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Abstract

In this paper, we prove the existence of an entropy solution to unilateral problems associated to the
equations of the type:

Au+ H(z,u, Vu) — divg(u) = p € L(Q) + WP @)(Q),

where A is a Leray-Lions operator acting from Wy (Q) into its dual W=12(®)(Q), the nonlinear
term H(z, s,¢) satisfies some growth and the sign conditions and ¢(u) € C°(R, RN).
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1 Introduction
This paper is devoted to the study of the following nonlinear problem:

Au+ H(z,u, Vu) — div(¢p(u)) = f —div(F) in Q
{ u=20 on 0. (L.1)

In Problem (1.1) the framework is the following: € is a bounded open subset of IRY, N > 2, and
p: Q — IRT is a continuous function. The operator Au = —div(a(x,u, Vu)) is a Leray-Lions operator
defined on Wol’p(z)(Q) (this space will be described in Section 2). The function ¢ is assumed to be
continuous on IR with values in IR and the nonlinear term H(z, s, ) satisfies some growth and the
sign conditions. The data f and F respectively belong to L*(€) and (L¥' (@) (Q))N.

The study of problems with variable exponent is a new and interesting topic which raises many
mathematical difficulties. One of our motivations for studying (1.1) comes from applications to electro-
rheological fluids (we refer to [13] for more details) as an important class of non-Newtonian fluids
(sometimes referred to as smart fluids). Other important applications are related to image processing
(see [8]) and elasticity (see [16]).

Under our assumptions, problem (1.1) does not admit, in general, a weak solution since the term

#(u) may not belong to (Lj,.(2))" because the function ¢ is just assumed to be continuous on IR.
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In order to overcome this difficulty we use in this paper the framework of an entropy solution (see
Definition 3.1). This notion was introduced by Bénilan et al. [1] for the study of nonlinear elliptic
problems in case of a constant exponent p(.) = p.

The first objective of our paper is to study the problem (1.1) in the generalized Lebesgue-Sobolev
spaces with some general second member z which lies in L(€) + W—1# (@) (Q).

The second objective is to treat the unilateral problems, more precisely, we prove an existence
result for solutions of the following obstacle problem:

u is a measurable function such that v > 1 a.e. in Q, Ty(u) € Wol’p(x)(Q) and Yk > 0
/ a(z,u, Vu)VTi(u —v)de + | H(z,u, Vu)Ti(u —v)dr + / d(u)VT,(u —v)dx
Q Q
< / fTe(u—v)de + ] FVTi(u—v)de
Q

Q
Vv € WOLP(‘T) (Q) N L>®°(§) such that v > 1) a.e. in Q.

where 1 is a measurable function (see assumptions (3.6) and (3.7)), and for any non-negative real
number k we denote by T (r) = min(k, max(r, —k)) the truncation function at height k.

The plan of the paper is as follows. In Section 2, we give some preliminaries and the definition
of generalized Lebesgue-Sobolev spaces. In Section 3, we make precise all the assumptions and give
some technical results and we establish the existence of the entropy solution to the problem (1.1). In
Section 4 (Appendix), we give the proof of Lemma 3.5.

2 Mathematical preliminaries

In what follows, we recall some definitions and basic properties of Lebesgue and Sobolev spaces with
variable exponents. For each open bounded subset 2 of RN (N > 2), we denote

CH(Q) = {p :  — IR" continuous function, such that 1< p_ <p, < oo},

where p_ = inf p(x) and p, = supp(z). For p € CT(Q), we define the variable exponent Lebesgue
zeQ zeQl

space by: LP®)(Q) = {u : Q0 — IR is a measurable function such that / lu(z)|P®) dz < oo}, the
Q

p(z)
< 1} is a separable and

/ 1
reflexive Banach space, and its dual space is isomorphic to LP (””)(Q) where — + —— =1

p(x)  p(x)

space LP(®) () under the norm: ||ul|,) = inf{)\ >0 / / ulz)
Q

Proposition 2.1 (see [9]). (i) For any u € LP®)(Q) and v € LV ®)(Q), we have

/uvdx
Q

(i) For all py, pa € CH(Q) such that pi(z) < pa(z) for any x € Q, then LP>®)(Q) — LP1(®)(Q)
and the imbedding is continuous.

