a function u : (0,∞) → R is given by

Dα
0+u(t) =

1

Γ(n − α)

(

d

dt

)n ∫ t

0

u(s)

(t − s)α−n+1
ds,

where n = [α] + 1, provided the right side is pointwise defined on (0,∞).

We make use of two relationships between Dα
0+u and Iα

0+u that are stated in the following

lemma (see [3, 9]).

Lemma 2.1. Assume that u ∈ C(0, 1) ∩ L1(0, 1). Then

(1) Iα
0+Dα

0+u(t) = u(t) + c1t
α−1 + c2t

α−2 + · · · + cntα−n,

for some ci ∈ R, i = 1, 2, ..., n, where α > 0 and n = [α] + 1.

(2) Dβ

0+Iα
0+u(t) = Iα−β

0+ u(t), α ≥ β ≥ 0.

(3) Dα
0+tα−i = 0, i = 1, 2, ..., [α] + 1.

Consider an operator equation

Lx = Nx, (2.1)

where L : domL ∩ X → Z is a linear operator, N : X → Z is a non-linear operator, X and

Z are Banach spaces. If dimKerL = dim(Z/ImL) < +∞ and ImL is closed in Z, then L

will be called a Fredholm mapping of index 0, and at the same time there exist continuous

projectors P : X → X and Q : Z → Z such that ImP = KerQ. It follows that L|DomL∩KerP :

domL ∩ KerP → ImL is invertible. We denote the inverse of this map by KP . Let Ω be an

open bounded subset of X. The map N will be called L-compact on Ω if QN(Ω) is bounded

and KP (I −Q) : Ω → X is compact. Since ImQ is compact. Since ImQ is isomorphic to KerL

there exists an isomorphism : ImQ → KerL.

Theorem 2.2 ([23]). Suppose that L is a Fredholm operator of index 0 and N is L-compact

on Ω, where Ω is an open bounded subset of X. If the following conditions are satisfied:

(i) Lx 6= λNx for every (x, λ) ∈ [(domL \ KerL) ∩ ∂Ω] × (0, 1);
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(ii) Nx 6∈ ImL for every x ∈ KerL ∩ ∂Ω;

(iii) deg(QN |KerL,Ω∩KerL, 0) 6= 0, where Q : Y → Y is a projection such that ImL = KerQ.

Then the equation Lx = Nx has at least one solution in domL ∩ Ω.

In the following, in order to obtain the existence theorem of (1.1)-(1.3), we use the classical

Banach space

PC[0, 1] = {x : x|(ti,ti+1] ∈ C(ti, ti+1], there exist

x(t−i ) and x(t+i ) with x(t−i ) = x(ti), i = 1, 2, ..., k}

with norm

‖x‖PC = sup{|x(t)| : t ∈ [0, 1]}.

Let uα(t) = t2−αu(t). Take

X = {u|uα,Dα−1
0+ u ∈ PC[0, 1]}, Y = PC[0, 1] × R2k.

It is easy to check that X is a Banach space with norm ‖u‖ = max{‖uα‖PC , ‖Dα−1
0+ u‖PC}, Y

is a Banach space with norm

‖y‖Y = max {‖z‖PC , |c|} , ∀y = (z, c) ∈ Y.

Define operator L = Dα
0+ with

domL = {u ∈ X| lim
t→0+

t2−αu(t) =

n
∑

j=1

aju(ξj), u(1) =

n
∑

j=1

bju(ηj)}.

Let

L : domL → Y, u → (Dα
0+ ,△u(t1), ...,△u(tk),△Dα−1

0+ u(t1), ...,△Dα−1
0+ u(tk)),

N : X → Y, u → (f(t, u,Dα−1
0+ u), I1(u(t1),D

α−1
0+ u(t1)), ..., Ik(u(tk),D

α−1
0+ u(tk)),

J1(u(t1),D
α−1
0+ u(t1)), ..., Jk(u(tk),D

α−1
0+ u(tk)).

Then problem (1.1)-(1.3) can be written as

Lu = Nu, u ∈ domL.

In this paper, we will always suppose the following conditions hold.

