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THE GENERALIZED METHOD OF QUASILINEARIZATION AND

NONLINEAR BOUNDARY VALUE PROBLEMS WITH INTEGRAL

BOUNDARY CONDITIONS

RAHMAT ALI KHAN

Abstract. The generalized method of quasilinearization is applied to obtain a mono-

tone sequence of iterates converging uniformly and rapidly to a solution of second order

nonlinear boundary value problem with nonlinear integral boundary conditions.

1. Introduction

In this paper, we shall study the method of quasilinearization for the nonlinear bound-

ary value problem with integral boundary conditions

x′′(t) = f(t, x), t ∈ J = [0, 1],

x(0) − k1x
′(0) =

∫ 1

0

h1(x(s))ds,

x(1) + k2x
′(1) =

∫ 1

0

h2(x(s))ds,

(1.1)

where f : J × R → R and hi : R → R (i = 1, 2) are continuous functions and ki

are nonnegative constants. Boundary value problems with integral boundary conditions

constitute a very interesting and important class of problems. They include two, three,

multipoint and nonlocal boundary value problems as special cases. For boundary value

problems with integral boundary conditions and comments on their importance, we refer

the reader to the papers [13, 14, 15] and the references therein. Moreover, boundary value

problems with integral boundary conditions have been studied by a number of authors,

for example [11, 12, 16, 17].

The purpose of this paper is to develop the method of quasilinearization for the bound-

ary value problem (1.1). The main idea of the method of quasilinearization as developed

by Bellman and Kalaba [1] and generalized by Lakshmikantham [4, 5] has been applied

to a variety of problems [3, 6, 7]. Recently, Eloe and Gao [8], Ahmad, Khan and Eloe [9]

have developed the quasilinearization method for three point boundary value problems.

More recently, Khan, Ahmad [10] developed the method to treat first order problems
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with integral boundary conditions

x′(t) = f(t, x(t)), t ∈ [0, T ]

x(0) = ax(T ) +

∫ T

0

b(s)x(s)ds + k = Bx + k.

In the present paper we extend the method of generalized quasilinearization to the bound-

ary value problem (1.1) and we obtain a sequence of solutions converging uniformly and

rapidly to a solution of the problem.

2. Preliminaries

We know that the homogeneous problem

x′′(t) = 0, t ∈ J = [0, 1],

x(0) − k1x
′(0) = 0, x(1) + k2x

′(1) = 0,

has only the trivial solution. Consequently, for any σ(t), ρ1(t), ρ2(t) ∈ C[0, 1], the corre-

sponding nonhomogeneous linear problem

x′′(t) = σ(t), t ∈ J = [0, 1],

x(0) − k1x
′(0) =

∫ 1

0

ρ1(s)ds, x(1) + k2x
′(1) =

∫ 1

0

ρ2(s)ds,

has a unique solution x ∈ C2[0, 1],

x(t) = P (t) +

∫ 1

0

G(t, s)σ(s)ds,

where

P (t) =
1

1 + k1 + k2
{(1 − t + k2)

∫ 1

0

ρ1(s)ds + (k1 + t)

∫ 1

0

ρ2(s)ds}

is the unique solution of the problem

x′′(t) = 0, t ∈ J = [0, 1],

x(0) − k1x
′(0) =

∫ 1

0

ρ1(s)ds,

x(1) + k2x
′(1) =

∫ 1

0

ρ2(s)ds,

and

G(t, s) =
−1

k1 + k2 + 1







(k1 + t)(1 − s + k2), 0 ≤ t < s ≤ 1

(k1 + s)(1 − t + k2), 0 ≤ s < t ≤ 1

is the Green’s function of the problem. We note that G(t, s) < 0 on (0, 1) × (0, 1).
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Definition 2.1. Let α, β ∈ C2[0, 1]. We say that α is a lower solution of (1.1) if

α′′ ≥ f(t, α(t)), t ∈ [0, 1]

α(0) − k1α
′(0) ≤

∫ 1

0

h1(α(s))ds,

α(1) + k2α
′(1) ≤

∫ 1

0

h2(α(s))ds.