+ W|pz) |V|p (2) -
S e LU EONEIEE

Proposition 2.2 (see [9]). If we denote p(u) = / [uP@ dz Yu e LPW(Q), then the following
Q

assertions hold:

(i) |ullp@) <1 (resp.=1, >1) < pu)<1l (resp. =1, >1)

i) ey >1 = Nulfo, < p(w) < Jull2 and Julye <1 = [l < plu) < i,
(#ii) [[ullpz) =0 < p(u) =0 and |jullym) — o0 < plu) = oo.
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We define also the variable exponent Sobolev space
Wire) (Q) = { we LP@(Q) and |Vu| € LW)(Q)}

normed by [[ull1 p(a) = [@llp(e) + [|Vt]p() and denote Wy () the closure of C§°(€2) in W1»@)(Q)

and p*(z) = ]f,v_p]f&)) for p(z) < N.

Proposition 2.3 (see [9]). (i) Assuming 1 <p_ < p, < 0o, the spaces WP (Q) and Wol’p(x) Q)
are separable and reflexive Banach spaces.

(it) If g € CT(Q) and q(x) < p*(z) almost everywhere in Q, then there is a continuous and compact
embedding Wy P (Q) < L1@)(Q).
(iii) There is a constant C > 0 such that ||u\|p($) <C HVUHp(;E) Vu € Wol’p(w)(Q).

Remark 2.1 By (iii) of Proposition 2.3, we know that ||Vull,y and ||ully p) are equivalent norms
on W™ ().

Lemma 2.1 (see [7]). Let g€ L"™(Q) and g, € L"™)(Q) with lgnllr@) < C for 1 <r(x) < oo.
If gn(z) = g(z) a.e. on Q, then g, — g weakly in L") (Q).

3 Main general results

3.1 Basic assumptions and some lemmas

Throughout the paper, we assume that the following assumptions hold true:
The function a : Q x IR x RN — IRY is a Carathéodory function satisfying the following conditions:

la(z, 5,€)| < Bk(z) + |s[P® = + g™~ (3.1)

for every s € IR, ¢ € RN and for almost every x € Q, where k(z) is a positive function in L () (Q)
and [ is a positive constants.

la(z,s,£) —a(z,s,n)](§—n) >0 (3:2)
for almost every x € Q and for every s € R, &, n € RN, with & # 7.
a(z,5,€)¢ > alg["™ (3.3)

for almost every x € Q and for every s € IR, £ € IRY, where « is a positive constant such that

a > [|g|oo-
Let H(z,s,¢): Q2 x R x RN — RN be a Carathéodory function such that for a.e z €  and for all
s € R, £ € RN the sign and the growth conditions:

H(z,s,&)s>0. (3.4)
[H (2,5, 6)] < v(z) +g(s) |, (3.5)
are satisfied, where g : IR — IR™ is continuous increasing positive function that belongs to L>(IR)
while v(z) belongs to L'(€).
Let 4 be a measurable function such that for the convex set Ky = {u € Wol"p(z) Q) [ u>vae inQ

Ky N L™(Q) # 0. (3.6
holds. Finally, we suppose that
¢ € C°(R, RN), (3.7)
feLi(9), (3.8)
F e (LY @)V, (3.9)

Let p € C*(Q) be such that there is a vector I € IR\ {0} such that for any z € €,
h(t) = p(x +tl) is monotone for te€ I, ={t | x+1tl € Q}. (3.10)
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Lemma 3.1 (see [7]). Assume that (3.1) — (3.3) hold, and let (un)n be a sequence in Wol’p(z)(Q)
such that w, — u weakly in Wol’p(x)(Q) and