(H1) 0 < ξ1 < ξ2 < · · · < ξn < 1, 0 < η1 < η2 < · · · < ηn < 1, aj , bj (1 ≤ j ≤ n) are
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non-negative real constant numbers, and

n
∑

j=1

ajξ
α−2
j =

n
∑

j=1

bjη
α−2
j = 1,

n
∑

j=1

ajξ
α−1
j = 0,

n
∑

j=1

bjη
α−1
j = 1. (2.2)

(H2) σ =

∣

∣

∣

∣

σ1 σ2

σ3 σ4

∣

∣

∣

∣

6= 0, where

σ1 =
1

α(α + 1)



1 −
n
∑

j=1

bjη
α+1
j



 , σ2 =
1

α(α + 1)

n
∑

j=1

ajξ
α+1
j ,

σ3 =
1

α

n
∑

j=1



1 −
n
∑

j=1

bjη
α
j



 , σ4 =
1

α

n
∑

j=1

ajξ
α
j .

Remark 2.1. If (H1) holds, then the BVP (1.4), (1.5) has a nontrivial solution u(t) =

h1t
α−1 + h2t

α−2, where h1, h2 ∈ R.

Lemma 2.3. If (H1) and (H2) hold, then mapping L : domL ⊂ X → Y is a Fredholm mapping

of index zero. Moreover,

KerL = {h1t
α−1 + h2t

α−2 : h1, h2 ∈ R}, (2.3)

and

ImL = {(z, c1, ..., ck, d1, ..., dk) : Dα
0+u(t) = z(t), △u(ti) = ci,

△Dα−1
0+ (ti) = di, i = 1, 2, ..., k, for some u(t) ∈ domL}

=







(z, c1, ..., ck , d1, ..., dk) :
n
∑

j=1

aj

∫ ξj

0
(ξj − s)α−1z(s)ds +

n
∑

j=1

ajξ
α−1
j

∑

ti<ξj

di

+Γ(α)

n
∑

j=1

ajξ
α−2
j

∑

ti<ξj

cit
2−α
i −

n
∑

j=1

ajξ
α−2
j

∑

ti<ξj

diti = 0 and

∫ 1

0
(1 − s)α−1z(s)ds −

n
∑

j=1

bjη
2−α
j

∫ ηj

0
(ηj − s)α−1z(s)ds

+
1

Γ(α)

n
∑

j=1

bjηj

∑

ηj<ti<1

di +

n
∑

j=1

bj

∑

ηj<ti<1

cit
2−α
i −

1

Γ(α)

n
∑

j=1

bj

∑

ηj<ti<1

diti = 0







.

(2.4)

Proof. It is easy to see that (2.3) holds. Next, we will show that (2.4) holds. If (z, c1, ..., ck , d1, ..., dk)
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∈ ImL, then there exists u ∈ domL such that






Dα
0+u(t) = z(t),

△u(ti) = ci, i = 1, 2, ..., k,

△Dα−1
0+ (ti) = di, i = 1, 2, ..., k

(2.5)

has solution u(t) satisfying

lim
t→0+

t2−αu(t) =

n
∑

j=1

aju(ξj), (2.6)

and

u(1) =

n
∑

j=1

bju(ηj). (2.7)

From (2.5) and Lemma 2.1, we obtain

u(t) =
1

Γ(α)

∫ t

0
(t − s)α−1z(s)ds +

(

h1 +
1

Γ(α)

∑

ti<t

di

)

tα−1

+

(

h2 +
∑

ti<t

cit
2−α
i −

1

Γ(α)

∑

ti<t

diti

)

tα−2, (2.8)

where h1, h2 are two arbitrary constants. Substitute the boundary condition (2.6) into (2.8),

one has

n
∑

j=1

aj

∫ ξj

0
(ξj − s)α−1z(s)ds +

n
∑

j=1

ajξ
α−1
j

∑

ti<ξj

di

+Γ(α)
n
∑

j=1

ajξ
α−2
j

∑

ti<ξj

cit
2−α
i −

n
∑

j=1

ajξ
α−2
j

∑

ti<ξj

diti = 0. (2.9)

Moreover, substitute condition (2.7) into (2.8), we obtain

∫ 1

0
(1 − s)α−1z(s)ds −

n
∑

j=1

bj

∫ ηj

0
(ηj − s)α−1z(s)ds +

n
∑

j=1

bjη
α−1
j

∑

ηj<ti<1

di

+Γ(α)
n
∑

j=1

bjη
α−2
j

∑

ηj<ti<1

cit
2−α
i −

n
∑

j=1

bjη
α−2
j

∑

ηj<ti<1

diti = 0. (2.10)

Conversely, if (2.9) and (2.10) hold, setting

u(t) =
1

Γ(α)

∫ t

0
(t − s)α−1z(s)ds +

1

Γ(α)

∑

ti<t

dit
α−1 +

(

∑

ti<t

cit
2−α
i −

1

Γ(α)

∑

ti<t

diti

)

tα−2,
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then it is easy to check that u(t) is a solution of (2.5) and satisfies (2.6), (2.7). Hence, (2.4)

holds.

