Solvability of multi-point boundary value problem of nonlinear impulsive fractional differential equation at resonance

Chuanzhi Bai*
Department of Mathematics, Huaiyin Normal University, Huaian, Jiangsu 223300, P R China

Abstract

In this paper, we investigate the existence of solutions for multi-point boundary value problems of impulsive fractional differential equations at resonance by using the coincidence degree theory due to Mawhin.

Keywords and Phrases. resonance; impulsive; fractional derivative; fractional integral
MSC (2010): 34B10; 34B37; 34K37

1. Introduction

Differential equation with fractional order have recently proved valuable tools in the modeling of many phenomena in various fields of science and engineering [1-5]. Recently, many researchers paid attention to existence result of solution of the boundary value problems for fractional differential equations at nonresonance, see for examples [6-15]. But, there are few papers which consider the boundary value problem at resonance for nonlinear ordinary differential equations of fractional order. In [16], N. Kosmatov studied the boundary value problems of fractional differential equations at resonance with $\operatorname{dimKer} L=1$. More recently, Jiang [17] investigated the existence of solutions for the fractional differential equation at resonance with $\operatorname{dimKer} L=2:$

$$
\begin{aligned}
& D_{0^{+}}^{\alpha} u(t)=f\left(t, u(t), D^{\alpha-1} u(t)\right), \quad \text { a.e. } t \in[0,1] \\
& u(0)=0, \quad D_{0^{+}}^{\alpha-1} u(0)=\sum_{j=1}^{m} a_{j} D_{0^{+}}^{\alpha-1} u\left(\xi_{j}\right), \quad D_{0^{+}}^{\alpha-2} u(1)=\sum_{j=1}^{n} b_{j} D_{0^{+}}^{\alpha-2} u\left(\eta_{j}\right),
\end{aligned}
$$

where $2<\alpha<3,0<\xi_{1}<\xi_{2}<\cdots<\xi_{m}<1, \sum_{i=1}^{m} a_{i}=1, \sum_{j=1}^{n} b_{j}=1, \sum_{j=1}^{n} b_{j} \eta_{j}=1$, $f:[0,1] \times R \times R \rightarrow R$ satisfies Caratheodory condition.

[^0]To the best of the author knowledge, the solvability of resonance boundary value problems for impulsive fractional differential equations has not been well studied till now. We will fill this gap in the literature. Motivated by the excellent results of [17], [18], [19] and [20], in this paper, we investigate the existence of solutions for boundary value problems of nonlinear impulsive fractional differential equation at resonance

$$
\begin{align*}
& D_{0^{+}}^{\alpha} u(t)=f\left(t, u(t), D^{\alpha-1} u(t)\right), \quad t \in(0,1), \quad t \neq t_{i}, \quad i=1, \ldots, k \tag{1.1}\\
& \lim _{t \rightarrow 0^{+}} t^{2-\alpha} u(t)=\sum_{j=1}^{n} a_{j} u\left(\xi_{j}\right), \quad u(1)=\sum_{j=1}^{n} b_{j} u\left(\eta_{j}\right), \tag{1.2}\\
& \triangle u\left(t_{i}\right)=I_{i}\left(u\left(t_{i}\right), D_{0^{+}}^{\alpha-1} u\left(t_{i}\right)\right), \quad \triangle D_{0^{+}}^{\alpha-1} u\left(t_{i}\right)=J_{i}\left(u\left(t_{i}\right), D_{0^{+}}^{\alpha-1} u\left(t_{i}\right)\right), \tag{1.3}
\end{align*}
$$

where $D_{0^{+}}^{\alpha}$ is the standard Riemann-Liouville fractional derivative, $1<\alpha<2, f:[0,1] \times R^{2} \rightarrow$ R, and $I_{i}, J_{i}: R \times R \rightarrow R$ are continuous, k is a fixed positive integer, $t_{i}(i=1,2, \ldots, k)$ are fixed points with $0<t_{1}<t_{2}<\cdots<t_{k}<1, \Delta u\left(t_{i}\right)=u\left(t_{i}+0\right)-u\left(t_{i}-0\right), \triangle D_{0^{+}}^{\alpha} u\left(t_{i}\right)=D_{0^{+}}^{\alpha} u\left(t_{i}+\right.$ $0)-D_{0^{+}}^{\alpha} u\left(t_{i}-0\right), i=1, . ., k, \xi_{j}, \eta_{j} \in(0,1)(j=1, \ldots, n)$ be given $0<\xi_{1}<\cdots<\xi_{n}<1$, $0<\eta_{1}<\cdots<\eta_{n}<1$, and $\xi_{j}, \eta_{j} \neq t_{i}(1 \leq j \leq n, 1 \leq i \leq k), \sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha-2}=\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha-2}=1$, $\sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha-1}=0$, and $\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha-1}=1$.

The BVP (1.1)-(1.3) happens to be at resonance in the sense that its associated linear homogeneous nonimpulse boundary value problem

$$
\begin{align*}
& D_{0^{+}}^{\alpha} u(t)=0, \quad 0<t<1, \tag{1.4}\\
& \lim _{t \rightarrow 0^{+}} t^{2-\alpha} u(t)=\sum_{j=1}^{n} a_{j} u\left(\xi_{j}\right), \quad u(1)=\sum_{j=1}^{n} b_{j} u\left(\eta_{j}\right), \tag{1.5}
\end{align*}
$$

has $u(t)=h_{1} t^{\alpha-1}+h_{2} t^{\alpha-2}, h_{1}, h_{2} \in R$ as a nontrivial solution.
By the way, the theory of impulsive differential equation may be seen in [21] and [22].
The rest of this paper is organized as follows. In Section 2, we give some notations and lemmas. In Section 3, we establish an existence theorem for boundary value problem (1.1)-(1.3) at resonance case.

2. Preliminaries

For the convenience of the reader, we first briefly recall some fundamental tools of fractional calculus and the coincidence degree theory.

The Riemann-Liouville fractional integral of order $\alpha>0$ of a function $u:(0, \infty) \rightarrow R$ is given by

$$
I_{0^{+}}^{\alpha} u(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} u(s) d s
$$

provided the right side is pointwise defined on $(0, \infty)$. The Riemann-Liouville fractional derivative of order $\alpha>0$ of a function $u:(0, \infty) \rightarrow R$ is given by

$$
D_{0^{+}}^{\alpha} u(t)=\frac{1}{\Gamma(n-\alpha)}\left(\frac{d}{d t}\right)^{n} \int_{0}^{t} \frac{u(s)}{(t-s)^{\alpha-n+1}} d s
$$

where $n=[\alpha]+1$, provided the right side is pointwise defined on $(0, \infty)$.
We make use of two relationships between $D_{0^{+}}^{\alpha} u$ and $I_{0^{+}}^{\alpha} u$ that are stated in the following lemma (see [3, 9]).

Lemma 2.1. Assume that $u \in C(0,1) \cap L^{1}(0,1)$. Then
(1) $I_{0^{+}}^{\alpha} D_{0^{+}}^{\alpha} u(t)=u(t)+c_{1} t^{\alpha-1}+c_{2} t^{\alpha-2}+\cdots+c_{n} t^{\alpha-n}$, for some $c_{i} \in R, i=1,2, \ldots, n$, where $\alpha>0$ and $n=[\alpha]+1$.
(2) $D_{0^{+}}^{\beta} I_{0^{+}}^{\alpha} u(t)=I_{0^{+}}^{\alpha-\beta} u(t), \quad \alpha \geq \beta \geq 0$.
(3) $D_{0^{+}}^{\alpha} t^{\alpha-i}=0, \quad i=1,2, \ldots,[\alpha]+1$.

Consider an operator equation

$$
\begin{equation*}
L x=N x, \tag{2.1}
\end{equation*}
$$

where $L: \operatorname{dom} L \cap X \rightarrow Z$ is a linear operator, $N: X \rightarrow Z$ is a non-linear operator, X and Z are Banach spaces. If $\operatorname{dim} \operatorname{Ker} L=\operatorname{dim}(Z / \operatorname{Im} L)<+\infty$ and $\operatorname{Im} L$ is closed in Z, then L will be called a Fredholm mapping of index 0, and at the same time there exist continuous projectors $P: X \rightarrow X$ and $Q: Z \rightarrow Z$ such that $\operatorname{Im} P=\operatorname{Ker} Q$. It follows that $\left.L\right|_{\operatorname{Dom} L \cap \operatorname{Ker} P}:$ $\operatorname{dom} L \cap \operatorname{Ker} P \rightarrow \operatorname{Im} L$ is invertible. We denote the inverse of this map by K_{P}. Let Ω be an open bounded subset of X. The map N will be called L-compact on $\bar{\Omega}$ if $Q N(\bar{\Omega})$ is bounded and $K_{P}(I-Q): \bar{\Omega} \rightarrow X$ is compact. Since $\operatorname{Im} Q$ is compact. Since $\operatorname{Im} Q$ is isomorphic to $\operatorname{Ker} L$ there exists an isomorphism : $\operatorname{Im} Q \rightarrow \operatorname{Ker} L$.