/Q (a(z, upn, Vuy) — a(z, up, Vu)) V(u, — u)de — 0, (3.11)

then w, — u strongly in Wol’p(m)(Q).
Lemma 3.2 Assume that (5.10) holds, then there is a constant C > 0 such that

pu) < Cp(Vu) ¥V ue WeP™(@Q)\{o}. (3.12)
Proof. Let

VulP®d
e o eVl
uewd ™ @)—{oy Jo ufP@dz

By Theorem 3.3 (see [10]), we have A, > 0, which implies that

Jo IVuP@ da

Lp(x)

0< A <

consequently there is a constant C' > 0 such that p(u) < Cp(Vu) for all u € Wol’p(w)(ﬂ)\{O}. [ |

Remark 3.1 The inequality (3.12) holds true if we assume: there exists a function & > 0 such that
VpVE >0, [VE#0 inQ (see [6]).

Lemma 3.3 Let F : IR — IR be a Lipschitz uniform function with F(0) =0 and p € C.(Q). If
u € WOLP(:E)(Q), then F(u) € Wol’p(x)(Q)7 moreover, if D the set of discontinuity points of F' is
finite, then
O(Fou) { F’(u)g—;i ae in {x€Q /u(z)¢ D}
Ox; 0 ae in {xe€Q /u(x)e D}

Proof. Taking at first the case of F € C1(R) and F’ € L*(IR). Let u € Wol’p(x)(ﬂ), and since

L,p(z)
CSO(Q)W @ _ Wy P(Q), then: Ju, € C§°(Q) such that u, — u in Wy (Q), we have
Up, — u a.e. in Q and Vu,, — Vu a.e. in Q, then F(u,) — F(u) a.e. in Q. On the other hand, we
have: |F(up)| = |F(un) — F(0)] < ||F'||looltn], then

p(z) p(z) p(z)

OF (uy,)

85&

Ouy,
8%

ouy,
8@

)

| (un) P < (1F[|oo + )7+ [un @) and ‘

= |1

31

where M = (||F'|| + 1)P+. We conclude that F(u,) is bounded in Wol’p(x)(ﬂ) and we obtain:
F(uy) converges to v weakly in Wo*™ (Q). Then F(u,) converges to v strongly in L7(™)(Q) with
1 < g(z) < p*(z) and p*(z) = Ji,vf;f(?y since F(u,) — v a.e. in Q, we obtain: v = F(u) € Wol’p(m)(ﬂ).

Let F : IR — IR a Lipschitz uniform function, then F, = F xy,, — F uniformly on each compact
set, where ¢,, is a regularizing sequence, we conclude that F,, € C'(IR) and F), € L*°(IR), from the
first part, we have F,(u) € Wol’p(x)(Q) and F,(u) — F(u) ae. in Q. Since (F,(u)), is bounded

in WP (Q), then F,(u) — 7 weakly in W, P")(Q), we obtain 7 = F(u) € Wy ?")(Q). ]

Lemma 3.4 Let Q be a bounded open subset of RN (N >1). Ifue (Wol’p(m)(Q))N then

/Qdiv(u)dx =0.
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: — (] N Lp(@) ()N Lp(@) 0y — sty (@)
Proof. Fix a vector u = (u',...,u") € (W, (©))". We have W, (Q) =C5e(Q) and

thus each term u’ can be approximated by a suitable sequence u}, € D(£2) such that, u} converges to
u® strongly in VVO1 P (‘T)(Q). Moreover, due to the fact that uf € C§°(Q), then the Green formula gives

5'u i =
/ (%’:d /8(2 ujiids = 0. (3.13)
ou; ou' oul ou'
On the other hand, Y, 20 strongly in LP(*)(Q). Thus Y, U strongly in L'(£2), which
ox; ox; ox; ox;
gives in view of (3.13): / div(u)dx = 0. n
Q

3.2 Existence of an entropy solution

In this section, we study the existence of an entropy solution of problem (1.1). We now give the
definition of an entropy solution

Definition 3.1 A measurable function u is an entropy solution to problem (1.1) if for every k > 0:

w> P ae inQ, Th(u) € Wy ™(Q),
/ a(x,u, Vu)VT,(u — v)dr + / H(z,u,Vu)Ty(u — v)dz + / d(u)VT(u —v)dx
(P) Q Q
< / fTi(u—v)de+ | FVTi(u—v)de
Q Q
for every function v € Ky N L>®(Q).