For convenience, let Z = (z, c1, ..., ck, d1, ..., dk). Define operators T1, T2 : Y → Y as follows :

T1Z =





n
∑

j=1

aj

∫ ξj

0
(ξj − s)α−1z(s)ds +

n
∑

j=1

ajξ
α−1
j

∑

ti<ξj

di

+Γ(α)

n
∑

j=1

ajξ
α−2
j

∑

ti<ξj

cit
2−α
i −

n
∑

j=1

ajξ
α−2
j

∑

ti<ξj

diti, 0, ..., 0



 , (2.11)

T2Z =





∫ 1

0
(1 − s)α−1z(s)ds −

n
∑

j=1

bj

∫ ηj

0
(ηj − s)α−1z(s)ds +

n
∑

j=1

bjη
α−1
j

∑

ηj<ti<1

di

+Γ(α)

n
∑

j=1

bjη
α−2
j

∑

ηj<ti<1

cit
2−α
i −

n
∑

j=1

bjη
α−2
j

∑

ηj<ti<1

diti, 0, ..., 0



 .

(2.12)

From (2.4), we have

ImL = {Z ∈ Y |T1Z = T2Z = 0}. (2.13)

Define operator Q : Y → Y as follows :

QZ = Q1Z + Q2Z · t,

where

Q1Z =
1

σ
(σ1T1Z − σ2T2Z) := (z̄1, 0, ..., 0),

Q2Z = −
1

σ
(σ3T1Z − σ4T2Z) := (z∗1 , 0, ..., 0),

and σ, σi (i = 1, ..., 4) are as in (H2). Then

T1(Q1Z) =





1

α

n
∑

j=1

ajξ
α
j z̄1, 0, ..., 0



 =
1

α

n
∑

j=1

ajξ
α
j (z̄1, 0, ..., 0)

=
1

α

n
∑

j=1

ajξ
α
j · Q1Z = σ4 · Q1Z,
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T2(Q1Z) =





1

α



1 −
n
∑

j=1

bjη
α
j



 z̄1, 0, ..., 0



 =
1

α



1 −
n
∑

j=1

bjη
α
j



 (z̄1, 0, ..., 0)

=
1

α



1 −
n
∑

j=1

bjη
α
j



Q1Z = σ3 · Q1Z,

T1(Q2Z · t) =





1

α(α + 1)

n
∑

j=1

ajξ
α+1
j z∗1 , 0, ..., 0



 =
1

α(α + 1)

n
∑

j=1

ajξ
α+1
j (z∗1 , 0, ..., 0)

=
1

α(α + 1)

n
∑

j=1

ajξ
α+1
j · Q2Z = σ2 · Q2Z,

T2(Q2Z · t) =





1

α(α + 1)



1 −
n
∑

j=1

bjη
α+1
j



 z∗1 , 0, ..., 0





=
1

α(α + 1)



1 −
n
∑

j=1

bjη
α+1
j



 (z∗1 , 0, ..., 0)

=
1

α(α + 1)



1 −
n
∑

j=1

bjη
α+1
j



Q2Z = σ1 · Q2Z.

Thus, we have

Q2
1Z =

1

σ
(σ1T1(Q1Z) − σ2T2(Q1Z)) =

1

σ
(σ1σ4 − σ2σ3)Q1Z = Q1Z,

Q2(Q1Z) = −
1

σ
(σ3T1(Q1Z) − σ4T2(Q1Z)) = −

1

σ
(σ3σ4 − σ4σ3)Q1Z = 0,

Q1(Q2Z · t) =
1

σ
(σ1T1(Q2Z · t) − σ2T2(Q2Z · t)) =

1

σ
(σ1σ2 − σ2σ1)Q2Z = 0,

Q2(Q2Z · t) = −
1

σ
(σ3T1(Q2Z · t) − σ4T2(Q2Z · t)) = −

1

σ
(σ3σ2 − σ4σ1)Q2Z = Q2Z.

Hence,

Q2Z = Q1(Q1Z + Q2Z · t) + Q2(Q1Z + Q2Z · t)t = Q1Z + Q2Z · t = QZ,

which implies the operator Q is a projector.

Now, we show that KerQ = ImL. Obviously, KerQ ⊂ ImL. On the other hand, if Z ∈ ImL,

from QZ = 0, we have
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{

σ1T1Z − σ2T2Z = 0,
σ3T1Z − σ4T2Z = 0.

