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Abstract. By constructing suitable Lyapunov functionals and combining with matrix inequality technique, a new

simple sufficient condition is presented for the exponential stability of stochastic cellular neural networks with discrete

delays. The condition contains and improves some of the previous results in the earlier references. These sufficient

conditions only including those governing parameters of SDCNNs can be easily checked by simple algebraic methods.

Finally, one example is given to demonstrate that the proposed criteria are useful and effective.
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1 Introduction

The dynamical behaviors of stochastic neural networks have appeared as a novel subject of research
and applications, such as optimization, control, and image processing(see [1-12]). Obviously, finding
stability criteria for these neural networks becomes an attractive research problem of importance.
Some well results have just appeared, for example, in [1-5], for stochastic delayed Hopfield neural
networks and stochastic Cohen-Grossberg neural networks, the linear matrix inequality approach is
utilized to establish the sufficient conditions on global stability for the neural networks. In particular,
in [2], by using the method of variation parameter and stochastic analysis, the sufficient conditions
are given to guarantee the exponential stability of an equilibrium solution. However, there are few
results about stochastic effects to the stability property of cellular neural networks with delays in
the literature today.

In this paper, exponential stability of equilibrium point of stochastic cellular neural networks
with delays(SDCNNs) is investigated. Following [13], that activation functions require Lipschitz
conditions and boundedness, by utilizing general Lyapunov function, stochastic analysis, Young
inequality method and Poincare contraction theory are utilized to derive the conditions guaranteeing
the existence of periodic solutions of SDCNNs and the stability of periodic solutions. Different
from the LMI (linear matrix inequality) approach [13], [15] and variation parameter method, the
Young inequality method is firstly developed to investigate the stability of SDCNN. These sufficient
conditions improve and extend the early works in Refs. [18,19], and they include those governing
parameters of SDCNNs, so they can be easily checked by simple algebraic methods, comparing with
the results of [13-17]. Furthermore, one example is given to demonstrate the usefulness of the results
in this paper.
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The organization of this paper is as follows. In Section 2, problem formulation and preliminaries
are given. In Section 3, some new results are given to ascertain the exponential stability of the
neural networks with time-varying delays based on Lyapunov method. Section 4 gives an example
to illustrate the effectiveness of our results.

2 Preliminaries and lemmas

This paper, we are concerned with the model of continuous-time neural networks described by the
following integro-differential systems:

x′
i(t) = −dixi(t) +

n
∑

j=1

aijfj(xj(t)) +

n
∑

j=1

bijfj(xj(t − τj(t)))

+

n
∑

j=1

cij

∫ t

−∞

kj(t − s)fj(xj(s))ds + Ji, i = 1, 2, . . . , n, (1)

or equivalently

x′(t) = −Dx(t) + Af(x(t)) + Bf(x(t − τ(t))) + C

∫ t

−∞

K(t − s)f(x(s))ds + J. (2)

where n denotes the number of the neurons in the network, xi(t) is the state of the ith neuron at
time t, x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn, f(x(t)) = [f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]T ∈ Rn

denote the activation functions of the jth neuron at time t, D = diag(d1, d2, . . . , dn) > 0 is a
positive diagonal matrix, A = (aij)n×n, B = (bij)n×n and C = (cij)n×n are the feedback matrix
and the delayed feedback matrix, respectively, J = (J1, J2, . . . , Jn)T ∈ Rn be a constant external

input vector, the kernels kj : [0, +∞) → [0, +∞) are piece continuous functions with
∫ +∞

0 kj(s)ds =
1, K(t− s) = [k1(t − s), k2(t − s), . . . , kn(t − s)], the time delay τj(t) is any nonnegative continuous
function with 0 ≤ τj(t) ≤ τ, where τ is a constant, τ(t) = [τ1(t), τ2(t), . . . , τn(t)].

