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Abstract: In this paper, we consider a class of cellular neural networks with contin-
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1. Introduction

It is well known that the dynamical behaviors of delayed cellular neural networks (DC-
NNs) have received much attention due to their potential applications in associated memory,
parallel computing,pattern recognition, signal processing and optimization problems (see [1,
2, 3]). In particular, a neural network usually has a spatial nature due to the presence of an
amount of parallel pathways of a variety of axon sizes and lengths, it is desired to model them

by introducing continuously distributed delays over a certain duration of time [4, 5, 6]. On
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the other hand, a typical time delay called Leakage (or “forgetting”) delay may exist in the
negative feedback terms of the neural network system, and these terms are variously known
as forgetting or leakage terms (see [7, 8, 9]). Consequently, K. Gopalsmay [10] investigated
the stability on equilibrium for the bidirectional associative memory (BAM) neural networks
with constant delay in the leakage term. Followed by this, the authors of [11—23] dealt with
the existence and stability of equilibrium and periodic solutions for neuron networks model in-
volving constant or time-varying leakage delays. Moreover, by using continuation theorem in
coincidence degree theory and the Lyapunov functional, S. Peng [24] established some delay
dependent criteria on the existence and global attractive periodic solutions of the bidirec-
tional associative memory neural network with continuously distributed delays in the leakage
terms. However, to the best of our knowledge, few authors have considered the exponential
convergence behavior for all solutions of DCNNs with continuously distributed delays in the
leakage terms. Motivated by the above arguments, in this present paper, we shall consider
the following DCNNs with time-varying coefficients and continuously distributed delays in
the leakage terms:
oo n
(0 = =) [ (o)t = 9)ds + 3 a5 oo = 7 0)
j=

n

+3 by (1) /OO K (w)g (2 (¢ — w))du + Li(t),i = 1,2, ,m, (1.1)
j=1 0

in which n corresponds to the number of units in a neural network, x;(t) corresponds to
the state vector of the ith unit at the time ¢, ¢;(¢) > 0 represents the rate with which the
1th unit will reset its potential to the resting state in isolation when disconnected from the
network and external inputs at the time t. a;;(t) and b;;(t) are the connection weights at
the time ¢, 7;;(t) > 0 denotes the transmission delay, K;;(u) and h;(u) > 0 correspond to the
transmission delay kernels, I;(t) denotes the external bias on the ith unit at the time ¢, f;
and g; are activation functions of signal transmission, and 7,j = 1,2,---,n.

The main purpose of this paper is to give the new criteria for the convergence behavior
for all solutions of system (1.1). By applying Lyapunov functional method and differential
inequality techniques, avoiding the boundedness conditions on the activation functions, we

derive some new sufficient conditions ensuring that all solutions of system (1.1) converge ex-
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ponentially to zero point. Moreover, an example is also provided to illustrate the effectiveness
of our results.

Throughout this paper, for ¢, j =1, 2, ---,n, it will be assumed that ¢;, I;, ai;, bij, 7 :
R — R, h; : [0,400) — [0,400) and K;; : [0,400) — R are continuous functions, and there

exist constants c;r, ;;, b;; and 7';]7 such that
¢ =supe(t), a;;» = sup |a;;(t)], b;; = sup |b;;(t)], 7';]7 = sup 73;(t). (1.2)
teR teR teR teR

We also assume that the following conditions (H;), (Hz2) and (Hs) hold.

(Hy) Foreachi,je {1, 2, ---,n}, there exist nonnegative constants Lf and L? such
that
|fi(u)| < LLJul, |g;(w)] < LYul, for all u € R. (1.3)
(H2) Forallt>0andi,je{l, 2, ---,n}, there exist constants n > 0, A >0 and & > 0
such that

/ Shi(s)e)\sds < +OO, / |sz(u)|6)‘udu < —|—OO,
0 0

and
—n > —la) /OOO hi(s)e*ds — A1+ ¢(t) /OOO shi(s)e*ds)

—ci(t)cj/ Asds/ hi(s)e*ds)é;
0

+ 3 L (jaig ()] + af: e i(t) / shi(s)e*ds)E;

=1 0
+ ZLg | 1wl du( ()] + e [ shits)e s,
(H3) Lit) = O(e*M) (t — 4o0), i=1,2, ---,n.
The initial conditions associated with system (1.1) are of the form
zi(s) = pi(s),s € (—o0, 0], i =1,2,--n, (1.4)

where ¢;(-) denotes real-valued bounded continuous function defined on (—o0, 0].