Similarly, β is an upper solution of the BVP (1.1), if β satisfies similar inequalities in the

reverse direction.

Now, we state and prove the existence and uniqueness of solutions in an ordered interval

generated by the lower and upper solutions of the boundary value problem.

Theorem 2.2. Assume that α and β are respectively lower and upper solutions of (1.1)

such that α(t) ≤ β(t), t ∈ [0, 1]. If f : [0, 1] × R → R and hi : R → R (i = 1, 2) are

continuous and h′

i(x) ≥ 0, then there exists a solution x(t) of the boundary value problem

(1.1) such that

α(t) ≤ x(t) ≤ β(t), t ∈ [0, 1].

Proof. Define the following modifications of f(t, x) and hi(x)(i = 1, 2)

F (t, x) =



























f(t, β(t)) +
x − β(t)

1 + |x − β|
, if x > β,

f(t, x), if α ≤ x ≤ β,

f(t, α) +
x − α(t)

1 + |x − α|
, if x < α.

and

Hi(x) =



















hi(β(t)), x > β(t),

hi(x), α(t) ≤ x ≤ β(t),

hi(α(t)), x < α(t).

Consider the modified problem

x′′(t) = F (t, x), t ∈ J = [0, 1],

x(0) − k1x
′(0) =

∫ 1

0

H1(x(s)) ds, x(1) + k2x
′(1) =

∫ 1

0

H2(x(s)) ds.
(2.1)
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Since F (t, x) : [0, 1] × R → R and Hi : R → R are continuous and bounded, it follows

that the boundary value problem (2.1) has a solution. Further, note that

α′′(t) ≥ f(t, α(t)) = F (t, α(t)), t ∈ [0, 1]

α(0) − k1α
′(0) ≤

∫ 1

0

h1(α(s))ds =

∫ 1

0

H1(α(s))ds,

α(1) + k2α
′(1) ≤

∫ 1

0

h2(α(s))ds =

∫ 1

0

H2(α(s))ds

and

β ′′(t) ≤ f(t, β(t)) = F (t, β(t)), t ∈ [0, 1]

β(0) − k1β
′(0) ≥

∫ 1

0

h1(β(s))ds =

∫ 1

0

H1(β(s))ds,

β(1) + k2β
′(1) ≥

∫ 1

0

h2(β(s))ds =

∫ 1

0

H2(β(s))ds

which imply that α and β are respectively lower and upper solutions of (2.1). Also, we

note that any solution of (2.1) which lies between α and β, is a solution of (1.1). Thus, we

only need to show that any solution x(t) of (2.1) is such that α(t) ≤ x(t) ≤ β(t), t ∈ [0, 1].

Assume that α(t) ≤ x(t) is not true on [0, 1]. Then the function k(t) = α(t) − x(t) has a

positive maximum at some t = t0 ∈ [0, 1]. If t0 ∈ (0, 1), then

k(t0) > 0, k′(t0) = 0, k′′(t0) ≤ 0

and hence

0 ≥ k′′(t0) = α′′(t0) − x′′(t0) ≥ f(t0, α(t0)) − (f(t0, α(t0)) +
x(t0) − α(t0)

1 + |x(t0) − α(t0)|
) > 0,

a contradiction. If t0 = 0, then k(0) > 0 and k′(0) ≤ 0, but then the boundary conditions

and the nondecreasing property of hi gives

k(0) ≤ k1k
′(0) +

∫ 1

0

[h1(α(s)) − H1(x(s))]ds

≤

∫ 1

0

[h1(α(s)) − H1(x(s))]ds.

If x < α(t), then H1(x(s)) = h1(α(s)) and hence k(0) ≤ 0, a contradiction. If x > β(t),

then H1(x(s)) = h1(β(s)) ≥ h1(α(s)) which implies k(0) ≤ 0, a contradiction. Hence

α(t) ≤ x(t) ≤ β(t) and H1(x(s)) = h1(x(s)) ≥ h1(α(s)) and again k(0) ≤ 0, another

contradiction. Similarly, if t0 = 1, we get a contradiction. Thus α(t) ≤ x(t), t ∈ J .