In our analysis, we will employ that each fi, i = 1, 2, . . . , n is bounded and satisfying the following
condition:
(H)There exist constant scalars Li > 0 such that

0 ≤
fi(η1) − fi(η2)

η1 − η2
≤ Li, ∀ η1, η2 ∈ R, η1 6= η2.

This class of functions is clearly more general than both the usual sigmoid activation functions and
the piecewise linear function:fi(x) = 1

2 (|x + 1| − |x − 1|), which is used in [11].
The initial conditions associated with system (1) are of the form

xi(t) = φi(t), t ∈ (−∞, 0], i = 1, 2, . . . , n,

in which φi(t) are continuous for t ∈ (−∞, 0].

Assume x∗(t) = [x∗
1(t), x

∗
2(t), . . . , x

∗
n(t)]T is an equilibrium of Eq. (1), one can derive from (1)

that the transformation yi = xi − x∗
i transforms system (1) or (2) into the following system:
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y′
i(t) = −diyi(t) +

n
∑

j=1

aijgj(yj(t)) +
n

∑

j=1

bijgj(yj(t − τj(t)))

+

n
∑

j=1

cij

∫ t

−∞

kj(t − s)gj(yj(s))ds, i = 1, 2, . . . , n,

(3)

where gj(yj(t)) = fj(yj(t) + x∗
j ) − fj(x

∗
j ), or,

y′(t) = −Dy(t) + Ag(y(t)) + Bg(y(t − τ(t))) + C

∫ t

−∞

K(t − s)g(y(s))ds. (4)

Note that since each function fj(·) satisfies the hypothesis (H), hence, each gj(·) satisfies

g2
j (ηj) ≤ L2

jη
2
j , ∀ ηj ∈ R,

ηjgj(ηj) ≥
g2

j (ηj)

Lj

, ∀ ηj ∈ R,

gj(0) = 0.

To prove the stability of x∗ of Eq. (1), it is sufficient to prove the stability of the trivial solution of
Eq. (3) or (4).

Consider the following stochastic delayed recurrent neural networks with time varying delay



































dyi(t) =
[

− diyi(t) +
n

∑

j=1

aijgj(yj(t)) +
n

∑

j=1

bijgj(yj(t − τj(t)))

+

n
∑

j=1

cij

∫ t

−∞

kj(t − s)gj(yj(s))ds
]

dt +

n
∑

j=1

σij(t, yj(t), yj(t − τj(t)))dwj(t)

yi(t) = φi(t), −∞ < t ≤ 0, φ ∈ L2
F0

((−∞, 0], Rn).

(5)

or equivalently



















dy(t) =
[

− Dy(t) + Ag(y(t)) + Bg(y(t − τ(t))) + C

∫ t

−∞

K(t − s)g(y(s))ds
]

dt

+ σ(t, y(t), y(t − τ(t)))dw(t)

y(t) = φ(t), −∞ < t ≤ 0, φ ∈ L2
F0

((−∞, 0], Rn).

(6)

where i = 1, 2, . . . , n; w(t) = (w1(t), w2(t), . . . , wn(t))T is an n-dimensional Brownian motion defined
on a complete probability space (Ω, F , P ) with a natural filtration {Ft}t≥0 generated by {w(s) :
0 ≤ s ≤ t}, where we associate Ω with the canonical space generated by w(t), and denote by F

the associated σ-algebra generated by w(t) with the probability measure P. {φi(s),−∞ < s ≤ 0}
is C((−∞, 0]; Rn)-valued function, for i = 1, 2, . . . , n, which is F0-measurable Rn-valued random
variables, where C((−∞, 0]; Rn) is the space of all continuous Rn-valued functions defined on (−∞, 0]
with a norm ‖φ‖ = sup{|φ(t)| : −∞ ≤ t ≤ 0} and | · | is the Euclidean norm of a vector x ∈ Rn.