Our main result is

Theorem 3.1 Under assumptions (3.1)—(3.10), there exists at least an entropy solution of problem
(1.1).

Proof of Theorem 3.1. The proof is divided into 4 steps.

Step 1: The approximate problem

In this step, we introduce a family of approximate problems and prove the existence of solutions to
such problems.

Theorem 3.2 Let (fn)n be a sequence in W=7 @) (Q) 0 LY(Q) such that f,, — f in LY(Q), and
I fnlls < 1Ifll1, and we consider the approzimate problem:

Up € Kﬂ,
(A, up — / H,(z,upn, Vup)VTi(uy —v) dm—i—/ O (T (un))V(u, —v)de

/fn Up, d:c+/FV(un7v)d:c Vv € Ky N L),
Q

(Pn)

H(x,s,§)

——> %) Note that
L+ [ H (2, 5,8)]

where 6, (s) = G(Tn(s)), At = —div(a(@, un, Viun)) and Hy(x,5,€) =

Hy(,5,8)s >0, [Hp(x,5,8)| < [H(x,s,§)| and |Hp(z,s,£)| < n.
Assume that (3.1)~(3.10) hold true, then there exists at least one weak solution w,, for the approximate
problem (P, ).

Proof. Indeed, we define the operator G,, = —div (¢,,) : Wol’p(w) (Q) — WL (#)(Q), such that

(G (u),v) = —(div ¢, (u / ¢n(u) Vo dz Yu, v € Wol’p(m)(Q).
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Using the Holder inequality, we deduce

1
/ o (u) V0 di < (p ; p,) 160t 190 e

- i p(:v )70
<( n )(/ T @)@ da ) olliae) -

< (1 + %) (meas(Q)( sup |¢(s)| + 1)”*) [v]l1,p(z)

p— p— |s|<n
< Collvll1p)

where
. p% if H(bn(u)llp/(m) >1
U E i @l <1

and C is a constant which depends only on ¢, n and p.
We define the operator R, : Wol’p(r) (Q) = W12 @)(Q), by

(R (u),v) = / Hy(z,u, Vuyodz Yo € Wy (),
Q

using the Hoélder inequality, we have for all u, v € W, Lp() (Q)

1 1
/QHn(Lu,Vu)vd:r < (p + p'> | Hp (2, u, V) ||y () | VOl ()

1
1 "
<(—4+ = H,(z,u, V)P @) do + 1
(L4 ) ([ Haten Tl @ e +1) lohpr )

1 1 '
(p + p’) . (np+meas(ﬂ) + 1) [vll1,p(x)

> ClHU”Lp(r)'

IN

Lemma 3.5 The operator B,, = A+ R,,+G,, is pseudo-monotone from W&’p(z)(Q) into W12 (@) (Q)).
Moreover, By, is coercive in the following sense: there exists vy € Ky such that:

{Bnv,v — vo)

o] — +00 if |[v|[1 p) — 00 and v € Ky.
Vil1

()

Proof. See the appendix. ]

In view of Lemma 3.5, there exists at least one solution u,, € T/VO1 P (x)(Q) of the problem (F,), (see

[12]).

Step 2: A priori estimate

In this step, we establish a uniform estimate on u,, with respect to n.