Theorem 2.2 ([23]). Suppose that L is a Fredholm operator of index 0 and N is L-compact on $\bar{\Omega}$, where Ω is an open bounded subset of X. If the following conditions are satisfied:
(i) $L x \neq \lambda N x$ for every $(x, \lambda) \in[(\operatorname{dom} L \backslash \operatorname{Ker} L) \cap \partial \Omega] \times(0,1)$;
(ii) $N x \notin \operatorname{Im} L$ for every $x \in \operatorname{Ker} L \cap \partial \Omega$;
(iii) $\operatorname{deg}\left(\left.Q N\right|_{\operatorname{Ker} L}, \Omega \cap \operatorname{Ker} L, 0\right) \neq 0$, where $Q: Y \rightarrow Y$ is a projection such that $\operatorname{Im} L=\operatorname{Ker} Q$. Then the equation $L x=N x$ has at least one solution in $\operatorname{dom} L \cap \bar{\Omega}$.

In the following, in order to obtain the existence theorem of (1.1)-(1.3), we use the classical Banach space

$$
\begin{aligned}
P C[0,1]=\{ & x:\left.x\right|_{\left(t_{i}, t_{i+1}\right]} \in C\left(t_{i}, t_{i+1}\right], \text { there exist } \\
& \left.x\left(t_{i}^{-}\right) \text {and } x\left(t_{i}^{+}\right) \text {with } x\left(t_{i}^{-}\right)=x\left(t_{i}\right), i=1,2, \ldots, k\right\}
\end{aligned}
$$

with norm

$$
\|x\|_{P C}=\sup \{|x(t)|: t \in[0,1]\}
$$

Let $u_{\alpha}(t)=t^{2-\alpha} u(t)$. Take

$$
X=\left\{u \mid u_{\alpha}, D_{0^{+}}^{\alpha-1} u \in P C[0,1]\right\}, \quad Y=P C[0,1] \times R^{2 k}
$$

It is easy to check that X is a Banach space with norm $\|u\|=\max \left\{\left\|u_{\alpha}\right\|_{P C},\left\|D_{0^{+}}^{\alpha-1} u\right\|_{P C}\right\}, Y$ is a Banach space with norm

$$
\|y\|_{Y}=\max \left\{\|z\|_{P C},|c|\right\}, \quad \forall y=(z, c) \in Y
$$

Define operator $L=D_{0^{+}}^{\alpha}$ with

$$
\operatorname{dom} L=\left\{u \in X \mid \lim _{t \rightarrow 0^{+}} t^{2-\alpha} u(t)=\sum_{j=1}^{n} a_{j} u\left(\xi_{j}\right), \quad u(1)=\sum_{j=1}^{n} b_{j} u\left(\eta_{j}\right)\right\}
$$

Let

$$
\begin{gathered}
L: \operatorname{dom} L \rightarrow Y, \quad u \rightarrow\left(D_{0^{+}}^{\alpha}, \triangle u\left(t_{1}\right), \ldots, \triangle u\left(t_{k}\right), \triangle D_{0^{+}}^{\alpha-1} u\left(t_{1}\right), \ldots, \Delta D_{0^{+}}^{\alpha-1} u\left(t_{k}\right)\right) \\
N: X \rightarrow Y, \quad u \rightarrow\left(f\left(t, u, D_{0^{+}}^{\alpha-1} u\right), I_{1}\left(u\left(t_{1}\right), D_{0^{+}}^{\alpha-1} u\left(t_{1}\right)\right), \ldots, I_{k}\left(u\left(t_{k}\right), D_{0^{+}}^{\alpha-1} u\left(t_{k}\right)\right),\right. \\
J_{1}\left(u\left(t_{1}\right), D_{0^{+}}^{\alpha-1} u\left(t_{1}\right)\right), \ldots, J_{k}\left(u\left(t_{k}\right), D_{0^{+}}^{\alpha-1} u\left(t_{k}\right)\right)
\end{gathered}
$$

Then problem (1.1)-(1.3) can be written as

$$
L u=N u, \quad u \in \operatorname{dom} L .
$$

In this paper, we will always suppose the following conditions hold.
$\left(\mathrm{H}_{1}\right) 0<\xi_{1}<\xi_{2}<\cdots<\xi_{n}<1,0<\eta_{1}<\eta_{2}<\cdots<\eta_{n}<1, a_{j}, b_{j}(1 \leq j \leq n)$ are
non-negative real constant numbers, and

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha-2}=\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha-2}=1, \quad \sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha-1}=0, \quad \sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha-1}=1 . \tag{2.2}
\end{equation*}
$$

$\left(\mathrm{H}_{2}\right) \sigma=\left|\begin{array}{ll}\sigma_{1} & \sigma_{2} \\ \sigma_{3} & \sigma_{4}\end{array}\right| \neq 0$, where

$$
\begin{aligned}
& \sigma_{1}=\frac{1}{\alpha(\alpha+1)}\left(1-\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha+1}\right), \quad \sigma_{2}=\frac{1}{\alpha(\alpha+1)} \sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha+1}, \\
& \sigma_{3}=\frac{1}{\alpha} \sum_{j=1}^{n}\left(1-\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha}\right), \quad \sigma_{4}=\frac{1}{\alpha} \sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha} .
\end{aligned}
$$

Remark 2.1. If $\left(\mathrm{H}_{1}\right)$ holds, then the BVP (1.4), (1.5) has a nontrivial solution $u(t)=$ $h_{1} t^{\alpha-1}+h_{2} t^{\alpha-2}$, where $h_{1}, h_{2} \in R$.

Lemma 2.3. If $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ hold, then mapping $L: \operatorname{dom} L \subset X \rightarrow Y$ is a Fredholm mapping of index zero. Moreover,

$$
\begin{equation*}
\operatorname{Ker} L=\left\{h_{1} t^{\alpha-1}+h_{2} t^{\alpha-2}: h_{1}, h_{2} \in R\right\}, \tag{2.3}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{Im} L= & \left\{\left(z, c_{1}, \ldots, c_{k}, d_{1}, \ldots, d_{k}\right): D_{0^{+}}^{\alpha} u(t)=z(t), \Delta u\left(t_{i}\right)=c_{i},\right. \\
& \left.\Delta D_{0^{+}}^{\alpha-1}\left(t_{i}\right)=d_{i}, i=1,2, \ldots, k, \text { for some } u(t) \in \operatorname{dom} L\right\} \\
= & \left\{\left(z, c_{1}, \ldots, c_{k}, d_{1}, \ldots, d_{k}\right): \sum_{j=1}^{n} a_{j} \int_{0}^{\xi_{j}}\left(\xi_{j}-s\right)^{\alpha-1} z(s) d s+\sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha-1} \sum_{t_{i}<\xi_{j}} d_{i}\right. \\
+ & \Gamma(\alpha) \sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha-2} \sum_{t_{i}<\xi_{j}} c_{i} t_{i}^{2-\alpha}-\sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha-2} \sum_{t_{i}<\xi_{j}} d_{i} t_{i}=0 \text { and } \\
& \int_{0}^{1}(1-s)^{\alpha-1} z(s) d s-\sum_{j=1}^{n} b_{j} \eta_{j}^{2-\alpha} \int_{0}^{\eta_{j}}\left(\eta_{j}-s\right)^{\alpha-1} z(s) d s \\
& \left.+\frac{1}{\Gamma(\alpha)} \sum_{j=1}^{n} b_{j} \eta_{j} \sum_{\eta_{j}<t_{i}<1} d_{i}+\sum_{j=1}^{n} b_{j} \sum_{\eta_{j}<t_{i}<1} c_{i} t_{i}^{2-\alpha}-\frac{1}{\Gamma(\alpha)} \sum_{j=1}^{n} b_{j} \sum_{\eta_{j}<t_{i}<1} d_{i} t_{i}=0\right\} . \tag{2.4}
\end{align*}
$$