Similarly, we can show that x(t) ≤ β(t), t ∈ [0, 1]. �

Theorem 2.3. Assume that α and β are lower and upper solutions of the boundary

value problem (1.1) respectively. If f : [0, 1] × R → R and hi : R → R are continuous,

fx(t, x) > 0 for t ∈ [0, 1], x ∈ R and 0 ≤ h′

i(x) < 1. Then α(t) ≤ β(t), t ∈ [0, 1].
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Proof. Define m(t) = α(t) − β(t), t ∈ [0, 1], then m(t) ∈ C2[0, 1] and

m(0) − k1m
′(0) ≤

∫ 1

0

[h1(α(s)) − h1(β(s))]ds

m(1) + k2m
′(1) ≤

∫ 1

0

[h2(α(s)) − h2(β(s))]ds.

(2.2)

Assume that m(t) ≤ 0 is not true for t ∈ [0, 1]. Then m(t) has a positive maximum at

some t0 ∈ [0, 1]. If t0 ∈ (0, 1), then m(t0) > 0, m′(t0) = 0 and m′′(t0) ≤ 0. Using the

increasing property of the function f(t, x) in x, we obtain

f(t0, α(t0)) ≤ α′′(t0) ≤ β ′′(t0) ≤ f(t0, β(t0)) < f(t0, α(t0)),

a contradiction. If t0 = 0, then m(0) > 0 and m′(0) ≤ 0. On the other hand, using the

boundary conditions (2.2) and the assumption 0 ≤ h′

1(x) < 1, we have

m(0) ≤ m(0) − k1m
′(0) ≤

∫ 1

0

[h1(α(s)) − h1(β(s))]ds ≤

∫ 1

0

h′

1(c)m(s)ds

≤ h′

1(c) max
t∈[0,1]

m(t) = h′

1(c)m(0) < m(0),
(2.3)

a contradiction. If t0 = 1, then m(1) > 0 and m′(1) ≥ 0. But again, the boundary

conditions (2.2) and the assumption 0 ≤ h′

2(x) < 1, gives

m(1) ≤ m(0) + k2m
′(1) ≤

∫ 1

0

[h2(α(s)) − h2(β(s))]ds ≤

∫ 1

0

h′

2(c)m(s)ds

≤ h′

2(c) max
t∈[0,1]

m(t) = h′

2(c)m(1) < m(1),
(2.4)

a contradiction. Hence

α(t) ≤ β(t), t ∈ [0, 1]

�

As a consequence of the theorem (2.3), we have

Corollary 2.4. Assume that α and β are lower and upper solutions of the boundary

value problem (1.1) respectively. If f : [0, 1] × R → R and h : R → R are continuous,

fx(t, x) > 0 and 0 ≤ h′(x) < 1, for t ∈ [0, 1], x ∈ R. Then the solution of the boundary

value problem (1.1) is unique.

3. Quasilinearization Technique

Theorem 3.1. Assume that

(A1) α and β ∈ C2[0, 1] are respectively lower and upper solutions of (1.1) such that

α(t) ≤ β(t), t ∈ [0, 1].
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(A2) f(t, x) ∈ C2[0, 1]× R is such that fx(t, x) > 0 and fxx(t, x) + φxx(t, x) ≤ 0, where

φ(t, x) ∈ C2[0, 1] × R and φxx(t, x) ≤ 0.

(A3) hi ∈ C2(R) (i = 1, 2) are nondecreasing, 0 ≤ h′

i(x) < 1 and h′′

i (x) ≥ 0.

Then, there exists a monotone sequence {wn} of solutions converging uniformly and

quadratically to the unique solution of the problem.

Proof. Define, F : [0, 1]× R → R by F (t, x) = f(t, x) + φ(t, x). Then in view of (A2), we

note that F ∈ C2[0, 1] × R and

(3.1) Fxx(t, x) ≤ 0.