Proposition 3.1 Assume that (3.1)—(3.10) hold true. Let u, be a solution of the approzimate problem
(P,,), then for all k > 0, there exists a constant c(k) (which does not depend on n) such that

/ VT (1) |P@dx < c(k). (3.16)
Q
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Proof. Let vg € Ky NL>®(Q), k > ||vg]|ec and h > 0, so as v = Tj,(uy, — Tx (un, — vg)) € Ky NL>®(Q).
Taking v as a test function in (P,,) and letting h — +o00, we obtain, for n large enough (n > k+||vo]|so):

/ a(x, Up, Vg )V Tk (u, — vg)dz —|—/ Hy,(z,upn, Vup) T (u, — vo)dx —|—/ & (un)VTE(un — vo)dz
Q Q Q
< / JoTk(un — vo)dz —I—/ FVTi(upn — vo)d,
Q Q
which implies that
/ a(x, Up, Vg ) VT (u, — vo)dr < H,(x,un, Vuy,)vg dz
Q {lun—vo|<k}
+/ (T4 0o (un)) |V |da
{Jun—vo|<k}
+ DTt o) (1)) V0
{|un—vo|<k

Rl + / FIVuy|dz

{|lun—vo|<k}
{Iun*vo‘<k}
Thus,

/ a(x, Up, Vi) Vu,de §/ la(x, un, Vuy,)||Vug|de
{|un—vo|<k} {lun—vo|<k}

+loole [ 3(@) + 9(1a) [V [P da
{lun—vo| <k}
+ (6Tt (1)) [V
{lun—vol<k}
+f (6Tt (1)) [ Vool
{|un—vo|<k}

RIS+ / |F|| Vi |da
{|un_U0‘<k}

+/ |F'||Vvg|da.
{|un—vo|<k}

Since ¢ € CO(IR, IRN), F e (L ®)(Q))N and using Young’s inequality, we obtain

a/ |V, |P@) da: Sco/ |a(x,un,Vun)|p/(I)dx
{|un_U0|<k} {\un—vo|<k}

+c / |V, |P@®) da:
{|tn—vo|<k}

- / |V, [P@da + c(k).
{Jun—vo|<k}

wl|

From (3.1) and (3.3), we deduce

a / |V PPde <% / ([un [P + |V, [P*)) da
{lun—vo|<k} 6 J{Jun—vo| <k}

+a / |V, [P@) dz
{|u7L7U0‘<k}

+ / |V, |P@dz + c(k),
{lun—vo|<k}

w|e
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hence,

(g — c1> / |Vun\p(:”)dx < c(k),
2 {Jun—vol <k}

where c(k) is a constant which depends of k. Since {|uy| < k} C {|un —vo| <k + ||vo||oo }, We deduce
that / (VT (un)[P® dx < e(k). n
Q

Step 3: Strong convergence of truncations
In this step, we prove the strong convergence of truncations.

Proposition 3.2 Let u,, be a solution of the problem (P,,), then there exists a measurable function u
such that
Tk (un) = Ti(u) strongly in Wol’p(m)(ﬂ).

In order to prove Proposition 3.2, we will use the following lemma:

Lemma 3.6 Assume that (3.1)—(3.10) hold true. Let u, be a solution of the approximate problem
(Pn). Then

/ VT (wy, — Th (un))|P@dz < ke (3.17)
Q

for all k > h > ||vo||eo, where ¢ is a constant independent of k and vy € Ky N L>®(Q).

Proof. Let [ > ||vg||so. It is easy to see that v = Tj(un — Tr(un — Th(un))) € Ky N L®(Q). By using
v as test function in (P,) and letting | — oo, we obtain

/ a(z, Up,Vun) VT (u, — Th(uy,))dz + / H, (z,un, Vup) Ty (wy — Th(uy))dx

Q Q
+/9¢(Th(un))VTk(un — Th(up))dz (3.18)
< /Q FuTo(un — T (un))da + /Q FV T (up — T (un))da.