Proof. It is easy to see that (2.3) holds. Next, we will show that (2.4) holds. If $\left(z, c_{1}, \ldots, c_{k}, d_{1}, \ldots, d_{k}\right)$
$\in \operatorname{Im} L$, then there exists $u \in \operatorname{dom} L$ such that

$$
\left\{\begin{array}{l}
D_{0^{+}}^{\alpha} u(t)=z(t), \tag{2.5}\\
\triangle u\left(t_{i}\right)=c_{i}, \quad i=1,2, \ldots, k \\
\triangle D_{0^{+}}^{\alpha-1}\left(t_{i}\right)=d_{i}, \quad i=1,2, \ldots, k
\end{array}\right.
$$

has solution $u(t)$ satisfying

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} t^{2-\alpha} u(t)=\sum_{j=1}^{n} a_{j} u\left(\xi_{j}\right) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
u(1)=\sum_{j=1}^{n} b_{j} u\left(\eta_{j}\right) . \tag{2.7}
\end{equation*}
$$

From (2.5) and Lemma 2.1, we obtain

$$
\begin{gather*}
u(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} z(s) d s+\left(h_{1}+\frac{1}{\Gamma(\alpha)} \sum_{t_{i}<t} d_{i}\right) t^{\alpha-1} \\
+\left(h_{2}+\sum_{t_{i}<t} c_{i} t_{i}^{2-\alpha}-\frac{1}{\Gamma(\alpha)} \sum_{t_{i}<t} d_{i} t_{i}\right) t^{\alpha-2} \tag{2.8}
\end{gather*}
$$

where h_{1}, h_{2} are two arbitrary constants. Substitute the boundary condition (2.6) into (2.8), one has

$$
\begin{align*}
& \sum_{j=1}^{n} a_{j} \int_{0}^{\xi_{j}}\left(\xi_{j}-s\right)^{\alpha-1} z(s) d s+\sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha-1} \sum_{t_{i}<\xi_{j}} d_{i} \\
& \quad+\Gamma(\alpha) \sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha-2} \sum_{t_{i}<\xi_{j}} c_{i} t_{i}^{2-\alpha}-\sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha-2} \sum_{t_{i}<\xi_{j}} d_{i} t_{i}=0 . \tag{2.9}
\end{align*}
$$

Moreover, substitute condition (2.7) into (2.8), we obtain

$$
\begin{align*}
& \int_{0}^{1}(1-s)^{\alpha-1} z(s) d s-\sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}}\left(\eta_{j}-s\right)^{\alpha-1} z(s) d s+\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha-1} \sum_{\eta_{j}<t_{i}<1} d_{i} \\
& \quad+\Gamma(\alpha) \sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha-2} \sum_{\eta_{j}<t_{i}<1} c_{i} t_{i}^{2-\alpha}-\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha-2} \sum_{\eta_{j}<t_{i}<1} d_{i} t_{i}=0 . \tag{2.10}
\end{align*}
$$

Conversely, if (2.9) and (2.10) hold, setting

$$
u(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} z(s) d s+\frac{1}{\Gamma(\alpha)} \sum_{t_{i}<t} d_{i} t^{\alpha-1}+\left(\sum_{t_{i}<t} c_{i} t_{i}^{2-\alpha}-\frac{1}{\Gamma(\alpha)} \sum_{t_{i}<t} d_{i} t_{i}\right) t^{\alpha-2}
$$

then it is easy to check that $u(t)$ is a solution of (2.5) and satisfies (2.6), (2.7). Hence, (2.4) holds.

For convenience, let $Z=\left(z, c_{1}, \ldots, c_{k}, d_{1}, \ldots, d_{k}\right)$. Define operators $T_{1}, T_{2}: Y \rightarrow Y$ as follows :

$$
\begin{align*}
T_{1} Z= & \left(\sum_{j=1}^{n} a_{j} \int_{0}^{\xi_{j}}\left(\xi_{j}-s\right)^{\alpha-1} z(s) d s+\sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha-1} \sum_{t_{i}<\xi_{j}} d_{i}\right. \\
& \left.+\Gamma(\alpha) \sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha-2} \sum_{t_{i}<\xi_{j}} c_{i} t_{i}^{2-\alpha}-\sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha-2} \sum_{t_{i}<\xi_{j}} d_{i} t_{i}, 0, \ldots, 0\right), \tag{2.11}\\
T_{2} Z=(& \int_{0}^{1}(1-s)^{\alpha-1} z(s) d s-\sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}}\left(\eta_{j}-s\right)^{\alpha-1} z(s) d s+\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha-1} \sum_{\eta_{j}<t_{i}<1} d_{i} \\
& \left.+\Gamma(\alpha) \sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha-2} \sum_{\eta_{j}<t_{i}<1} c_{i} t_{i}^{2-\alpha}-\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha-2} \sum_{\eta_{j}<t_{i}<1} d_{i} t_{i}, 0, \ldots, 0\right) . \tag{2.12}
\end{align*}
$$

From (2.4), we have

$$
\begin{equation*}
\operatorname{Im} L=\left\{Z \in Y \mid T_{1} Z=T_{2} Z=0\right\} \tag{2.13}
\end{equation*}
$$

Define operator $Q: Y \rightarrow Y$ as follows :

$$
Q Z=Q_{1} Z+Q_{2} Z \cdot t
$$

where

$$
\begin{aligned}
& Q_{1} Z=\frac{1}{\sigma}\left(\sigma_{1} T_{1} Z-\sigma_{2} T_{2} Z\right):=\left(\bar{z}_{1}, 0, \ldots, 0\right), \\
& Q_{2} Z=-\frac{1}{\sigma}\left(\sigma_{3} T_{1} Z-\sigma_{4} T_{2} Z\right):=\left(z_{1}^{*}, 0, \ldots, 0\right),
\end{aligned}
$$

and $\sigma, \sigma_{i}(i=1, \ldots, 4)$ are as in $\left(\mathrm{H}_{2}\right)$. Then

$$
\begin{aligned}
& T_{1}\left(Q_{1} Z\right)=\left(\frac{1}{\alpha} \sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha} \bar{z}_{1}, 0, \ldots, 0\right)=\frac{1}{\alpha} \sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha}\left(\bar{z}_{1}, 0, \ldots, 0\right) \\
& =\frac{1}{\alpha} \sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha} \cdot Q_{1} Z=\sigma_{4} \cdot Q_{1} Z
\end{aligned}
$$

$$
\begin{aligned}
& T_{2}\left(Q_{1} Z\right)=\left(\frac{1}{\alpha}\left(1-\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha}\right) \bar{z}_{1}, 0, \ldots, 0\right)=\frac{1}{\alpha}\left(1-\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha}\right)\left(\bar{z}_{1}, 0, \ldots, 0\right) \\
& \quad=\frac{1}{\alpha}\left(1-\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha}\right) Q_{1} Z=\sigma_{3} \cdot Q_{1} Z, \\
& T_{1}\left(Q_{2} Z \cdot t\right)=\left(\frac{1}{\alpha(\alpha+1)} \sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha+1} z_{1}^{*}, 0, \ldots, 0\right)=\frac{1}{\alpha(\alpha+1)} \sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha+1}\left(z_{1}^{*}, 0, \ldots, 0\right) \\
& \quad=\frac{1}{\alpha(\alpha+1)} \sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha+1} \cdot Q_{2} Z=\sigma_{2} \cdot Q_{2} Z, \\
& T_{2}\left(Q_{2} Z \cdot t\right)=\left(\frac{1}{\alpha(\alpha+1)}\left(1-\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha+1}\right) z_{1}^{*}, 0, \ldots, 0\right) \\
& \quad=\frac{1}{\alpha(\alpha+1)}\left(1-\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha+1}\right)\left(z_{1}^{*}, 0, \ldots, 0\right) \\
& \quad=\frac{1}{\alpha(\alpha+1)}\left(1-\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha+1}\right) Q_{2} Z=\sigma_{1} \cdot Q_{2} Z .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
& Q_{1}^{2} Z=\frac{1}{\sigma}\left(\sigma_{1} T_{1}\left(Q_{1} Z\right)-\sigma_{2} T_{2}\left(Q_{1} Z\right)\right)=\frac{1}{\sigma}\left(\sigma_{1} \sigma_{4}-\sigma_{2} \sigma_{3}\right) Q_{1} Z=Q_{1} Z \\
& Q_{2}\left(Q_{1} Z\right)=-\frac{1}{\sigma}\left(\sigma_{3} T_{1}\left(Q_{1} Z\right)-\sigma_{4} T_{2}\left(Q_{1} Z\right)\right)=-\frac{1}{\sigma}\left(\sigma_{3} \sigma_{4}-\sigma_{4} \sigma_{3}\right) Q_{1} Z=0, \\
& Q_{1}\left(Q_{2} Z \cdot t\right)=\frac{1}{\sigma}\left(\sigma_{1} T_{1}\left(Q_{2} Z \cdot t\right)-\sigma_{2} T_{2}\left(Q_{2} Z \cdot t\right)\right)=\frac{1}{\sigma}\left(\sigma_{1} \sigma_{2}-\sigma_{2} \sigma_{1}\right) Q_{2} Z=0, \\
& Q_{2}\left(Q_{2} Z \cdot t\right)=-\frac{1}{\sigma}\left(\sigma_{3} T_{1}\left(Q_{2} Z \cdot t\right)-\sigma_{4} T_{2}\left(Q_{2} Z \cdot t\right)\right)=-\frac{1}{\sigma}\left(\sigma_{3} \sigma_{2}-\sigma_{4} \sigma_{1}\right) Q_{2} Z=Q_{2} Z .
\end{aligned}
$$