σ(t, x, y) = (σij(t, xj , yj))n×n, where σij(t, xj , yj) : R+ × R × R → R is locally Lipschitz continuous
and satisfies the linear growth condition as well, σij(t, x

∗
j (t), x

∗
j (t − τj(t))) = 0.
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Let |y(t)|, ‖y(t)‖ denote the norms of the vector y(t) = [y1(t), y2(t), . . . , yn(t)]T , which are defined
as

|y(t)| = [

n
∑

i=1

|yi(t)|
2]

1

2 .

‖y(t)‖ = sup
−∞≤s≤0

[
n

∑

i=1

|yi(t + s)|2]
1

2 .

Definition 1. The solution y(t; φ) of system (5) is said to be pth moment exponentially stable if
there exists a pair of positive constants λ and c such that

E‖y(t; φ)‖p ≤ cE‖φ‖pe−λt, t ≥ 0

holds for any φ, where E stands for the mathematical expectation operator. In this case

lim
t→∞

sup
1

t
log(E‖y(t; φ)‖p) ≤ −λ. (7)

The right-hand side of (7) is called the pth moment Lyapunov exponent of the solution. It is usually
called the exponential stability in the mean square when p = 2.

Let C2,1(Rn×R+; R+) denote the family of all non-negative functions V (y, t) on Rn×R+ which
are continuously twice differentiable in y and once differentiable in t. For each V ∈ C2,1(Rn ×
R+, R+), define an operator LV associated with stochastic delayed neural networks (5) from Rn ×
R+ → R+ by

LV (y(t), t) =Vt(y, t) + Vy(y, t)
[

− Dy(t) + Ag(y(t)) + Bg(y(t − τ(t))) + C

∫ t

−∞

K(t − s)g(y(s))ds
]

dt

+
1

2
trace[σT (t, y(t), y(t − τ(t)))Vyy(y, t)σ(t, y(t), y(t − τ(t)))].

.

(8)
where

Vt(y, t) =
∂V (y, t)

∂t
, Vy(y, t) =

(∂V (y, t)

∂y1
,
∂V (y, t)

∂y2
, . . . ,

∂V (y, t)

∂yn

)

, Vyy(y, t) =
(∂2V (y, t)

∂yi∂yj

)

n×n
,

i, j = 1, 2, . . . , n.

(9)

In the following, we will use the notation A > 0 (or A < 0) to denote a symmetric and positive
definite (or negative definite) matrix. The notation AT and A−1 means the transpose of and the
inverse of a square matrix A. If A, B are symmetric matrices, A > B(A ≥ B) means that A − B is
positive definite (positive semi-definite).

In order to obtain our result, we need the following lemma

Lemma 2([20]). For any vectors a, b ∈ Rn, the inequality

2aT b ≤ aT X−1a + bT Xb

holds for any matric X > 0.
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3 Stability analysis

In this section, we present and prove our main results.

Theorem 1. Assume that there exist positive diagonal matrices M = diag(m1, m2, . . . , mn), M0, M1

such that trace[σT (t, y(t), y(t− τ(t)))Mσ(t, y(t), y(t − τ(t)))] ≤ yT (t)M0y(t) + yT (t− τ(t))M1y(t−
τ(t)), then the equilibrium point of system (5) is exponentially stable in the mean square if there
exist a positive diagonal matrix P = diag(p1, p2, . . . , pn) such that

− 2MD + M + M0 + LPL + LPG1L + G2(M1 + LPL)+

MAP−1AT M + MBP−1BT M + MCP−1CT M < 0,

where L = diag(L1, L2, . . . , Ln), G1 = diag(
∫ ∞

0 k1(s)e
sds,

∫ ∞

0 k2(s)e
sds, . . . ,

∫ ∞

0 kn(s)esds), G2 =

diag(eτ1(h
−1

1
(t)), eτ2(h

−1

2
(t)), . . . , eτn(h−1

n (t))), where h−1
i (t) expresses the inverse function of hi(t) =

t − τi(t).