The remaining part of this paper is organized as follows. In Section 2, we present some
new sufficient conditions to ensure that all solutions of system (1.1) converge exponentially
to the zero point. In Section 3, we shall give some examples and remarks to illustrate our

results obtained in the previous sections.
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2. Main Results

Theorem 2.1. Let (Hy), (H2) and (Hs) hold. Then, for every solution Z(t) =

(w1(t), 22(t), -, 2n(t))T of system (1.1) with any initial value ¢ = (p1(t), pa(t), -, on(t)7,

there exists a positive constant K such that
|$Z(7f)| < Ké’ie*At for all t > 0, 1= 1,2’ -

Proof. Set Z(t) = (z1(t),z2(t), -, 7,(t))T be a solution of system (1.1) with any initial

value ¢ = (p1(t), p2(t), -+ n(t))", and let

In view of (1.1), we have

Xi(t)
= AX(0) 4+ Mt / (st — )ds + 3 aig (65 (¢ — 755(0))
j=1
FD0(t) [ i (u)gs (¢ — w)du + ()
=1 0
= AX;(t) —¢(b) /Oooh( )M X (t — s)ds + e Za,j Fi(e MmO X (4 — 14(t)))
7=1

+3 byy(8) /0 K (w)g; (e N XG (- w))du + (D))

=1

— AXI() — (1) /0 T ()M ds X () + eo(t) /

0o t
hi(s)ers / X! (u)duds
0 t—s

M Zaw )fi(e 7)\(25 mig (1) X X;(t—m75(1)))

+3 by (1) /0 K (w)gi (e X (¢ — w))du + I(1)

=1

hi(s)edsX;(t) + ci(t) /OOO hi(s)e™ t {AX(u)

t—s

—AXG(t) — ai(t) / -

0

—ci(u / hi(0)eM Xi(u — v)do 4+ e[ Z a;j(u (ef)‘(ufT”(”))Xj (u —75(u)))
7j=1

+Z i / K (0)g5 (e ) X (u — 0))dv + I (w)] }duds
j=1
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LS aiy (0 f5 (O X, (¢ — 745(0)
=1

n

+ b (t) /OOO Kij(u)g;(e MW X;(t — w))du + L(t)], i =1,2,---,n. (2.1)
j=1

Let

M = max sup{e)‘s\goi(s)\}. (2.2)
1=1,2,-,n g<0

From (1.2), (H2) and (Hs), we can choose a positive constant K such that

[ci(t) J5° shi(s)e?ds + 1] sup |I;(t)eM|
teR

K& > M, and n > e , (2.3)
for all t>0, i=1,2,---,n. Then, it is easy to see that
| X;(t)| < M < K¢ for allt <0, i=1,2,---,n.
We now claim that
| X;(t) < K& for allt>0,i=1,2,---,n. (2.4)
If this is not valid, then, one of the following two cases must occur.
(1) there exist ¢ € {1,2,---,n} and t* > 0 such that
Xi(t") = K&, |X;(t)| < K¢ for allt<t*, j=1,2,--- n. (2.5)
(2) there exist ¢ € {1,2,---,n} and ¢t** > 0 such that
Xi(t™) = —-K&, |X;(t)] < K¢ for allt <t™, j=1,2,---,n. (2.6)

Now, we consider two cases.

Case (i). If (2.5) holds. Then, from (2.1), (2.3) and (H;) — (H3), we have

0 < Xl
— X)) — () /0 T hi(s)eM ds Xi () + ex () /0 " ha(s)e™ tfs{)\Xi(u)
i) [ Ba0)e Xt oo+ M3 a0 e X i)
j=1
+ Z bij(u) /OOO Kij (v)gj(e*’\(“*”)Xj(u —v))dv + I;(u)] }duds
j=1
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IN

IN

)\t* Zam 6—)\ (t* =75 (t ))X](t* _ Tl’j(t*)))

n

+§2%aﬂAmKawmxf“”ﬂuwﬁ—umw+naw

j=1
)\Xl-(t*)—cl-(t*)/ooohi( VM ds X (%) + et /h / X (£)

+cf /Oooh( )eMdv X, (t +Za+Lf AT (W) X5 (u — 73 (u))]
+Zb / DL |X; (u = v)ldv -+ sup (1) duds
+ZmJ|H”wH&W—mwm