Hence,

$$
Q^{2} Z=Q_{1}\left(Q_{1} Z+Q_{2} Z \cdot t\right)+Q_{2}\left(Q_{1} Z+Q_{2} Z \cdot t\right) t=Q_{1} Z+Q_{2} Z \cdot t=Q Z
$$

which implies the operator Q is a projector.
Now, we show that $\operatorname{Ker} Q=\operatorname{Im} L$. Obviously, $\operatorname{Ker} Q \subset \operatorname{Im} L$. On the other hand, if $Z \in \operatorname{Im} L$, from $Q Z=0$, we have

$$
\left\{\begin{array}{l}
\sigma_{1} T_{1} Z-\sigma_{2} T_{2} Z=0 \\
\sigma_{3} T_{1} Z-\sigma_{4} T_{2} Z=0
\end{array}\right.
$$

Since $\sigma=\left|\begin{array}{ll}\sigma_{1} & \sigma_{2} \\ \sigma_{3} & \sigma_{4}\end{array}\right| \neq 0$, we get $T_{1} Z=T_{2} Z=0$, which yields $Z \in \operatorname{Ker} Q$. Hence, $\operatorname{Ker} Q=\operatorname{Im} L$.

For $Z \in Y$, set $Z=(Z-Q Z)+Q Z$. Then, $Z-Q Z \in \operatorname{Ker} Q=\operatorname{Im} L, Q Z \in \operatorname{Im} Q$, we have $Y=\operatorname{Im} L+\operatorname{Im} Q$. Moreover, it follows from $\operatorname{Ker} Q=\operatorname{Im} L$ and $Q^{2} Z=Q Z$ that $\operatorname{Im} Q \cap \operatorname{Im} L=\{0\}$. So, $Y=\operatorname{Im} L \oplus \operatorname{Im} Q$. Since $\operatorname{dim} K e r L=\operatorname{dim} \operatorname{Im} Q=\operatorname{codimIm} L=2, L$ is a Fredholm map of index zero.

Define $P: X \rightarrow X$ by

$$
P u(t)=\lim _{t \rightarrow 0^{+}} t^{2-\alpha} u(t) \cdot t^{\alpha-2}+\frac{1}{\Gamma(\alpha)} D_{0^{+}}^{\alpha-1} u(0) \cdot t^{\alpha-1}
$$

Moreover, we define operator $K_{P}: \operatorname{Im} L \rightarrow X$ as follows :

$$
\begin{aligned}
& K_{P}\left(z, c_{1}, \ldots, c_{k}, d_{1}, \ldots, d_{k}\right) \\
& \quad=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} z(s) d s+\frac{1}{\Gamma(\alpha)} \sum_{t_{i}<t} d_{i} \cdot t^{\alpha-1}+\left(\sum_{t_{i}<t} c_{i} t_{i}^{2-\alpha}-\frac{1}{\Gamma(\alpha)} \sum_{t_{i}<t} d_{i} t_{i}\right) t^{\alpha-2}
\end{aligned}
$$

Lemma 2.4. $P: X \rightarrow X$ is a linear continuous projector operator and K_{P} is the inverse of $\left.L\right|_{\text {dom } L \cap K e r P}$.

Proof. Obviously, $\operatorname{Im} P=\operatorname{Ker} L$ and

$$
\begin{gathered}
\left(P^{2} u\right)(t)=P(P u(t))=\lim _{t \rightarrow 0^{+}} t^{2-\alpha} P u(t) \cdot t^{\alpha-2}+\frac{1}{\Gamma(\alpha)} D_{0^{+}}^{\alpha-1} P u(0) \cdot t^{\alpha-1} \\
=\lim _{t \rightarrow 0^{+}} t^{2-\alpha} u(t) \cdot t^{\alpha-2}+\frac{1}{\Gamma(\alpha)} D_{0^{+}}^{\alpha-1} u(0) \cdot t^{\alpha-1}=(P u)(t)
\end{gathered}
$$

since

$$
\begin{aligned}
& D_{0^{+}}^{\alpha-1} P u(t)=\frac{1}{\Gamma(2-\alpha)} \frac{d}{d t} \int_{0}^{t}(t-\tau)^{1-\alpha}\left(\lim _{t \rightarrow 0^{+}} t^{2-\alpha} u(t) \cdot \tau^{\alpha-2}+\frac{1}{\Gamma(\alpha)} D_{0^{+}}^{\alpha-1} u(0) \cdot \tau^{\alpha-1}\right) d \tau \\
& \quad=\frac{1}{\Gamma(2-\alpha)} \frac{d}{d t}\left[\lim _{t \rightarrow 0^{+}} t^{2-\alpha} u(t) \cdot \Gamma(2-\alpha) \Gamma(\alpha-1)+\Gamma(2-\alpha) D_{0^{+}}^{\alpha-1} u(0) \cdot t\right] \\
& \quad=D_{0^{+}}^{\alpha-1} u(0)
\end{aligned}
$$

Hence, $P: X \rightarrow X$ is a continuous linear projector. It follows from $u=(u-P u)+P u$ that $X=\operatorname{Ker} P+\operatorname{Ker} L$. Moreover, we can easily obtain that $\operatorname{Ker} L \cap \operatorname{Ker} P=\{0\}$. Thus, we have

$$
X=\operatorname{Ker} L \oplus \operatorname{Ker} P .
$$

By some calculation, it is easy to check that $K_{P}(\operatorname{Im} L) \subset \operatorname{Ker} P \cap \operatorname{dom} L$. In the following, we will prove that K_{P} is the inverse of $\left.L\right|_{\text {dom } L \cap K e r P}$.

If $Z \in \operatorname{Im} L$, then $L K_{P} Z=Z$. On the other hand, for $u \in \operatorname{dom} L \cap \operatorname{Ker} P$, we have by (2.14) that

$$
\begin{align*}
& \left(K_{P} L\right) u(t)=K_{P}\left(D_{0^{+}}^{\alpha} u(t), c_{1}, \ldots, c_{k}, d_{1}, \ldots, d_{k}\right) \\
& \quad=u(t)+\left(h_{1}+\frac{1}{\Gamma(\alpha)} \sum_{t_{i}<t} d_{i}\right) t^{\alpha-1}+\left(h_{2}+\sum_{t_{i}<t} c_{i} t_{i}^{2-\alpha}-\frac{1}{\Gamma(\alpha)} \sum_{t_{i}<t} d_{i} t_{i}\right) t^{\alpha-2}, \tag{2.15}
\end{align*}
$$

where $c_{i}=\triangle u\left(t_{i}\right), d_{i}=\triangle D_{0^{+}}^{\alpha-1} u\left(t_{i}\right), i=1,2, . ., k$, and h_{1}, h_{2} are two arbitrary constants. Noting that $D_{0^{+}}^{\alpha-1} t^{\alpha-2}=0$ and $D_{0^{+}}^{\alpha-1} t^{\alpha-1}=\Gamma(\alpha)$, we get by (2.15) that

$$
\begin{equation*}
D_{0^{+}}^{\alpha-1} K_{P} L u(t)=D_{0^{+}}^{\alpha-1} u(t)+\Gamma(\alpha) h_{1}+\sum_{t_{i}<t} d_{i} . \tag{2.16}
\end{equation*}
$$

From $u \in \operatorname{Ker} P$ and $K_{P} L u \in \operatorname{Ker} P$, we obtain

$$
\begin{aligned}
& \lim _{t \rightarrow 0^{+}} t^{2-\alpha} u(t)=D_{0^{+}}^{\alpha-1} u(0)=0, \\
& \lim _{t \rightarrow 0^{+}} t^{2-\alpha} K_{P} L u(t)=\lim _{t \rightarrow 0^{+}} t^{2-\alpha} u(t)+h_{2}+\sum_{t_{i}<t} c_{i} t_{i}^{2-\alpha}-\frac{1}{\Gamma(\alpha)} \sum_{t_{i}<t} d_{i} t_{i}=0, \\
& D_{0^{+}}^{\alpha-1} K_{P} L u(0)=D_{0^{+}}^{\alpha-1} u(0)+\Gamma(\alpha) h_{1}+\sum_{t_{i}<t} d_{i}=0, \quad(\text { by }(2.16))
\end{aligned}
$$

which imply that

$$
h_{1}+\frac{1}{\Gamma(\alpha)} \sum_{t_{i}<t} d_{i}=0, \quad h_{2}+\sum_{t_{i}<t} c_{i} t_{i}^{2-\alpha}-\frac{1}{\Gamma(\alpha)} \sum_{t_{i}<t} d_{i} t_{i}=0 .
$$

So, $K_{P} L u=u$. Thus $K_{P}=\left(\left.L\right|_{\text {dom } L \cap \operatorname{Ker} P}\right)^{-1}$.
Lemma 2.5. Assume that $\Omega \subset X$ is an open bounded subset with $\operatorname{dom} L \cap \bar{\Omega} \neq \emptyset$, then N is L-compact on $\bar{\Omega}$.