Proof. Since

− 2MD + M + M0 + LPL + LPG1L + G2(M1 + LPL)+

MAP−1AT M + MBP−1BT M + MCP−1CT M < 0.

We can choose a small ε > 0 such that

− 2MD + εM + M0 + LPL + LPG1L + G2(M1 + LPL) + MAP−1AT M+

MBP−1BT M + MCP−1CT M < 0.

where

G1 = diag(

∫ ∞

0

k1(s)e
εsds,

∫ ∞

0

k2(s)e
εsds, . . . ,

∫ ∞

0

kn(s)eεsds),

G2 = diag(eετ1(h
−1

1
(t)), eετ2(h

−1

2
(t)), . . . , eετn(h−1

n (t))).

Consider the following positive definite Lyapunov function defined by:

V (y(t), t) = eεtyT (t)My(t) +

n
∑

j=1

(m1j + L2
jpj)

∫ t

t−τj(t)

y2
j (s)eε(s+τj(h

−1

j
(s)))ds

+

n
∑

j=1

pj

∫ ∞

0

kj(s)e
εs

∫ t

t−s

g2
j (yj(u))eεududs.
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By Ito’s formula, we calculate and estimate LV (y(t), t) along the trajectories of system (5) as follows:

LV (y(t), t) = εeεtyT (t)My(t)

+ 2eεtyT (t)M
[

− Dy(t) + Ag(y(t)) + Bg(y(t − τ(t))) + C

∫ t

−∞

K(t − s)g(y(s))ds
]

+ eεttrace[σT (t, y(t), y(t − τ(t)))Mσ(t, y(t), y(t − τ(t)))]

+

n
∑

j=1

(m1j + L2
jpj)y

2
j (t)eε(t+τj(h

−1

j
(t))) − eεt

n
∑

j=1

(m1j + L2
jpj)y

2
j (t − τj(t))

+ eεt

n
∑

j=1

pj

∫ ∞

0

kj(s)e
εsg2

j (yj(t))ds − eεt

n
∑

j=1

pj

∫ ∞

0

kj(s)g
2
j (yj(t − s))ds

= eεt
{

εyT (t)My(t) − 2yT (t)MDy(t) + 2yT (t)MAg(y(t))

+ 2yT (t)MBg(y(t − τ(t))) + 2yT (t)MC

∫ t

−∞

K(t − s)g(y(s))ds

+ trace[σT (t, y(t), y(t − τ(t)))Mσ(t, y(t), y(t − τ(t)))]

+

n
∑

j=1

(m1j + L2
jpj)y

2
j (t)eε(τj(h

−1

j
(t))) −

n
∑

j=1

(m1j + L2
jpj)y

2
j (t − τj(t))

+

n
∑

j=1

pjg
2
j (yj(t))

∫ ∞

0

kj(s)e
εsds −

n
∑

j=1

pj

∫ ∞

0

kj(s)ds

∫ ∞

0

kj(s)g
2
j (yj(t − s))ds

}

≤ eεt
{

εyT (t)My(t) − 2yT (t)MDy(t) + 2yT (t)MAg(y(t))

+ 2yT (t)MBg(y(t − τ(t))) + 2yT (t)MC

∫ t

−∞

K(t − s)g(y(s))ds

+ trace[σT (t, y(t), y(t − τ(t)))Mσ(t, y(t), y(t − τ(t)))]

+ eε(τ(h−1(t)))yT (t)(M1 + LPL)y(t) − yT (t − τ(t))(M1 + LPL)y(t − τ(t))

+ gT (y(t))PG1g(y(t)) −

n
∑

j=1

pj

(

∫ ∞

0

kj(s)gj(yj(t − s))ds
)2}

= eεt
{

εyT (t)My(t) − 2yT (t)MDy(t) + 2yT (t)MAg(y(t))

+ 2yT (t)MBg(y(t − τ(t))) + 2yT (t)MC

∫ t

−∞

K(t − s)g(y(s))ds

+ trace[σT (t, y(t), y(t − τ(t)))Mσ(t, y(t), y(t − τ(t)))]