For any t ∈ [0, 1], using Taylor’s theorem, (3.1) and (A3), we have

(3.2) f(t, x) ≤ F (t, y) + Fx(t, y)(x − y) − φ(t, x)

and

(3.3) hi(x) ≥ hi(y) + h′

i(y)(x − y),

where x, y ∈ R. Again applying Taylor’s theorem to φ(t, x), we can find ξ ∈ R with

y ≤ ξ ≤ x such that

(3.4) φ(t, x) = φ(t, y) + φx(t, y)(x − y) +
1

2
φxx(t, ξ)(x − y)2,

which in view of (A2) implies that

(3.5) φ(t, x) ≤ φ(t, y) + φx(t, y)(x − y)

and

(3.6) φ(t, x) ≥ φ(t, y) + φx(t, y)(x − y) −
1

2
|φxx(t, ξ)|‖x − y‖2,

where ‖x − y‖ = maxt∈[0,1]{|x(t) − y(t)|} denotes the supremum norm in the space of

continuous functions on [0, 1]. Using (3.6) in (3.2), we obtain

(3.7) f(t, x) ≤ f(t, y) + fx(t, y)(x − y) +
1

2
|φxx(t, ξ)|‖x − y‖2.

Let Ω = {(t, x) : t ∈ [0, 1], x ∈ [α, β]} and define on Ω

(3.8) g(t, x, y) = f(t, y) + fx(t, y)(x − y) +
1

2
|φxx(t, ξ)|‖x − y‖2

and

(3.9) Hi(x, y) = hi(y) + h′

i(y)(x − y).
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Note that g(t, x, y) and Hi(x, y) are continuous, bounded and are such that gx(t, x, y) =

fx(t, y) > 0 and 0 ≤ ∂
∂x

Hi(x, y) < 1. Further, from {(3.7), (3.8)} and {(3.3), (3.9)}, we

have the relations

(3.10)







f(t, x) ≤ g(t, x, y)

f(t, x) = g(t, x, x)

and

(3.11)







hi(x) ≥ Hi(x, y)

hi(x) = Hi(x, x)

Now, set w0 = α and consider the linear problem

x′′(t) = g(t, x, w0), t ∈ [0, 1],

x(0) − k1x
′(0) =

∫ 1

0

H1(x(s), w0(s))ds,

x(1) + k2x
′(1) =

∫ 1

0

H2(x(s), w0(s))ds.

(3.12)

Using (A1), (3.10) and (3.11), we obtain

w′′

0(t) ≥ f(t, w0) = g(t, w0, w0), t ∈ [0, 1],

w0(0) − k1w
′

0(0) ≤

∫ 1

0

h1(w0(s))ds =

∫ 1

0

H1(w0(s), w0(s))ds,

w0(1) + k2w
′

0(1) ≤

∫ 1

0

h2(w0(s))ds =

∫ 1

0

H2(w0(s), w0(s))ds

and

β ′′(t) ≤ f(t, β) ≤ g(t, β, w0), t ∈ [0, 1],

β(0) − k1β
′(0) ≥

∫ 1

0

h1(β(s))ds ≥

∫ 1

0

H1(β(s), w0(s))ds,

β(1) + k2β
′(1) ≥

∫ 1

0

h2(β(s))ds ≥

∫ 1

0

H2(β(s), w0(s))ds,

which imply that w0 and β are respectively lower and upper solutions of (3.12). It follows

by theorems 2.2 and 2.3 that there exists a unique solution w1 of (3.12) such that

w0(t) ≤ w1(t) ≤ β(t), t ∈ [0, 1].

In view of (3.10), (3.11) and the fact that w1 is a solution of (3.12), we note that w1 is a

lower solution of (1.1).
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Now consider the problem

x′′(t) = g(t, x, w1), t ∈ [0, 1],

x(0) − k1x
′(0) =

∫ 1

0

H1(x(s), w1(s))ds,

x(1) + k2x
′(1) =

∫ 1

0

H2(x(s), w1(s))ds.

(3.13)

Again we can show that w1 and β are lower and upper solutions of (3.13) and hence by

theorems (2.2, 2.3), there exists a unique solution w2 of (3.13) such that

w1(t) ≤ w2(t) ≤ β(t), t ∈ [0, 1].