Proof. From Lemma 2.4, we know that K_{P} is the inverse of $\left.L\right|_{\text {dom } L \cap K e r P \text {. By }}$ (2.11) and (2.12), we have

$$
T_{1} N u=\left(T_{1} N u^{(1)}, 0, \cdots, 0\right), \quad T_{2} N u=\left(T_{2} N u^{(1)}, 0, \cdots, 0\right),
$$

where

$$
\begin{align*}
T_{1} N u^{(1)}= & \sum_{j=1}^{n} a_{j} \int_{0}^{\xi_{j}}\left(\xi_{j}-s\right)^{\alpha-1} f\left(s, u(s), D_{0+}^{\alpha-1} u(s)\right) d s+\sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha-1} \sum_{t_{i}<\xi_{j}} J_{i} \\
& +\Gamma(\alpha) \sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha-2} \sum_{t_{i}<\xi_{j}} I_{i} t_{i}^{2-\alpha}-\sum_{j=1}^{n} a_{j} \xi_{j}^{\alpha-2} \sum_{t_{i}<\xi_{j}} J_{i} t_{i}, \tag{2.17}
\end{align*}
$$

$$
T_{2} N u^{(1)}=\int_{0}^{1}(1-s)^{\alpha-1} f\left(s, u(s), D_{0^{+}}^{\alpha-1} u(s)\right) d s
$$

$$
\begin{align*}
& -\sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}}\left(\eta_{j}-s\right)^{\alpha-1} f\left(s, u(s), D_{0^{+}}^{\alpha-1} u(s)\right) d s+\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha-1} \sum_{\eta_{j}<t_{i}<1} J_{i} \\
& +\Gamma(\alpha) \sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha-2} \sum_{\eta_{j}<t_{i}<1} I_{i} t_{i}^{2-\alpha}-\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha-2} \sum_{\eta_{j}<t_{i}<1} J_{i} t_{i} . \tag{2.18}
\end{align*}
$$

Here, $\left.I_{i}=I_{i}\left(u\left(t_{i}\right), D_{0^{+}}^{\alpha-1} u\left(t_{i}\right)\right)\right), J_{i}=J_{i}\left(u\left(t_{i}\right), D_{0^{+}}^{\alpha-1} u\left(t_{i}\right)\right), i=1, \ldots, k$. Thus, we have

$$
\begin{equation*}
Q N u=\left(u^{\star}, 0, \ldots, 0\right), \tag{2.19}
\end{equation*}
$$

where

$$
\begin{aligned}
u^{\star}=\frac{\sigma_{1}-\sigma_{3} t}{\sigma}(& \sum_{j=1}^{m} a_{j} \int_{0}^{\xi_{j}}\left(\xi_{j}-s\right)^{\alpha-1} f\left(s, u(s), D_{0^{+}}^{\alpha-1} u(s)\right) d s+\sum_{j=1}^{m} a_{j} \xi_{j}^{\alpha-1} \sum_{t_{i}<\xi_{j}} J_{i} \\
& \left.+\Gamma(\alpha) \sum_{j=1}^{m} a_{j} \xi_{j}^{\alpha-2} \sum_{t_{i}<\xi_{j}} I_{i} t_{i}^{2-\alpha}-\sum_{j=1}^{m} a_{j} \xi_{j}^{\alpha-2} \sum_{t_{i}<\xi_{j}} J_{i} t_{i}\right) \\
+\frac{\sigma_{4} t-\sigma_{2}}{\sigma}(& \int_{0}^{1}(1-s)^{\alpha-1} f\left(s, u(s), D_{0^{+}}^{\alpha-1} u(s)\right) d s \\
& -\sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}}\left(\eta_{j}-s\right)^{\alpha-1} f\left(s, u(s), D_{0^{+}}^{\alpha-1} u(s)\right) d s+\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha-1} \sum_{\eta_{j}<t_{i}<1} J_{i} \\
& \left.+\Gamma(\alpha) \sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha-2} \sum_{\eta_{j}<t_{i}<1} I_{i} t_{i}^{2-\alpha}-\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha-2} \sum_{\eta_{j}<t_{i}<1} J_{i} t_{i}\right),
\end{aligned}
$$

and

$$
K_{P}(I-Q) N u
$$

$$
\begin{aligned}
&= \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} f\left(s, u(s), D_{0^{+}}^{\alpha-1} u(s)\right) d s \\
&+\frac{1}{\Gamma(\alpha)} \sum_{t_{i}<t} J_{i} \cdot t^{\alpha-1}+\left(\sum_{t_{i}<t} I_{i} t_{i}^{2-\alpha}-\frac{1}{\Gamma(\alpha)} \sum_{t_{i}<t} J_{i} t_{i}\right) t^{\alpha-2} \\
&+\frac{t^{\alpha}}{\Gamma(\alpha+1) \sigma}\left(\sigma_{1}-\frac{\sigma_{3} t}{\alpha+1}\right)\left(\sum_{j=1}^{m} a_{j} \int_{0}^{\xi_{j}}\left(\xi_{j}-s\right)^{\alpha-1} f\left(s, u(s), D_{0^{+}}^{\alpha-1} u(s)\right) d s\right. \\
&\left.\quad+\sum_{j=1}^{m} a_{j} \xi_{j}^{\alpha-1} \sum_{t_{i}<\xi_{j}} J_{i}+\Gamma(\alpha) \sum_{j=1}^{m} a_{j} \xi_{j}^{\alpha-2} \sum_{t_{i}<\xi_{j}} I_{i} t_{i}^{2-\alpha}-\sum_{j=1}^{m} a_{j} \xi_{j}^{\alpha-2} \sum_{t_{i}<\xi_{j}} J_{i} t_{i}\right) \\
&+\frac{t^{\alpha}}{\Gamma(\alpha+1) \sigma}\left(\frac{\sigma_{4} t}{\alpha+1}-\sigma_{2}\right)\left(\int_{0}^{1}(1-s)^{\alpha-1} f\left(s, u(s), D_{0^{+}}^{\alpha-1} u(s)\right) d s\right. \\
& \quad-\sum_{j=1}^{n} b_{j} \int_{0}^{\eta_{j}}\left(\eta_{j}-s\right)^{\alpha-1} f\left(s, u(s), D_{0^{+}}^{\alpha-1}(s)\right) d s+\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha-1} \sum_{\eta_{j}<t_{i}<1} J_{i} \\
&\left.\quad+\Gamma(\alpha) \sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha-2} \sum_{\eta_{j}<t_{i}<1} I_{i} t_{i}^{2-\alpha}-\sum_{j=1}^{n} b_{j} \eta_{j}^{\alpha-2} \sum_{\eta_{j}<t_{i}<1} J_{i} t_{i}\right) .
\end{aligned}
$$

By using the Ascoli-Arzela theorem, we can prove that $Q N(\bar{\Omega})$ is bounded and $K_{P}(I-Q) N$: $\bar{\Omega} \rightarrow X$ is compact. Hence, N is L-compact on $\bar{\Omega}$.

3. Main result

Denote by $L^{1}[0,1]$ the space of all Lebesgue integrable functions on $[0,1]$. It is well known that $L^{1}[0,1]$ is a Banach space with norm $\|u\|_{1}=\int_{0}^{1}|u(t)| d t$.