+ eε(τ(h−1(t)))yT (t)(M1 + LPL)y(t) − yT (t − τ(t))(M1 + LPL)y(t − τ(t))

+ gT (y(t))PG1g(y(t)) −
(

∫ t

−∞

K(t − s)g(y(s))ds
)T

P
(

∫ t

−∞

K(t − s)g(y(s))ds
)}

,

(10)
From Lemma 2, we have

2yT (t)MAg(y(t)) ≤ yT (t)MAP−1AT MT y(t) + gT (y(t))Pg(y(t))

≤ yT (t)(MAP−1AT M + LPL)y(t);
(11)
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2yT (t)MBg(y(t − τ(t))) ≤ yT (t)MBP−1BT My(t) + gT (y(t − τ(t)))Pg(y(t − τ(t)))

≤ yT (t)MBP−1BT My(t) + yT (t − τ(t))LPLy(t − τ(t));
(12)

2yT (t)MC

∫ t

−∞

K(t − s)g(y(s))ds ≤ yT (t)MCP−1CT My(t)

+
(

∫ t

−∞

K(t − s)g(y(s))ds
)T

P
(

∫ t

−∞

K(t − s)g(y(s))ds
)

.

(13)
From (10-13), we have

LV (y(t), t) ≤ eεtyT (t)[−2MD + εM + M0 + LPL + LPG1L + G2(M1 + LPL) + MAP−1AT M+

MBP−1BT M + MCP−1CT M ]y(t) ≤ 0.

and so,

EV (y, t) ≤ EV (y, 0), t > 0

Since

EV (y, 0) = E

n
∑

i=1

[

mi|yi(0)|2 + (m1i + L2
i pi)

∫ 0

−τi(0)

y2
i (s)eε(s+τi(h

−1

i
(s)))ds

+ pi

∫ ∞

0

ki(s)e
εs

(

∫ 0

−s

g2
i (yi(u))eεudu

)

ds

≤ E

n
∑

i=1

[

mi|yi(0)|2 + (m1i + L2
i pi)

∫ 0

−τi(0)

|yi(s)|
2ds

+ piLi

∫ ∞

0

ki(s)e
εs

(

∫ 0

−s

eεudu
)

ds sup
−∞≤u≤0

|yi(u)|2
]

≤ max
1≤i≤n

[

mi + τ(m1i + L2
i pi) +

1

ε
piLi

∫ ∞

0

ki(s)(e
εs − 1)ds

]

E

n
∑

i=1

sup
−∞≤u≤0

|yi(u)|2

where m1i are entries of the matrix M1 and

EV (y, t) ≥ eεt
E

n
∑

i=1

mi|yi(t)|
2 ≥ eεt min

1≤i≤n
miE

n
∑

i=1

|yi(t)|
2, t > 0

We easily obtain that

E‖y(t; φ)‖2 ≤ cE‖φ‖2e−εt, t ≥ 0

where c ≥ 1 is a constant. The proof is complete.

When C = 0, the system (5) or (6) turns into following system:







dy(t) =
[

− Dy(t) + Ag(y(t)) + Bg(y(t − τ(t)))
]

dt + σ(t, y(t), y(t − τ(t)))dw(t)

y(t) = φ(t), −∞ ≤ t ≤ 0, φ ∈ L2
F0

([−∞, 0], Rn).
(14)

We can easily obtain the following corollary
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Corollary 1. Assume that there exist positive diagonal matrices M = diag(m1, m2, . . . , mn), M0, M1

such that trace[σT (t, y(t), y(t− τ(t)))Mσ(t, y(t), y(t − τ(t)))] ≤ yT (t)M0y(t) + yT (t− τ(t))M1y(t−
τ(t)), then the equilibrium point of system (14) is exponentially stable in the mean square if there
exist a positive diagonal matrix P = diag(p1, p2, . . . , pn) such that

− 2MD + M + M0 + LPL + LPG1L + G2(M1 + LPL)+

MAP−1AT M + MBP−1BT M < 0.