Continuing this process, we obtain a monotone sequence {wn} of solutions satisfying

w0(t) ≤ w1(t) ≤ w2(t) ≤ ...wn(t) ≤ β(t), t ∈ [0, 1]

where, the element wn of the sequence {wn} is a solution of the boundary value problem

x′′(t) =g(t, x, wn−1), t ∈ [0, 1],

x(0) − k1x
′(0) =

∫ 1

0

H1(x(s), wn−1(s))ds,

x(1) + k2x
′(1) =

∫ 1

0

H2(x(s), wn−1(s))ds

and

(3.14) wn(t) = Pn(t) +

∫ 1

0

G(t, s)g(s, wn(s), wn−1(s))ds,

where

(3.15) Pn(t) =
1

1 + k1 + k2
{(1 − t + k2)

∫ 1

0

H1(wn(s), wn−1(s)) ds

+ (k1 + t)

∫ 1

0

H2(wn(s), wn−1(s)) ds}.

Employing the standard arguments [2], it follows that the convergence of the sequence is

uniform. If x(t) is the limit point of the sequence, passing to the limit as n → ∞, (3.14)

gives

x(t) = P (t) +

∫ 1

0

G(t, s)f(s, x(s))ds,

where

P (t) =
1

1 + k1 + k2
{(1 − t + k2)

∫ 1

0

h1(x(s))ds + (k1 + t)

∫ 1

0

h2(x(s))ds};

that is, x(t) is a solution of the boundary value problem (1.1).
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Now, we show that the convergence of the sequence is quadratic. For that, set en(t) =

x(t)−wn(t), t ∈ [0, 1]. Note that, en(t) ≥ 0, t ∈ [0, 1]. Using Taylor’s theorem and (3.9),

we obtain

en(0) − k1e
′

n(0) =

∫ 1

0

[h1(x(s)) − H1(wn(s), wn−1(s)]ds

=

∫ 1

0

[h′

1(wn−1(s))en(s) +
1

2
h′′

1(ξ1)e
2
n−1(s)]ds

and

en(1) + k2e
′

n(1) =

∫ 1

0

[h2(x(s)) − H2(wn(s), wn−1(s))]ds

=

∫ 1

0

[h′

2(wn−1(s))en(s) +
1

2
h′′

2(ξ2)e
2
n−1(s)]ds

where, wn−1 ≤ ξ1, ξ2 ≤ x. In view of (A3), there exist λi < 1 and Ci ≥ 0 such that

h′

i(wn−1(s)) ≤ λi and 1
2
h′′

i (ξ1) ≤ Ci (i = 1, 2). Let λ(< 1) = max{λ1, λ2} and C(≥ 0) =

max{C1, C2}, then

en(0) − k1e
′

n(0) ≤ λ

∫ 1

0

en(s)ds + C

∫ 1

0

e2
n−1(s)ds ≤ λ

∫ 1

0

en(s)ds + C‖en−1‖
2

en(1) + k2e
′

n(1) ≤ λ

∫ 1

0

en(s)ds + C

∫ 1

0

e2
n−1(s)ds ≤ λ

∫ 1

0

en(s)ds + C‖en−1‖
2.

(3.16)

Further, using Taylor’s theorem, (A2), (3.5) and (3.9), we obtain

e′′n(t) = x′′(t) − w′′

n(t) = (F (t, x) − φ(t, x))

− [f(t, wn−1) + fx(t, wn−1)(wn − wn−1) +
1

2
|φxx(t, ξ)|‖wn − wn−1‖

2]

≥ fx(t, wn−1)en(t) + Fxx(t, ξ3)
e2

n−1(t)

2!
−

1

2
|φxx(t, ξ)|‖en−1‖

2

≥ −
1

2
(|Fxx(t, ξ3)| + |φxx(t, ξ)|)‖en−1‖

2

≥ −M‖en−1‖
2,

(3.17)

where wn−1 ≤ ξ3 ≤ x, wn−1 ≤ ξ ≤ wn, |Fxx| ≤ M1, |φxx| ≤ M2 and 2M = M1 + M2.

From (3.16) and (3.17), it follows that

en(t) ≤ r(t) on [0, 1],
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where, r(t) ≥ 0 is the unique solution of the boundary value problem

r′′(t) = −M‖en−1‖
2, t ∈ [0, 1]

r(0) − k1r
′(0) = λ

∫ 1

0

r(s)ds + C‖en−1‖
2

r(1) + k2r
′(1) = λ

∫ 1

0

r(s)ds + C‖en−1‖
2.