To obtain our main result, we need the following conditions.
$\left(\mathrm{H}_{3}\right)$ There exist positive numbers $p_{i 1}, p_{i 2}, q_{i 1}, q_{i 2}(i=1, \ldots, k)$ such that

$$
\begin{aligned}
& \left|I_{i}(x, y)\right| \leq p_{i 1}|x|+p_{i 2}|y|, \\
& \left|J_{i}(x, y)\right| \leq q_{i 1}|x|+q_{i 2}|y| .
\end{aligned}
$$

$\left(\mathrm{H}_{4}\right)$ There exist functions $\phi, \beta, \gamma \in C[0,1]$ such that

$$
|f(t, x, y)| \leq|\phi(t)|+t^{2-\alpha}|\beta(t)||x|+|\gamma(t)||y|, \quad \forall(t, x, y) \in[0,1] \times R^{2} .
$$

$\left(\mathrm{H}_{5}\right)$ For $u \in \operatorname{dom} L$, there exist two constants $a^{*} \in(0,1]$ and $M^{*}>0$ such that if $\left|D_{0^{+}}^{\alpha-1} u(t)\right|>$ M^{*} for all $t \in\left[0, a^{*}\right]$, then either

$$
D_{0^{+}}^{\alpha-1} u(t) \cdot T_{1} N u^{(1)}>0 \quad \text { or } \quad D_{0^{+}}^{\alpha-1} u(t) \cdot T_{1} N u^{(1)}<0,
$$

where $T_{1} N u^{(1)}$ is as in (2.17).
$\left(\mathrm{H}_{6}\right)$ For $u \in \operatorname{dom} L$, there exist two constants $a_{*} \in(0,1)$ and $M_{*}>0$ such that if $|u(t)|>M_{*}$ for all $t \in\left[a_{*}, 1\right]$, then either

$$
u(t) \cdot T_{2} N u^{(1)}>0 \quad \text { or } \quad u(t) \cdot T_{2} N u^{(1)}<0,
$$

where $T_{2} N u^{(1)}$ is as in (2.18).
Remark 3.1. If $\left(\mathrm{H}_{5}\right)$ holds, then $T_{1} N u(t) \neq(0,0, \ldots, 0), \forall t \in\left[0, a^{*}\right]$. And if $\left(\mathrm{H}_{6}\right)$ holds, then $T_{2} N u(t) \neq(0,0, \ldots, 0), \forall t \in\left[a_{*}, 1\right]$.

Theorem 3.1. Let $f:[0,1] \times R^{2} \rightarrow R$ and $I_{i}, J_{i}: R \rightarrow R(i=1, \ldots, k)$ be continuous. Assume $\left(\mathrm{H}_{1}\right)-\left(\mathrm{H}_{4}\right)$ hold. In addition, suppose that either the first part of $\left(\mathrm{H}_{5}\right)$ and $\left(\mathrm{H}_{6}\right)$ hold or the second part of $\left(\mathrm{H}_{5}\right)$ and $\left(\mathrm{H}_{6}\right)$ hold. Then the boundary value problem (1.1)-(1.3) has at least one solution in X provided that

$$
\begin{equation*}
B \bar{A}<(1-A)(1-\bar{B}), \tag{3.1}
\end{equation*}
$$

where

$$
\begin{align*}
& A=\frac{4}{\Gamma(\alpha)}\|\beta\|_{1}+\frac{2}{\Gamma(\alpha)} \sum_{i=1}^{k} q_{i 1}\left(t_{i}^{\alpha-1}+2 t_{i}^{\alpha-2}\right)+2 \sum_{i=1}^{k} p_{i 1}<1, \tag{3.2}\\
& B=\frac{4}{\Gamma(\alpha)}\|\gamma\|_{1}+\frac{2}{\Gamma(\alpha)} \sum_{i=1}^{k} q_{i 2}\left(2+t_{i}\right)+2 \sum_{i=1}^{k} p_{i 2}, \tag{3.3}\\
& \bar{A}=2\|\beta\|_{1}+2 \sum_{i=1}^{k} q_{i 1} t_{i}^{\alpha-2}, \quad \bar{B}=2\|\gamma\|_{1}+2 \sum_{i=1}^{k} q_{i 2}<1 . \tag{3.4}
\end{align*}
$$

Proof. Set

$$
\Omega_{1}=\{u \in \operatorname{dom} L \backslash \operatorname{Ker} L: L u=\lambda N u \text {, for some } \lambda \in(0,1)\} .
$$

For $u \in \Omega_{1}$, we have $u \notin \operatorname{Ker} L$ and $N u \in \operatorname{Im} L$. By (2.13), we get that $T_{1} N u=T_{2} N u=0$. Thus, from $\left(\mathrm{H}_{5}\right),\left(\mathrm{H}_{6}\right)$ and Remark 3.1, we obtain that there exist constants $t_{*} \in\left[a_{*}, 1\right]$ and $t^{*} \in\left[0, a^{*}\right]$ such that

$$
\begin{equation*}
\left|u\left(t_{*}\right)\right| \leq M_{*}, \quad\left|D_{0^{+}}^{\alpha-1} u\left(t^{*}\right)\right| \leq M^{*} . \tag{3.5}
\end{equation*}
$$

It follows from $L u=\lambda N u$ that

$$
\begin{align*}
& D_{0^{+}}^{\alpha} u(t)=\lambda f\left(t, u(t), D_{0^{+}}^{\alpha-1} u(t)\right), \quad t \neq t_{i}, \tag{3.6}\\
& \triangle u\left(t_{i}\right)=\lambda I_{i}\left(u\left(t_{i}\right), D_{0^{+}}^{\alpha-1} u\left(t_{i}\right)\right), \quad i=1, \ldots, k, \tag{3.7}\\
& \triangle D_{0^{+}}^{\alpha-1} u\left(t_{i}\right)=\lambda J_{i}\left(u\left(t_{i}\right), D_{0^{+}}^{\alpha-1} u\left(t_{i}\right)\right), \quad i=1, \ldots, k . \tag{3.8}
\end{align*}
$$

From (3.6)-(3.8) and noticing that $u \in \operatorname{dom} L$, we have by (2.5) and (2.8) that

$$
\begin{align*}
u(t)=\frac{\lambda}{\Gamma(\alpha)} & \int_{0}^{t}(t-s)^{\alpha-1} f\left(s, u(s), D_{0^{+}}^{\alpha-1} u(s)\right) d s+\left(h_{1}+\frac{\lambda}{\Gamma(\alpha)} \sum_{t_{i}<t} J_{i}\right) t^{\alpha-1} \\
& +\left(h_{2}+\lambda \sum_{t_{i}<t} I_{i} t_{i}^{2-\alpha}-\frac{\lambda}{\Gamma(\alpha)} \sum_{t_{i}<t} J_{i} t_{i}\right) t^{\alpha-2} . \tag{3.9}
\end{align*}
$$

From (3.9) and Lemma 2.1, we get

$$
\begin{equation*}
D_{0^{+}}^{\alpha-1} u(t)=\lambda \int_{0}^{t} f\left(s, u(s), D_{0^{+}}^{\alpha-1} u(s)\right) d s+h_{1} \Gamma(\alpha)+\lambda \sum_{t_{i}<t} J_{i} . \tag{3.10}
\end{equation*}
$$

By (3.5), (3.9) and (3.10), we have

$$
\begin{align*}
\left|h_{1}\right|= & \frac{1}{\Gamma(\alpha)}\left|D_{0^{+}}^{\alpha-1} u\left(t^{*}\right)-\lambda \int_{0}^{t^{*}} f\left(s, u(s), D_{0^{+}}^{\alpha-1} u(s)\right) d s-\lambda \sum_{t_{i}<t^{*}} J_{i}\right| \\
& \leq \frac{1}{\Gamma(\alpha)}\left(M^{*}+\int_{0}^{1}\left|f\left(s, u(s), D_{0^{+}}^{\alpha-1} u(s)\right)\right| d s+\sum_{i=1}^{k}\left|J_{i}\right|\right) \tag{3.11}
\end{align*}
$$

and

$$
\begin{aligned}
\left|h_{2}\right|= & \left\lvert\, t_{*}^{2-\alpha} u\left(t_{*}\right)-\frac{\lambda}{\Gamma(\alpha)} t_{*}^{2-\alpha} \int_{0}^{t_{*}}\left(t_{*}-s\right)^{\alpha-1} f\left(s, u(s), D_{0^{+}}^{\alpha-1} u(s)\right) d s\right. \\
& \left.-\left(h_{1}+\frac{\lambda}{\Gamma(\alpha)} \sum_{t_{i}<t_{*}} J_{i}\right) t_{*}-\lambda \sum_{t_{i}<t_{*}} I_{i} t_{i}^{2-\alpha}+\frac{\lambda}{\Gamma(\alpha)} \sum_{t_{i}<t_{*}} J_{i} t_{i} \right\rvert\, \\
\leq & M_{*}+\frac{1}{\Gamma(\alpha)} \int_{0}^{1}\left|f\left(s, u(s), D_{0^{+}}^{\alpha-1} u(s)\right)\right| d s+\left|h_{1}\right|+\frac{1}{\Gamma(\alpha)} \sum_{i=1}^{k}\left|J_{i}\right|\left(1+t_{i}\right)+\sum_{i=1}^{k}\left|I_{i}\right| t_{i}^{2-\alpha} .
\end{aligned}
$$