When the feedback matrix A = 0 in Theorem 1, we can easily obtain the following corollary

Corollary 2. Assume that there exist positive diagonal matrices M = diag(m1, m2, . . . , mn), M0, M1

such that trace[σT (t, y(t), y(t− τ(t)))Mσ(t, y(t), y(t − τ(t)))] ≤ yT (t)M0y(t) + yT (t− τ(t))M1y(t−
τ(t)), then the equilibrium point of system (5) is exponentially stable in the mean square if there
exist a positive diagonal matrix P = diag(p1, p2, . . . , pn) such that

− 2MD + M + M0 + LPL + LPG1L + G2(M1 + LPL)+

MBP−1BT M + MCP−1CT M < 0.

When the delayed feedback matrix C = 0, the feedback matrix A = 0, in Theorem 1, we can
easily obtain the following corollary

Corollary 3. Assume that there exist positive diagonal matrices M = diag(m1, m2, . . . , mn), M0, M1

such that trace[σT (t, y(t), y(t− τ(t)))Mσ(t, y(t), y(t − τ(t)))] ≤ yT (t)M0y(t) + yT (t− τ(t))M1y(t−
τ(t)), then the equilibrium point of system (5) is exponentially stable in the mean square if there
exist a positive diagonal matrix P = diag(p1, p2, . . . , pn) such that

− 2MD + M + M0 + LPL + LPG1L + G2(M1 + LPL) + MBP−1BT M < 0.

Remark. Obviously, the results in Corollary 1,2,3 are more simple than Theorem 2 in [5] and
Theorem 1 in [15,16]. Thus, Theorem 1 above generalizes the result in [5,15,16].

4 An example

In this section, an example is used to demonstrate that the method presented in this paper is
effective.

Example. Consider the two state neural networks (5) or (6) with the following parameters:

A = (aij)2×2 =

(

0.1 0.7
0.3 0.1

)

, B = (bij)2×2 =

(

0.2 0.3
−0.3 0.2

)

,

C = (aij)2×2 =

(

0.3 −0.1
−0.1 0.7

)

, D = (dij)2×2 =

(

3.1 0
0 3.0

)

,

σ11(t, y1(t), y1(t − τ1(t))) =
y1(t)

2
+

y1(t − τ1(t))

2
, σ12(t, y2(t), y2(t − τ2(t))) = 0,

σ21(t, y1(t), y1(t − τ1(t))) = 0, σ22(t, y2(t), y2(t − τ2(t))) =
2y2(t)

5
+

2y2(t − τ2(t))

5
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where τ1(t) = τ2(t) = 1
4e−4t + 1

4 sin t, the activation function f1(t) = cos t
3 + t

3 , f2(t) = sin t
2 + t

4 ,

and the kernel k1(t) = k2(t) = 1
5e−5t. Clearly, fi(i = 1, 2) satisfies the hypothesis with L1 = L2 = 1

and ki(i = 1, 2) satisfies
∫ ∞

0
ki(s)ds = 1. Let hi(t) = t − τi(t) = t − 1

4e−4t − 1
4 sin t(i = 1, 2), then

h′
i(t) = 1 + e−4t − 1

4 cos t > 0. Hence the inverse function of hi(t) exists. Taking M = I, where I

denotes the identity matrix of size n, and

M0 =

(

0.5 0
0 0.32

)

, M1 =

(

0.25 0
0 0.16

)

.

Choose P = I, then we have

− 2MD + M + M0 + LPL + LPG1L + G2(M1 + LPL)+

MAP−1AT M + MBP−1BT M + MCP−1CT M ≤

(

−0.08 0
0 −0.17

)

< 0,

Therefore, by theorem 1, the equilibrium point of Eq. (1) is exponentially stable in the mean square.
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