Since σ =

∣

∣

∣

∣

σ1 σ2

σ3 σ4

∣

∣

∣

∣

6= 0, we get T1Z = T2Z = 0, which yields Z ∈ KerQ. Hence, KerQ = ImL.

For Z ∈ Y , set Z = (Z − QZ) + QZ. Then, Z − QZ ∈ KerQ = ImL, QZ ∈ ImQ, we have

Y = ImL+ImQ. Moreover, it follows from KerQ = ImL and Q2Z = QZ that ImQ∩ImL = {0}.

So, Y = ImL ⊕ ImQ. Since dimKerL = dimImQ = codimImL = 2, L is a Fredholm map of

index zero.

Define P : X → X by

Pu(t) = lim
t→0+

t2−αu(t) · tα−2 +
1

Γ(α)
Dα−1

0+ u(0) · tα−1.

Moreover, we define operator KP : ImL → X as follows :

KP (z, c1, ..., ck , d1, ..., dk)

=
1

Γ(α)

∫ t

0
(t − s)α−1z(s)ds +

1

Γ(α)

∑

ti<t

di · t
α−1 +

(

∑

ti<t

cit
2−α
i −

1

Γ(α)

∑

ti<t

diti

)

tα−2.

(2.14)

Lemma 2.4. P : X → X is a linear continuous projector operator and KP is the inverse of

L|domL∩KerP .

Proof. Obviously, ImP = KerL and

(P 2u)(t) = P (Pu(t)) = lim
t→0+

t2−αPu(t) · tα−2 +
1

Γ(α)
Dα−1

0+ Pu(0) · tα−1

= lim
t→0+

t2−αu(t) · tα−2 +
1

Γ(α)
Dα−1

0+ u(0) · tα−1 = (Pu)(t),

since

Dα−1
0+ Pu(t) =

1

Γ(2 − α)

d

dt

∫ t

0
(t − τ)1−α

(

lim
t→0+

t2−αu(t) · τα−2 +
1

Γ(α)
Dα−1

0+ u(0) · τα−1

)

dτ

=
1

Γ(2 − α)

d

dt

[

lim
t→0+

t2−αu(t) · Γ(2 − α)Γ(α − 1) + Γ(2 − α)Dα−1
0+ u(0) · t

]

= Dα−1
0+ u(0).
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Hence, P : X → X is a continuous linear projector. It follows from u = (u − Pu) + Pu that

X = KerP + KerL. Moreover, we can easily obtain that KerL ∩ KerP = {0}. Thus, we have

X = KerL ⊕ KerP.

By some calculation, it is easy to check that KP (ImL) ⊂ KerP ∩ domL. In the following,

we will prove that KP is the inverse of L|domL∩KerP .

If Z ∈ ImL, then LKP Z = Z. On the other hand, for u ∈ domL∩KerP , we have by (2.14)

that

(KP L)u(t) = KP (Dα
0+u(t), c1, ..., ck , d1, ..., dk)

= u(t) +

(

h1 +
1

Γ(α)

∑

ti<t

di

)

tα−1 +

(

h2 +
∑

ti<t

cit
2−α
i −

1

Γ(α)

∑

ti<t

diti

)

tα−2, (2.15)

where ci = △u(ti), di = △Dα−1
0+ u(ti), i = 1, 2, .., k, and h1, h2 are two arbitrary constants.

Noting that Dα−1
0+ tα−2 = 0 and Dα−1

0+ tα−1 = Γ(α), we get by (2.15) that

Dα−1
0+ KP Lu(t) = Dα−1

0+ u(t) + Γ(α)h1 +
∑

ti<t

di. (2.16)

From u ∈ KerP and KP Lu ∈ KerP , we obtain

lim
t→0+

t2−αu(t) = Dα−1
0+ u(0) = 0,

lim
t→0+

t2−αKP Lu(t) = lim
t→0+

t2−αu(t) + h2 +
∑

ti<t

cit
2−α
i −

1

Γ(α)

∑

ti<t

diti = 0,

Dα−1
0+ KP Lu(0) = Dα−1

0+ u(0) + Γ(α)h1 +
∑

ti<t

di = 0, (by (2.16))

which imply that

h1 +
1

Γ(α)

∑

ti<t

di = 0, h2 +
∑

ti<t

cit
2−α
i −

1

Γ(α)

∑

ti<t

diti = 0.

So, KP Lu = u. Thus KP = (L|domL∩KerP )−1.

Lemma 2.5. Assume that Ω ⊂ X is an open bounded subset with domL ∩ Ω 6= ∅, then N is

L-compact on Ω.