Substitute (3.11) and (3.12) into (3.9), we have by $\left(\mathrm{H}_{3}\right)$ and $\left(\mathrm{H}_{4}\right)$ that

$$
\left|t^{2-\alpha} u(t)\right| \leq \frac{1}{\Gamma(\alpha)} t^{2-\alpha} \int_{0}^{t}(t-s)^{\alpha-1}\left|f\left(s, u(s), D_{0^{+}}^{\alpha-1} u(s)\right)\right| d s+\left(\left|h_{1}\right|+\frac{1}{\Gamma(\alpha)} \sum_{i=1}^{k}\left|J_{i}\right|\right) t
$$

$$
\begin{align*}
& +\left|h_{2}\right|+\sum_{i=1}^{k}\left|I_{i}\right| t_{i}^{2-\alpha}+\frac{1}{\Gamma(\alpha)} \sum_{i=1}^{k}\left|J_{i}\right| t_{i} \\
\leq & \frac{1}{\Gamma(\alpha)} \int_{0}^{1}\left|f\left(s, u(s), D_{0^{+}}^{\alpha-1} u(s)\right)\right| d s+\left|h_{1}\right|+\frac{1}{\Gamma(\alpha)} \sum_{i=1}^{k}\left|J_{i}\right|\left(1+t_{i}\right)+\left|h_{2}\right|+\sum_{i=1}^{k}\left|I_{i}\right| t_{i}^{2-\alpha} \\
\leq & \frac{4}{\Gamma(\alpha)} \int_{0}^{1}\left|f\left(s, u(s), D_{0^{+}}^{\alpha-1} u(s)\right)\right| d s+\frac{2}{\Gamma(\alpha)} M^{*}+M_{*} \\
& +\frac{2}{\Gamma(\alpha)} \sum_{i=1}^{k}\left|J_{i}\right|\left(2+t_{i}\right)+2 \sum_{i=1}^{k}\left|I_{i}\right| t_{i}^{2-\alpha} \\
\leq & \frac{4}{\Gamma(\alpha)} \int_{0}^{1}\left[|\phi(s)|+s^{2-\alpha}|\beta(s)||u(s)|+|\gamma(s)|\left|D_{0^{+}}^{\alpha-1} u(s)\right|\right] d s+\frac{2}{\Gamma(\alpha)} M^{*}+M_{*} \\
& +\frac{2}{\Gamma(\alpha)} \sum_{i=1}^{k}\left(q_{i 1}\left|u\left(t_{i}\right)\right|+q_{i 2}\left|D_{0^{+}}^{\alpha-1} u\left(t_{i}\right)\right|\right)\left(2+t_{i}\right) \\
& +2 \sum_{i=1}^{k}\left(p_{i 1}\left|u\left(t_{i}\right)\right|+p_{i 2}\left|D_{0^{+}}^{\alpha-1} u\left(t_{i}\right)\right| t_{i}^{2-\alpha}\right. \\
\leq & \frac{4}{\Gamma(\alpha)}\left[\|\phi\|_{1}+\int_{0}^{1}|\beta(s)| d s \cdot\left\|u_{\alpha}\right\|_{P C}+\int_{0}^{1}|\gamma(s)| d s \cdot\left\|D_{0^{+}}^{\alpha-1} u\right\|_{P C}\right]+\frac{2}{\Gamma(\alpha)} M^{*}+M_{*} \\
& +\frac{2}{\Gamma(\alpha)} \sum_{i=1}^{k} q_{i 1}\left(t_{i}^{\alpha-1}+2 t_{i}^{\alpha-2}\right)\left\|u_{\alpha}\right\|_{P C}+\frac{2}{\Gamma(\alpha)} \sum_{i=1}^{k} q_{i 2}\left(2+t_{i}\right)\left\|D_{0^{+}}^{\alpha-1} u\right\|_{P C} \\
& +2 \sum_{i=1}^{k} p_{i 1}\left\|u_{\alpha}\right\|_{P C}+2 \sum_{i=1}^{k} p_{i 2}\left\|D_{0^{+}}^{\alpha-1} u\right\|_{P C} \\
= & A\left\|u_{\alpha}\right\|_{P C}+B\left\|D_{0^{+}}^{\alpha-1} u\right\|_{P C}+C, \tag{3.13}
\end{align*}
$$

where A, B are as in (3.2), (3.3), respectively, and $C=\frac{4}{\Gamma(\alpha)}\|\phi\|_{1}+\frac{2}{\Gamma(\alpha)} M^{*}+M_{*}$.
Moreover, we have

$$
\begin{align*}
& \left|D_{0^{+}}^{\alpha-1} u(t)\right|=\left|\lambda \int_{0}^{t} f\left(s, u(s), D_{0^{+}}^{\alpha-1} u(s)\right) d s+\Gamma(\alpha) h_{1}+\lambda \sum_{t_{i}<t} J_{i}\right| \\
& \quad \leq 2 \int_{0}^{1}\left|f\left(s, u(s), D_{0^{+}}^{\alpha-1} u(s)\right)\right| d s+M^{*}+2 \sum_{i=1}^{k}\left|J_{i}\right| \\
& \quad \leq \bar{A}\left\|u_{\alpha}\right\|_{P C}+\bar{B}\left\|D_{0^{+}}^{\alpha-1} u\right\|_{P C}+\bar{C} \tag{3.14}
\end{align*}
$$

where \bar{A} and \bar{B} are as in (3.4), and $\bar{C}=M^{*}+2\|\phi\|_{1}$.
Hence,

$$
\begin{equation*}
\left\|D_{0^{+}}^{\alpha-1} u\right\|_{P C} \leq \frac{1}{1-\bar{B}}\left(\bar{C}+\bar{A}\left\|u_{\alpha}\right\|_{P C}\right) . \tag{3.15}
\end{equation*}
$$

Substitute (3.15) into (3.13), we obtain

$$
\begin{equation*}
\left\|u_{\alpha}\right\|_{P C} \leq \frac{B \bar{C}+C(1-\bar{B})}{(1-A)(1-\bar{B})-B \bar{A}} . \tag{3.16}
\end{equation*}
$$

Therefore, by (3.1) and (3.16), we know that Ω_{1} is bounded.

$$
\begin{aligned}
& \text { Let } \\
& \qquad \Omega_{2}=\{u \in \operatorname{Ker} L: N u \in \operatorname{Im} L\} .
\end{aligned}
$$

For $u \in \Omega_{2}$, we have $u(t)=h_{1} t^{\alpha-1}+h_{2} t^{\alpha-2}, h_{1}, h_{2} \in R$ and $T_{1} N u^{(1)}=T_{2} N u^{(1)}=0$. From $\left(\mathrm{H}_{6}\right)$, we get $\left|D_{0^{+}}^{\alpha-1} u(t)\right|=\left|h_{1}\right| \Gamma(\alpha) \leq M^{*}$, that is $\left|h_{1}\right| \leq \frac{M^{*}}{\Gamma(\alpha)}$. Moreover, by $\left(\mathrm{H}_{5}\right)$, there exists $t_{*} \in\left[a_{*}, 1\right]$ such that $\left|u\left(t_{*}\right)\right| \leq M_{*}$. Thus, we obtain $\left|h_{2}\right| \leq M_{*} t_{*}^{2-\alpha}+\left|h_{1}\right| t_{*} \leq M_{*}+\frac{M^{*}}{\Gamma(\alpha)}$. So,

$$
\begin{equation*}
\left\|u_{\alpha}\right\|_{P C}=\left\|h_{1} t+h_{2}\right\|_{P C} \leq M_{*}+\frac{2 M^{*}}{\Gamma(\alpha)}, \quad\left\|D_{0^{+}}^{\alpha-1} u\right\|_{P C}=\left|\Gamma(\alpha) h_{1}\right| \leq M^{*} \tag{3.17}
\end{equation*}
$$

which implies that Ω_{2} is bounded in X.
If the first part of $\left(\mathrm{H}_{5}\right)$ and $\left(\mathrm{H}_{6}\right)$ hold, set

$$
\Omega_{3}=\{u \in \operatorname{Ker} L: \lambda \Lambda u+(1-\lambda) Q N u=0, \lambda \in[0,1]\},
$$

here $\Lambda: \operatorname{Ker} L \rightarrow \operatorname{Im} Q$ is the linear isomorphism given by