Thus, r(t) =

=
1

1 + k1 + k2

[(1 − t + k2)(λ

∫ 1

0

r(s)ds + C‖en−1‖
2)

+ (t + k1)(λ

∫ 1

0

r(s)ds + C‖en−1‖
2)] − M

∫ 1

0

G(t, s)‖en−1‖
2ds

≤
1

1 + k1 + k2
[λ{(1 − t + k2) + (t + k1)}‖r‖ + C{(1 − t + k2) + (t + k1)}‖en−1‖

2)

+ M‖en−1‖
2

∫ 1

0

|G(t, s)|ds

= λ‖r‖ + C‖en−1‖
2 + Ml‖en−1‖

2 = λ‖r‖ + L‖en−1‖
2,

where l is a bound for
∫ 1

0
|G(t, s)|ds and L = C + lM . Taking the maximum over [0, 1],

we get

‖r‖ ≤ δ‖en−1‖
2,

where, δ = L
1−λ

. �

4. Rapid convergence

Theorem 4.1. Assume that

(B1) α, β ∈ C2[0, 1] are lower and upper solutions of (1.1) respectively such that α(t) ≤

β(t), t ∈ [0, 1].

(B2) f(t, x) ∈ Ck[[0, 1] × R] such that ∂j

∂xj f(t, x) ≥ 0 (j = 1, 2, 3..., k − 1), and
∂k

∂xk (f(t, x) + φ(t, x)) ≤ 0, where, φ ∈ Ck[[0, 1] × R] and ∂k

∂xk φ(t, x) ≤ 0,

(B3) hj(x) ∈ Ck[R] such that di

dxi hj(x) ≤ M
(β−α)i−1 (i = 1, 2, ..., k − 1) and dk

dxk hj(x) ≥ 0,

where M < 1/3 and j = 1, 2.

Then, there exists a monotone sequence {wn} of solutions converging uniformly to the

unique solution of the problem. Moreover the rate of convergence is of order k ≥ 2.

Proof. Define, F : [0, 1] × R → R by F (t, x) = f(t, x) + φ(t, x), t ∈ [0, 1], then in view of

(B2), we note that F ∈ Ck[[0, 1] × R] and

(4.1)
∂k

∂xk
F (t, x) ≤ 0.
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Using (B3), Taylor’s theorem and (4.1), we have

(4.2) f(t, x) ≤
k−1
∑

i=0

∂i

∂xi
F (t, y)

(x − y)i

i!
− φ(t, x)

and

(4.3) hj(x) ≥
k−1
∑

i=0

di

dxi
hj(y)

(x − y)i

i!
.

Expanding φ(t, x) about (t, y) by Taylor’s theorem, we can find y ≤ ξ ≤ x, such that

(4.4) φ(t, x) =

k−1
∑

i=0

∂i

∂xi
φ(t, y)

(x − y)i

i!
+

∂k

∂xk
φ(t, ξ)

(x − y)k

k!
,

which in view of (B2) implies that

(4.5) φ(t, x) ≤
k−1
∑

i=0

∂i

∂xi
φ(t, y)

(x − y)i

i!
.

Using (4.4) in (4.2), we obtain

(4.6) f(t, x) ≤

k−1
∑

i=0

∂i

∂xi
f(t, y)

(x − y)i

i!
−

∂k

∂xk
φ(t, ξ)

(x − y)k

k!
.

Let Ω = {(t, x) : t ∈ [0, 1], x ∈ [α, β]} and define on Ω the functions

(4.7) g∗(t, x, y) =
k−1
∑

i=0

∂i

∂xi
f(t, y)

(x − y)i

i!
−

∂k

∂xk
φ(t, ξ)

(x − y)k

k!

and

(4.8) H∗

j (x, y) =
k−1
∑

i=0

di

dxi
hj(y)

(x − y)i

i!
.