Proof. From Lemma 2.4, we know that KP is the inverse of L|domL∩KerP . By (2.11) and

(2.12), we have
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T1Nu = (T1Nu(1), 0, · · · , 0), T2Nu = (T2Nu(1), 0, · · · , 0),

where

T1Nu(1) =

n
∑

j=1

aj

∫ ξj

0
(ξj − s)α−1f(s, u(s),Dα−1

0+ u(s))ds +

n
∑

j=1

ajξ
α−1
j

∑

ti<ξj

Ji

+Γ(α)
n
∑

j=1

ajξ
α−2
j

∑

ti<ξj

Iit
2−α
i −

n
∑

j=1

ajξ
α−2
j

∑

ti<ξj

Jiti, (2.17)

T2Nu(1) =

∫ 1

0
(1 − s)α−1f(s, u(s),Dα−1

0+ u(s))ds

−
n
∑

j=1

bj

∫ ηj

0
(ηj − s)α−1f(s, u(s),Dα−1

0+ u(s))ds +

n
∑

j=1

bjη
α−1
j

∑

ηj<ti<1

Ji

+Γ(α)
n
∑

j=1

bjη
α−2
j

∑

ηj<ti<1

Iit
2−α
i −

n
∑

j=1

bjη
α−2
j

∑

ηj<ti<1

Jiti. (2.18)

Here, Ii = Ii(u(ti),D
α−1
0+ u(ti))), Ji = Ji(u(ti),D

α−1
0+ u(ti)), i = 1, ..., k. Thus, we have

QNu = (u⋆, 0, ..., 0), (2.19)

where

u⋆ =
σ1 − σ3t

σ





m
∑

j=1

aj

∫ ξj

0
(ξj − s)α−1f(s, u(s),Dα−1

0+ u(s))ds +
m
∑

j=1

ajξ
α−1
j

∑

ti<ξj

Ji

+Γ(α)

m
∑

j=1

ajξ
α−2
j

∑

ti<ξj

Iit
2−α
i −

m
∑

j=1

ajξ
α−2
j

∑

ti<ξj

Jiti





+
σ4t − σ2

σ

(∫ 1

0
(1 − s)α−1f(s, u(s),Dα−1

0+ u(s))ds

−
n
∑

j=1

bj

∫ ηj

0
(ηj − s)α−1f(s, u(s),Dα−1

0+ u(s))ds +

n
∑

j=1

bjη
α−1
j

∑

ηj<ti<1

Ji

+Γ(α)
n
∑

j=1

bjη
α−2
j

∑

ηj<ti<1

Iit
2−α
i −

n
∑

j=1

bjη
α−2
j

∑

ηj<ti<1

Jiti



 ,

and

KP (I − Q)Nu
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=
1

Γ(α)

∫ t

0
(t − s)α−1f(s, u(s),Dα−1

0+ u(s))ds

+
1

Γ(α)

∑

ti<t

Ji · t
α−1 +

(

∑

ti<t

Iit
2−α
i −

1

Γ(α)

∑

ti<t

Jiti

)

tα−2

+
tα

Γ(α + 1)σ

(

σ1 −
σ3t

α + 1

)





m
∑

j=1

aj

∫ ξj

0
(ξj − s)α−1f(s, u(s),Dα−1

0+ u(s))ds

+
m
∑

j=1

ajξ
α−1
j

∑

ti<ξj

Ji + Γ(α)
m
∑

j=1

ajξ
α−2
j

∑

ti<ξj

Iit
2−α
i −

m
∑

j=1

ajξ
α−2
j

∑

ti<ξj

Jiti





+
tα

Γ(α + 1)σ

(

σ4t

α + 1
− σ2

)(∫ 1

0
(1 − s)α−1f(s, u(s),Dα−1

0+ u(s))ds

−
n
∑

j=1

bj

∫ ηj

0
(ηj − s)α−1f(s, u(s),Dα−1

0+ (s))ds +

n
∑

j=1

bjη
α−1
j

∑

ηj<ti<1

Ji

+Γ(α)

n
∑

j=1

bjη
α−2
j

∑

ηj<ti<1

Iit
2−α
i −

n
∑

j=1

bjη
α−2
j

∑

ηj<ti<1

Jiti



 .

By using the Ascoli-Arzela theorem, we can prove that QN(Ω) is bounded and KP (I −Q)N :

Ω → X is compact. Hence, N is L-compact on Ω.

3. Main result

Denote by L1[0, 1] the space of all Lebesgue integrable functions on [0, 1]. It is well known

that L1[0, 1] is a Banach space with norm ‖u‖1 =
∫ 1
0 |u(t)|dt.