$$
\Lambda\left(h_{1} t^{\alpha-1}+h_{2} t^{\alpha-2}\right)=\left(\frac{1}{\sigma}\left(\sigma_{1} h_{1}-\sigma_{2} h_{2}\right)+\frac{1}{\sigma}\left(-\sigma_{3} h_{1}+\sigma_{4} h_{2}\right) t, 0, \ldots, 0\right),
$$

where $h_{1}, h_{2} \in R$. For $u_{*}=h_{1} t^{\alpha-1}+h_{2} t^{\alpha-2} \in \Omega_{3}$, we have

$$
\begin{aligned}
\lambda \Lambda u_{*} & +(1-\lambda) Q N u_{*}=\left(\lambda \Lambda u_{*}^{(1)}+(1-\lambda)\left(Q_{1} N u_{*}+Q_{2} N u_{*} \cdot t\right)^{(1)}, 0, \cdots, 0\right) \\
& =(0,0, \cdots, 0)
\end{aligned}
$$

which implies that

$$
\begin{aligned}
& \lambda\left(\frac{1}{\sigma}\left(\sigma_{1} h_{1}-\sigma_{2} h_{2}\right)+\frac{1}{\sigma}\left(-\sigma_{3} h_{1}+\sigma_{4} h_{2}\right) t\right) \\
& \quad+(1-\lambda)\left[\frac{1}{\sigma}\left(\sigma_{1} T_{1} N u_{*}{ }^{(1)}-\sigma_{2} T_{2} N u_{*}{ }^{(1)}\right)-\frac{1}{\sigma}\left(\sigma_{3} T_{1} N u_{*}^{(1)}-\sigma_{4} T_{2} N u_{*}^{(1)}\right) \cdot t\right]=0 .
\end{aligned}
$$

Thus, we obtain

$$
\begin{align*}
& \lambda h_{1}+(1-\lambda) T_{1} N u_{*}^{(1)}=0 \tag{3.18}\\
& \lambda h_{2}+(1-\lambda) T_{2} N u_{*}^{(1)}=0 \tag{3.19}
\end{align*}
$$

In (3.18), if $\lambda=1$, then $\left|h_{1}\right|=0 \leq \frac{M^{*}}{\Gamma(\alpha)}$. Otherwise, if $\left|h_{1}\right|>\frac{M^{*}}{\Gamma(\alpha)}$, that is $\left|D_{0^{+}}^{\alpha-1} u_{*}\right|>M^{*}$, then we have by the first part of $\left(\mathrm{H}_{5}\right)$ that

$$
\begin{equation*}
D_{0^{+}}^{\alpha-1} u_{*} \cdot T_{1} N u_{*}^{(1)}>0 \tag{3.20}
\end{equation*}
$$

Multiplying (3.18) by h_{1}, we have

$$
\lambda h_{1}^{2}+(1-\lambda) h_{1} \cdot T_{1} N u_{*}^{(1)}=\lambda h_{1}^{2}+\frac{1-\lambda}{\Gamma(\alpha)} D_{0^{+}}^{\alpha-1} u_{*} \cdot T_{1} N u_{*}^{(1)}=0
$$

which contradicts to (3.20). Thus, we obtain that $\left|h_{1}\right| \leq \frac{M^{*}}{\Gamma(\alpha)}$. Similarly, by the first part of $\left(\mathrm{H}_{6}\right)$ and (3.19), we can show that $\left|h_{2}\right| \leq M_{*}+\frac{M^{*}}{\Gamma(\alpha)}$. Thus, Ω_{3} is bounded.

If the second part of $\left(\mathrm{H}_{5}\right)$ and $\left(\mathrm{H}_{6}\right)$ hold, then define the set

$$
\Omega_{3}=\{u \in \operatorname{Ker} L:-\lambda \Lambda u+(1-\lambda) Q N u=0, \lambda \in[0,1]\}
$$

where Λ as in above. Similar to above argument, we can show that Ω_{3} is bounded too.
Finally, set Ω be a bounded open set of X such that $\cup_{i=1}^{3} \overline{\Omega_{i}} \subset \Omega$. By Lemma $2.4, N$ is L-compact on $\bar{\Omega}$. Then by the above arguments, we have
(i) $L x \neq \lambda N x$ for every $(x, \lambda) \in[(\operatorname{dom} L \backslash \operatorname{Ker} L \cap \partial \Omega] \times(0,1)$;
(ii) $N x \notin \operatorname{Im} L$ for every $x \in \operatorname{Ker} L \cap \partial \Omega$.

In the following, we need only to prove that (iii) of Theorem 2.2 is satisfied. Let $H(u, \lambda)=$ $\pm \lambda \Lambda u+(1-\lambda) Q N u$. According to the above argument, we know

$$
H(u, \lambda) \neq 0, \quad \text { for all } \quad u \in \operatorname{Ker} L \cap \partial \Omega
$$

thus, by the homotopy property of degree

$$
\begin{aligned}
& \operatorname{deg}\left(\left.Q N\right|_{\operatorname{Ker} L}, \Omega \cap \operatorname{Ker} L, 0\right)=\operatorname{deg}(H(\cdot, 0), \Omega \cap \operatorname{Ker} L, 0) \\
& \quad=\operatorname{deg}(H(\cdot, 1), \Omega \cap \operatorname{Ker} L, 0)=\operatorname{deg}(\pm \Lambda, \Omega \cap \operatorname{Ker} L, 0) \neq 0
\end{aligned}
$$

Then by Theorem $2.2, L u=N u$ has at least one solution in $\operatorname{dom} L \cap \bar{\Omega}$, so that the problem (1.1)-(1.3) has one solution in X. The proof is complete.

Acknowledgements

The author thanks the referees for their suggestions and comments which improved the presentation of this paper.

References

[1] A.A. Kilbas and J.J. Trujillo, Differential equations of fractional order: methods, results, and problems. I, Appl. Anal. 78 (2001) 153-192.
[2] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
[3] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[4] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
[5] V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009.
[6] R.P. Agarwal, M. Benchohra, S. Hamani, A survey on existence result for boundary value problems of nonlinear fractional differential equations and inclusions, Acta. Appl. Math. 109 (2010) 973-1033.
[7] C. Bai, Positive solutions for nonlinear fractional differential equations with coefficient that changes sign, Nonlinear Analysis, 64 (2006) 677-685.
[8] C. Bai, Triple positive solutions for a boundary value problem of nonlinear fractional differential equation, E. J. Qualitative Theory of Diff. Equ. 2008 (2008), No. 24, 1-10.
[9] Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311 (2005) 495-505.
[10] B. Ahmad, J.J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl. 58 (9) (2009) 1838-1843.
[11] J. Henderson, A. Ouahab, Fractional functional differential inclusions with finite delay, Nonlinear Anal. TMA 70 (2009) 2091-2105.
[12] N. Kosmatov, Integral equations and initial value problems for nonlinear differential equations of fractional order, Nonlinear Anal. 70 (7) (2009) 2521-2529.
[13] E. Kaufmann, E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation, Electron. J. Qual. Theory Differ. Equ. 2008 (2008), No. 3, 1-11.
[14] V. Lakshmikantham, S. Leela, A Krasnoselskii-Krein-type uniqueness result for fractional differential equations, Nonlinear Anal. TMA 71 (2009) 3421-3424.
[15] Y. Zhou, F. Jiao, J. Li, Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Anal.: TMA 71 (2009) 3249-3256.

EJQTDE, 2011 No. 89, p. 18
[16] N. Kosmatov, A boundary value problem for fractional order at resonance, Elec. J. Diff. Equa., 2010 (2010), No. 135, 1-10.
[17] W. Jiang, The existence of solutions for boundary value problems of fractional differential equations at resonance, Nonlinear Anal. 74 (2011) 1987-1994.
[18] B. Liu, Z. Zhao, A note on multi-point boundary value problems, Nonlinear Anal. 67 (2007) 2680-2689.
[19] B. Liu, J. Yu, Existence of solution for m-point boundary value problems of second-order differential systems with impulses, Appl. Math. Comput. 125 (2002) 155-175.
[20] Z. Bai, Solvability for a class of fractional m-point boundary value problem at resonance, Comput. Math. Appl. 62 (2011) 1292-1302.
[21] V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
[22] M. Benchohra, J. Henderson, S.K. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi, Philadelphia, 2007.
[23] J. Mawhin, Topological degree methods in nonlinear boundary value problems, in: NSFCBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, 1979.

[^0]: * E-mail address: czbai8@sohu.com. This work is supported by Natural Science Foundation of China (10771212), and Natural Science Foundation of Jiangsu Province (BK2011407)