+Zm]|/ )| X (¢ = w)ldu + (e |

(+* Oo.seAss— ci(tF Oos~seAss
—mwéhx>d ML+a(t) [ shis)eds)
—ci(t*)cf/ shi(s)eAsds/ hi(s)e ds| X; ()

0 0

—i—ZL (las; ()] 4 q; e>‘ e (t” )/ shi(s)eMds)E; K
0

+ Z 9 / (w)]e du(|bi; (£*)] + bfiea(t”) /0 - shi(s)eMds)E; K

—i—[ci(t*)/ shi(s)e*ds + 1] sup |I;(t)| e
0 teR

{—[ei(t%) /OOO hi(s)erds — M1 + ¢ (t¥) /Oo shi(s)eds)

0

—c;(t)ef /oo shi(s)eMds /Oo hi(s)e e ds]é;

0 0

+ Z L (|ag;(t* ) e i) 4 a+e>‘Twc (t* )/ shi(s)eMds)E;
0

7=1
+ZL / Ky (w)| e du([big (£)] + b i (%) / shi(s)eXds)e;
— 7 Jo 0

(1) 5 shals)e¥ods + 1 sup |1 ()

N - teR VK

[ci (%) [o° shi(s)eMds + 1] sup |I;(t)eM|
- - teR VK
0.
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This contradiction implies that (2.5) does not hold.
Case (ii). If (2.6) holds. Then, from (2.1), (2.3) and (H;) — (H3), we get

0 > X/t

m t**
— X () — () / hi(s)e ds Xi(£7) + c:(£) / hi(s)e™ / (AX(u)
t

*k_g

—c;i(u / hi(v)e X (u — v)do 4+ M| Z a;j(u 7)‘(“77”(“))Xj(u — 7i5(u)))

£ 30000 [ KX ) + ) uds
j=1

MY g () £ (e AT X (0 — ()

#3205 [ K0y e X (1 = w)du+ ()]
j=1

R

AXG (6% — (™) / - hi(s)eMds X; () + ¢; (t*) /0 - hi(s)er® /t X ()

0 g

v

+c;L/O hi(v)e N dv X (t) Za+Lf AT X (u — 73 ()|

LV

—Zb/ €3 (0) L X (= ) do = sup | ()¢ Jduds

= lag (O 07 = 7y 1)
j—l

A e e G

Y

—[ci(t**)/ hi(s)eNds — A1 + ¢;(t*) /OO shi(s)e*ds)

0

—cl-(t**)c;r/ )‘sds/ hi(s)e ds) X, (t*)

Z (|ag; (£ | )+a+e)‘Twc (t**)/ shi(s)e*ds)E; K
= 0
-3 ¢ [l by )]+ bele) [ shils)eds

0

—[ci(t**)/ shy(s)eMds + 1] sup | I;(t)]e
0 teR

= {~[ei(t™) /OOO hi(s)erds — A1 + ¢ (t™) /OOO shi(s)e ds)
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—c;(t*)ef /Oo shi(s)e*ds /OO hi(s)e*ds)¢;
0

0

+ Z L (lag; (£7) | ) a+e)‘TUc (t* )/ shi(s)eMds)E;
J=1 0

e300 [Tl () + ) [ shis)eas)e
= 7 0
[cz(t** J5© shi(s)e*ds + 1] sup |I;(t)eM|

teER

_ H-K)
[ (%) [5° shi(s)eds + 1] ?2}2 |I;(t)eM |

N H-K)

> {-n+

> 0,

which is a contradiction and yields that (2.6) does not hold

Consequently, we can obtain that (2.4) is true. Thus

lzi(t)] < K&e ™™ for allt >0, i=1,2,-

s,

This implies that the proof of Theorem 2.1 is now completed

3. An Example

Example 3.1.

Consider the following DCNNs with continuously distributed delays in
the leakage terms:

o0 —40s

i (t) = —(20—w> o e xy(t —s)ds

1+ 2|t
%ﬁ(m(t — 2sin?t)) + %JCQ@@(Z‘/ — 3sin?t))
% et — wyan
+1fr§7glo(élt2+/!0t7:)€u?f ea(t —w))du-+ e sint,
_ <20 - H—QHT;S> 0 ~A05 (1 _ 5)ds
t5 cost

tcost
DO (@ (t — 28in2t)) + — ooy (o (t — 5sin?t
+1+2000|t|5f1( 1(t —2sin“t)) + 1+5000|t|f2(3:2( sin“t))
it =
T c0NNI+13 t—u))d
T+ 60001 Jo ¢ orlmlt—w)du