To obtain our main result, we need the following conditions.

(H3) There exist positive numbers pi1, pi2, qi1, qi2 (i = 1, ..., k) such that

|Ii(x, y)| ≤ pi1|x| + pi2|y|,

|Ji(x, y)| ≤ qi1|x| + qi2|y|.

(H4) There exist functions φ, β, γ ∈ C[0, 1] such that

|f(t, x, y)| ≤ |φ(t)| + t2−α|β(t)||x| + |γ(t)||y|, ∀(t, x, y) ∈ [0, 1] × R2.

(H5) For u ∈ domL, there exist two constants a∗ ∈ (0, 1] and M∗ > 0 such that if |Dα−1
0+ u(t)| >

M∗ for all t ∈ [0, a∗], then either
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Dα−1
0+ u(t) · T1Nu(1) > 0 or Dα−1

0+ u(t) · T1Nu(1) < 0,

where T1Nu(1) is as in (2.17).

(H6) For u ∈ domL, there exist two constants a∗ ∈ (0, 1) and M∗ > 0 such that if |u(t)| > M∗

for all t ∈ [a∗, 1], then either

u(t) · T2Nu(1) > 0 or u(t) · T2Nu(1) < 0,

where T2Nu(1) is as in (2.18).

Remark 3.1. If (H5) holds, then T1Nu(t) 6= (0, 0, ..., 0), ∀t ∈ [0, a∗]. And if (H6) holds, then

T2Nu(t) 6= (0, 0, ..., 0), ∀t ∈ [a∗, 1].

Theorem 3.1. Let f : [0, 1]×R2 → R and Ii, Ji : R → R (i = 1, ..., k) be continuous. Assume

(H1) − (H4) hold. In addition, suppose that either the first part of (H5) and (H6) hold or the

second part of (H5) and (H6) hold. Then the boundary value problem (1.1)-(1.3) has at least

one solution in X provided that

BA < (1 − A)(1 − B), (3.1)

where

A =
4

Γ(α)
‖β‖1 +

2

Γ(α)

k
∑

i=1

qi1(t
α−1
i + 2tα−2

i ) + 2

k
∑

i=1

pi1 < 1, (3.2)

B =
4

Γ(α)
‖γ‖1 +

2

Γ(α)

k
∑

i=1

qi2(2 + ti) + 2

k
∑

i=1

pi2, (3.3)

A = 2‖β‖1 + 2

k
∑

i=1

qi1t
α−2
i , B = 2‖γ‖1 + 2

k
∑

i=1

qi2 < 1. (3.4)

Proof. Set

Ω1 = {u ∈ domL \ KerL : Lu = λNu, for some λ ∈ (0, 1)}.

For u ∈ Ω1, we have u 6∈ KerL and Nu ∈ ImL. By (2.13), we get that T1Nu = T2Nu = 0.

Thus, from (H5), (H6) and Remark 3.1, we obtain that there exist constants t∗ ∈ [a∗, 1] and

t∗ ∈ [0, a∗] such that

|u(t∗)| ≤ M∗, |Dα−1
0+ u(t∗)| ≤ M∗. (3.5)

It follows from Lu = λNu that
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Dα
0+u(t) = λf(t, u(t),Dα−1

0+ u(t)), t 6= ti, (3.6)

△u(ti) = λIi(u(ti),D
α−1
0+ u(ti)), i = 1, ..., k, (3.7)

△Dα−1
0+ u(ti) = λJi(u(ti),D

α−1
0+ u(ti)), i = 1, ..., k. (3.8)

From (3.6)-(3.8) and noticing that u ∈ domL, we have by (2.5) and (2.8) that

u(t) =
λ

Γ(α)

∫ t

0
(t − s)α−1f(s, u(s),Dα−1

0+ u(s))ds +

(

h1 +
λ

Γ(α)

∑

ti<t

Ji

)

tα−1

+

(

h2 + λ
∑

ti<t

Iit
2−α
i −

λ

Γ(α)

∑

ti<t

Jiti

)

tα−2. (3.9)

From (3.9) and Lemma 2.1, we get

Dα−1
0+ u(t) = λ

∫ t

0
f(s, u(s),Dα−1

0+ u(s))ds + h1Γ(α) + λ
∑

ti<t

Ji. (3.10)

By (3.5), (3.9) and (3.10), we have

|h1| =
1

Γ(α)

∣

∣

∣

∣

∣

Dα−1
0+ u(t∗) − λ

∫ t∗

0
f(s, u(s),Dα−1

0+ u(s))ds − λ
∑

ti<t∗

Ji

∣

∣

∣

∣

∣

≤
1

Γ(α)