Then, we note that g∗(t, x, y) and H∗

j (x, y) are continuous, bounded and are such that

g∗

x(t, x, y) =

k−1
∑

i=1

∂i

∂xi
f(t, y)

(x − y)i−1

(i − 1)!
−

∂k

∂xk
φ(t, ξ)

(x − y)k−1

(k − 1)!
≥ 0

and

∂

∂x
H∗

j (x, y) =

k−1
∑

i=1

di

dxi
hj(y)

(x − y)i−1

(i − 1)!

≤

k−1
∑

i=1

M

(β − α)i−1

(β − α)i−1

(i − 1)!
≤ M(3 −

1

2k−2
) < 1.

Further, from {(4.6),(4.7) } and {(4.3),(4.8) }, we have the relations

(4.9)







f(t, x) ≤ g∗(t, x, y),

f(t, x) = g∗(t, x, x)
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and

(4.10)







hj(x) ≥ H∗

j (x, y),

hj(x) = H∗

j (x, x).

Now, set α = w0 and consider the linear problem

x′′(t) = g∗(t, x, w0), t ∈ [0, 1],

x(0) − k1x
′(0) =

∫ 1

0

H∗

1 (x(s), w0(s))ds,

x(1) + k2x
′(1) =

∫ 1

0

H∗

2 (x(s), w0(s))ds.

(4.11)

The assumption (B1) and the expressions (4.9), (4.10) yields

w′′

0(t) ≥ f(t, w0) = g∗(t, w0, w0), t ∈ [0, 1],

w0(0) − k1w
′

0(0) ≤

∫ 1

0

h1(w0(s))ds =

∫ 1

0

H∗

1 (w0(s), w0(s))ds,

w0(1) + k2w
′

0(1) ≤

∫ 1

0

H∗

2 (w0(s))ds =

∫ 1

0

H∗

2 (w0(s), w0(s))ds

and

β ′′(t) ≤ f(t, β) ≤ g(t, β, w0), t ∈ [0, 1],

β(0) − k1β
′(0) ≥

∫ 1

0

h1(β(s))ds ≥

∫ 1

0

H∗

1 (β(s), w0(s))ds,

β(1) + k2β
′(1) ≥

∫ 1

0

h2(β(s))ds ≥

∫ 1

0

H∗

2 (β(s), w0(s))ds,

imply that w0 and β are respectively lower and upper solutions of (4.11). Hence by

theorems (2.2, 2.3), there exists a unique solution w1 of (4.11) such that

w0(t) ≤ w1(t) ≤ β(t), t ∈ [0, 1].

Continuing this process, we obtain a monotone sequence {wn} of solutions satisfying

w0(t) ≤ w1(t) ≤ w2(t) ≤ ...wn(t) ≤ β(t), t ∈ [0, 1],

where the element wn of the sequence {wn} is a solution of the boundary value problem

x′′(t) =g∗(t, x, wn−1), t ∈ [0, 1],

x(0) − k1x
′(0) =

∫ 1

0

H∗

1 (x(s), wn−1(s))ds,

x(1) + k2x
′(1) =

∫ 1

0

H∗

2 (x(s), wn−1(s))ds.

EJQTDE, 2003 No. 10, p. 12



By the same process as in theorem (3.1), we can show that the sequence converges uni-

formly to the unique solution of (1.1).

Now, we show that the convergence of the sequence is of order k ≥ 2. For that, set

en(t) = x(t) − wn(t) and an(t) = wn+1(t) − wn(t), t ∈ [0, 1].

Then,

en(t) ≥ 0, an ≥ 0, en+1 = en − an, ei
n ≥ ai

n (i = 1, 2...)

and

en(0) − k1e
′

n(0) =

∫ 1

0

[h1(x(s)) − H∗

1 (wn(s), wn−1(s)]ds

en(1) + k2e
′

n(1) =

∫ 1

0

[h2(x(s)) − H∗

2 (wn(s), wn−1(s)]ds.

(4.12)

Using Taylor’s theorem and (4.8), we obtain

hj(x(s)) − H∗

j (wn(s), wn−1(s) =

k−1
∑

i=0

di

dxi
hj(wn−1)

(x − wn−1)
i

i!
+

dk

dxk
hj(c)

(x − wn−1)
k

k!