14 [t]) cost _ L
%/ e "ga(wa(t — u))du + e 'sint,
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where fi(z) = fa(z) = xcos(x?), g1(x) = g2(z) = xsin(z?).
Noting that

(14 |t]) sin?¢

7 2
(1+ |t|") cos*t <2,
1+ 2]t

<20, 18 <eo(t) =20 —
= ) _02() 1+2|t|7 =

18 < ¢y (t) =20 —
|t|® sint |t|7 sint |t|? sin t

h =h = —40s t) = ———F= 4 T L A0NO AT t) = T 3600125
1(s) = ha(s) = e” ™, an (t) T+ 2000]F n(t) = 1 + 4000[¢[7 a2(t) 1+ 3600[¢5

bia(t) t?sint ) 15 cost () = |t|? cost
= Qa = —-— - .
2 1+ 3600¢2" 2! 1+ 2000[¢f5 """ 1+ 6000[¢[3”
tcost 1+ |t|)cost .
axn(t) = L) m1(t) = o1 (t) = 2sin’¢,

- t _ v
1+ 5000’ 2 (1) 1+ 7000[¢]
T12(t) = 3sint, Too(t) = 5sin’t, L] = LI =1, Kjj(u) = e %,i,j =1,2.

Define a continuous function I';(w) by setting

[e.e]

Fi(w) = —[elt) /OOO hi(s)e“*ds — w(1 + ci(t)/o sh;(s)e*?ds)
—ci(t)et /OOO shi(s)e“*ds /OOO hi(s)e*?ds]
2

+ 37 L (Jagg ()] + afie o ei(t) / shi(s)e**ds)
= "

+ Z LQ/ Kij(u)e  du(]bi; (t)] + b;;ci(t) /OOO shi(s)e“®ds), where t >0, i=1,2.
Then, we obtain
[i(0) = —¢(t) /OOO hi(s)ds[1 — ¢ /OOO shi(s)ds]
+ZL (s ()] + afes(t) [ shis)ds)

+ZL9/ ()| (b (¢ )|+b$cl-(t)/0 shi(s)ds), i =1,2.
Therefore,

ri(0) < 18><1><( 20 x 1)+2><[1><(1 + ! x 20 x 1)
! - 40 1600 4000 4000 1600

+1x1x( L + L x 20 % 1 )]
3600 3600 1600
< —0.1,
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and

)_|_[1 (L—FLXQOXL)

Ty (0
2(0) 2000 ' 2000 1600

1
18 % — x (1—20 x ——
8x 5 % (1 =20 0

I LT IV
5000 5000 1600

1 1
1] % [ b —— % 20 % ——
11 (5500 + 5000 " 1600

+1x1x( = + - x 20 x )]
7000 7000 1600

)

< —0.06,

which, together with the continuity of I';(w), implies that we can choose positive constants

A > 0 and 1 > 0 such that for all £ > 0, there holds

= —lal®) [ s =M1+ ) [ shi(s)eds)
—c@'(t)c;L/O )‘Sds/ hi( )‘Sds

2

3 L0100 + ah et [ il dag
0

j=1
+ZL9/ (W)l du((bi; (1) + bci(t) /OOO shi(s)eMds)E

where & = 1,9 =1, 2. This yields that system (3.1) satisfied (H;), (H2) and (Hs3). Hence,
from Theorem 2.1, all solutions of system (3.1) converge exponentially to the zero point
(0, 0)T.

Remark 3.1 Since fi(z) = fao(z) = 2 cos(z?), g1(x) = g2(z) = xsin(x?) are unbounded
activation functions, and DCNNs (3.1) is a very simple form of DCNNs with continuously
distributed delays in the leakage terms, it is clear that all the results in [10—23] and the
references therein can not be applicable to prove that all solutions of system (3.1) converge
exponentially to the zero point. To the best of our knowledge, the results on DCNNs with
continuously distributed delays only appeared in the literature [24], which are restricted to
consider the convergence of the neural network system and give no opinions about the globally
exponential convergence. One can observe that the results in [24] and the references cited

therein cannot be applicable to prove the globally exponential convergence of system (3.1).
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This implies that the results of this paper are essentially new. Moreover, we proposed a
new approach to prove the exponential convergence of DCNNs with continuously distributed

delays in the leakage terms. This implies that the results of this paper are essentially new.
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