(

M∗ +

∫ 1

0
|f(s, u(s),Dα−1

0+ u(s))|ds +

k
∑

i=1

|Ji|

)

, (3.11)

and

|h2| =

∣

∣

∣

∣

t2−α
∗

u(t∗) −
λ

Γ(α)
t∗

2−α

∫ t∗

0
(t∗ − s)α−1f(s, u(s),Dα−1

0+ u(s))ds

−

(

h1 +
λ

Γ(α)

∑

ti<t∗

Ji

)

t∗ − λ
∑

ti<t∗

Iit
2−α
i +

λ

Γ(α)

∑

ti<t∗

Jiti

∣

∣

∣

∣

∣

≤ M∗ +
1

Γ(α)

∫ 1

0
|f(s, u(s),Dα−1

0+ u(s))|ds + |h1| +
1

Γ(α)

k
∑

i=1

|Ji|(1 + ti) +

k
∑

i=1

|Ii|t
2−α
i .

(3.12)

Substitute (3.11) and (3.12) into (3.9), we have by (H3) and (H4) that

|t2−αu(t)| ≤
1

Γ(α)
t2−α

∫ t

0
(t − s)α−1|f(s, u(s),Dα−1

0+ u(s))|ds +

(

|h1| +
1

Γ(α)

k
∑

i=1

|Ji|

)

t

EJQTDE, 2011 No. 89, p. 14



+|h2| +
k
∑

i=1

|Ii|t
2−α
i +

1

Γ(α)

k
∑

i=1

|Ji|ti

≤
1

Γ(α)

∫ 1

0
|f(s, u(s),Dα−1

0+ u(s))|ds + |h1| +
1

Γ(α)

k
∑

i=1

|Ji|(1 + ti) + |h2| +
k
∑

i=1

|Ii|t
2−α
i

≤
4

Γ(α)

∫ 1

0
|f(s, u(s),Dα−1

0+ u(s))|ds +
2

Γ(α)
M∗ + M∗

+
2

Γ(α)

k
∑

i=1

|Ji|(2 + ti) + 2
k
∑

i=1

|Ii|t
2−α
i

≤
4

Γ(α)

∫ 1

0
[|φ(s)| + s2−α|β(s)||u(s)| + |γ(s)||Dα−1

0+ u(s)|]ds +
2

Γ(α)
M∗ + M∗

+
2

Γ(α)

k
∑

i=1

(qi1|u(ti)| + qi2|D
α−1
0+ u(ti)|)(2 + ti)

+2
k
∑

i=1

(pi1|u(ti)| + pi2|D
α−1
0+ u(ti)|)t

2−α
i

≤
4

Γ(α)

[

‖φ‖1 +

∫ 1

0
|β(s)|ds · ‖uα‖PC +

∫ 1

0
|γ(s)|ds · ‖Dα−1

0+ u‖PC

]

+
2

Γ(α)
M∗ + M∗

+
2

Γ(α)

k
∑

i=1

qi1(t
α−1
i + 2tα−2

i )‖uα‖PC +
2

Γ(α)

k
∑

i=1

qi2(2 + ti)‖D
α−1
0+ u‖PC

+2
k
∑

i=1

pi1‖uα‖PC + 2
k
∑

i=1

pi2‖D
α−1
0+ u‖PC

= A‖uα‖PC + B‖Dα−1
0+ u‖PC + C, (3.13)

where A, B are as in (3.2), (3.3), respectively, and C = 4
Γ(α)‖φ‖1 + 2

Γ(α)M
∗ + M∗.

Moreover, we have

|Dα−1
0+ u(t)| =

∣

∣

∣

∣

∣

λ

∫ t

0
f(s, u(s),Dα−1

0+ u(s))ds + Γ(α)h1 + λ
∑

ti<t

Ji

∣

∣

∣

∣

∣

≤ 2

∫ 1

0
|f(s, u(s),Dα−1

0+ u(s))|ds + M∗ + 2

k
∑

i=1

|Ji|

≤ A‖uα‖PC + B‖Dα−1
0+ u‖PC + C, (3.14)
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where A and B are as in (3.4), and C = M∗ + 2‖φ‖1.

Hence,

‖Dα−1
0+ u‖PC ≤

1

1 − B
(C + A‖uα‖PC). (3.15)

Substitute (3.15) into (3.13), we obtain

‖uα‖PC ≤
BC + C(1 − B)

(1 − A)(1 − B) − BA
. (3.16)

Therefore, by (3.1) and (3.16), we know that Ω1 is bounded.