−

k−1
∑

i=0

di

dxi
hj(wn−1)

(wn − wn−1)
i

i!

= (

k−1
∑

i=1

di

dxi
hj(wn−1)

1

i!

i−1
∑

l=0

ei−1−l
n−1 al

n−1)en +
dk

dxk
hj(c)

ek
n−1

k!

≤ pj(t)en(t) +
M

γk−1

ek
n−1

k!
≤ pj(t)en(t) +

M

γk−1

‖ek
n−1‖

k!
,

where pj(t) =
∑k−1

i=1
di

dxi hj(wn−1)
1
i!

∑i−1
l=0 ei−1−l

n−1 al
n−1 and γ = maxt∈[0,1] β(t)−mint∈[0,1] α(t).

In view of (B3), we have

pj(t) ≤

k−1
∑

i=1

M

(β − α)i−1

1

i!

i−1
∑

l=0

ei−1
n−1 ≤

k−1
∑

i=1

M

(β − α)i−1

1

(i − 1)!
(β − α)i−1 < 1.

It follows that, we can find λ < 1 such that pj(t) ≤ λ, t ∈ [0, 1], (j = 1, 2) and hence

en(0) − k1e
′

n(0) ≤ λ

∫ 1

0

en(s)ds +
M

γk−1k!
‖en−1‖

k

en(1) + k2e
′

n(1) ≤ λ

∫ 1

0

en(s)ds +
M

γk−1k!
‖en−1‖

k.

(4.13)
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Now, using Taylor’s theorem and (4.5), we obtain

e′′n(t) = x′′(t) − w′′

n(t)

= [F (t, x) − φ(t, x)] − [
k−1
∑

i=0

∂i

∂xi
f(t, wn−1)

ai
n−1

i!
−

∂k

∂xk
φ(t, ξ)

ak
n−1

k!
]

=
k−1
∑

i=1

∂i

∂xi
f(t, wn−1)

(ei
n−1 − ai

n−1)

i!
+

∂k

∂xk
F (t, c1)

ek
n−1

k!
+

∂k

∂xk
φ(t, ξ))

ak
n−1

k!

≥
k−1
∑

i=1

∂i

∂xi
f(t, wn−1)

∑i−1
l=0 ei−1−l

n−1 al
n−1

i!
en +

ek
n−1

k!
(

∂k

∂xk
F (t, c1) +

∂k

∂xk
φ(t, ξ))

≥ −N
‖en−1‖

k

k!
,

(4.14)

where −N1 ≤
∂k

∂xk F (t, x) ≤ 0, −N2 ≤
∂k

∂xk φ(t, x) ≤ 0 and N = max{N1, N2}. From (4.13)

and (4.14), it follows that 0 ≤ en(t) ≤ r(t), t ∈ [0, 1], where r(t) is the unique solution of

the problem

r′′(t) = −N
ek

n−1

k!
, t ∈ [0, 1]

r(0) − k1r
′(0) = λ

∫ 1

0

r(s)ds +
M

γk−1k!
‖en−1‖

k

r(1) + k2r
′(1) = λ

∫ 1

0

r(s)ds +
M

γk−1k!
‖en−1‖

k

and

r(t) =
1

1 + k1 + k2
[(1 − t + k2)(λ

∫ 1

0

r(s) ds +
M

γk−1k!
‖en−1‖

k) + (t + k1)(λ

∫ 1

0

r(s) ds

+
M

γk−1k!
‖en−1‖

k] − N

∫ 1

0

G(t, s)
‖en−1‖

k

k!
ds

≤
1

1 + k1 + k2
[λ{(1 − t + k2) + (t + k1)}‖r‖

+ {(1 − t + k2) + (t + k1)}
M

γk−1k!
‖en−1‖

k] + N‖en−1‖
2

∫ 1

0

|G(t, s)| ds

= λ‖r‖ + C ′‖en−1‖
k,

where L is a bound for
∫ 1

0
|G(t, s)|ds and C ′ = M

γk−1k!
+ NL. Taking the maximum over

[0, 1], we get

‖r‖ ≤ δ‖en−1‖
k,

where, δ = C′

1−λ
. �
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