Let

Ω2 = {u ∈ KerL : Nu ∈ ImL}.

For u ∈ Ω2, we have u(t) = h1t
α−1 + h2t

α−2, h1, h2 ∈ R and T1Nu(1) = T2Nu(1) = 0. From

(H6), we get |Dα−1
0+ u(t)| = |h1|Γ(α) ≤ M∗, that is |h1| ≤

M∗

Γ(α) . Moreover, by (H5), there exists

t∗ ∈ [a∗, 1] such that |u(t∗)| ≤ M∗. Thus, we obtain |h2| ≤ M∗t
2−α
∗

+ |h1|t∗ ≤ M∗ + M∗

Γ(α) . So,

‖uα‖PC = ‖h1t + h2‖PC ≤ M∗ +
2M∗

Γ(α)
, ‖Dα−1

0+ u‖PC = |Γ(α)h1| ≤ M∗, (3.17)

which implies that Ω2 is bounded in X.

If the first part of (H5) and (H6) hold, set

Ω3 = {u ∈ KerL : λΛu + (1 − λ)QNu = 0, λ ∈ [0, 1]},

here Λ : KerL → ImQ is the linear isomorphism given by

Λ(h1t
α−1 + h2t

α−2) =

(

1

σ
(σ1h1 − σ2h2) +

1

σ
(−σ3h1 + σ4h2)t, 0, ..., 0

)

,

where h1, h2 ∈ R. For u∗ = h1t
α−1 + h2t

α−2 ∈ Ω3, we have

λΛu∗ + (1 − λ)QNu∗ = (λΛu
(1)
∗ + (1 − λ)(Q1Nu∗ + Q2Nu∗ · t)

(1), 0, · · · , 0)

= (0, 0, · · · , 0)

which implies that

λ

(

1

σ
(σ1h1 − σ2h2) +

1

σ
(−σ3h1 + σ4h2)t

)

+(1 − λ)

[

1

σ
(σ1T1Nu∗

(1) − σ2T2Nu∗

(1)) −
1

σ
(σ3T1Nu∗

(1) − σ4T2Nu∗

(1)) · t

]

= 0.
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Thus, we obtain

λh1 + (1 − λ)T1Nu∗
(1) = 0, (3.18)

λh2 + (1 − λ)T2Nu∗
(1) = 0. (3.19)

In (3.18), if λ = 1, then |h1| = 0 ≤ M∗

Γ(α) . Otherwise, if |h1| > M∗

Γ(α) , that is |Dα−1
0+ u∗| > M∗,

then we have by the first part of (H5) that

Dα−1
0+ u∗ · T1Nu∗

(1) > 0. (3.20)

Multiplying (3.18) by h1, we have

λh2
1 + (1 − λ)h1 · T1Nu∗

(1) = λh2
1 +

1 − λ

Γ(α)
Dα−1

0+ u∗ · T1Nu∗
(1) = 0

which contradicts to (3.20). Thus, we obtain that |h1| ≤
M∗

Γ(α) . Similarly, by the first part of

(H6) and (3.19), we can show that |h2| ≤ M∗ + M∗

Γ(α) . Thus, Ω3 is bounded.

If the second part of (H5) and (H6) hold, then define the set

Ω3 = {u ∈ KerL : −λΛu + (1 − λ)QNu = 0, λ ∈ [0, 1]},

where Λ as in above. Similar to above argument, we can show that Ω3 is bounded too.

Finally, set Ω be a bounded open set of X such that ∪3
i=1Ωi ⊂ Ω. By Lemma 2.4, N is

L-compact on Ω. Then by the above arguments, we have

(i) Lx 6= λNx for every (x, λ) ∈ [(domL \ KerL ∩ ∂Ω] × (0, 1);

(ii) Nx 6∈ ImL for every x ∈ KerL ∩ ∂Ω.

In the following, we need only to prove that (iii) of Theorem 2.2 is satisfied. Let H(u, λ) =

±λΛu + (1 − λ)QNu. According to the above argument, we know

H(u, λ) 6= 0, for all u ∈ KerL ∩ ∂Ω,

thus, by the homotopy property of degree

deg(QN |KerL,Ω ∩ KerL, 0) = deg(H(·, 0),Ω ∩ KerL, 0)

= deg(H(·, 1),Ω ∩ KerL, 0) = deg(±Λ,Ω ∩ KerL, 0) 6= 0.

Then by Theorem 2.2, Lu = Nu has at least one solution in domL ∩ Ω, so that the problem

(1.1)-(1.3) has one solution in X. The proof is complete.
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