Let us define

1 if h<lt|<h+k
0 otherwise.

wnlt) = {
~ ¢

We consider 0(t) = ¢(t)xni(t) and 6(t) = / O(s)ds. Then by Lemma 3.4, we obtain
0

/Q¢(un)VTk(un — Th(uy))dx = /Qq’)(un)xhk(un)Vundﬂc = /Qe(un)Vund:v = /de(é(un))dx =0.

Then, the second term of the left side of the inequality (3.18) vanishes for n large enough, which
implies that

/a(m,Vun)VTk(un —Th(un))dm+/ Hy, (z,upn, Vg )tun Xk (un)dz
Q Q

Q
By using Young’s inequality, we can deduce that

/ a(x, un, Vun) VT (up — Th(un))dz < k|| fllL@) +c1 + %/ VT (un — Th(un))|p(m)dx.
Q Q
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Since VT (un — Th(un)) = Vupxnk a.e. in £, then
/ a(z, tp, VT (un — T (un)) VTt — Th(un))de < keg + %/ VT (tr, — Th ()P daz.
Q Q

Finally, from (3.3), we deduce (3.17) of Lemma 3.6. ]

Proof of Proposition 3.2. We will show firstly that (u,), is a Cauchy sequence in measure.
Let vg € Ky N L>®(Q) and k > 2h > 2||vg||co large enough, we have

k meas({|un, — Th(un)| > k}) < / | Tk (wn, — Th(un))| dz.
{lun—Th(un)‘>k}

Using (3.17) and applying Holder’s inequality and Poincaré’s inequality, we obtain that

k meas({|un, — Th(un)| > k}) < /Q |Th (wn, — T (up))| dx

1 1
< | — 4+ — | |Ulpr iy | Th (e, — Th(tr, z
(5= + o7 ) Il = TaCua s o
11 +
s\om Ty (meas() +1)" [Tk (un — Th(un))lp(a)
< C4k%a
where
Lif (VT (un — Th(un)) || >1
S g n e 3.20
K { L i VTt — T (un)) () < 1. (3.20)
Finally, for k& > 2h > 2||vg]|c0, We have
meas{|un| > k} < meas{|u, — Th(un)| >k —h} < W (3.21)
Passing to the limit as k goes to infinity, we deduce
meas({|un| > k}) — 0, (3.22)
then, for every ¢ > 0, there exists kg such that
meas{|up| > k} < % and  meas{|up| >k} < % VEk > ko. (3.23)

For every § > 0, we have
meas {|un — um| > 0} < meas {|un| > k} + meas {|um| > k} +meas {|Tk(un) — Ti(um)| > 5}

By (3.16), the sequence (T (t))n is bounded in Wy (€), then there exists a subsequence (Ty (tn))n
such that T (u,) converges to 7 weakly in Wol’p(z)(Q) as n — oo, and by the compact imbedding, we
have T} (u,) converges to ng strongly in LP(®)(Q) a.e. in Q. Thus, we can assume that (7% (uy)), is a
Cauchy sequence in measure in ), then there exists an ng which depends on § and € such that

meas{|Tx(un) — Ti(um)] > 0} < V' m, n>mngand k > ko. (3.24)

Wl M

By combining (3.23) and (3.24), we obtain

Vé>0, 3e>0: meas{|up, —um| >0} <e Vn, m > ng(ko,9).
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Then (uy,), is a Cauchy sequence in measure in {2, thus, there exists a subsequence still denoted by
u, which converges almost everywhere to some measurable function u, then u,, converges to u a.e. in
), by Lemma 2.1, we obtain

{ Ti(un) = Ti(u) weakly in Wo"' () (3.25)

Ty (un) — Ti(u) strongly in LP(*)(Q) and a.e. in .
Now, we choose v =T (un —exp(G(up))hm (tn —vo) (T (un) — Tk(u))) as test function in (P, ), where

G(s) = /05 @dt and

[e%

1 if [s| <m
ho(s) =4 0 if [s| > m+1 (3.26)
m+1—s| iftm<|s|<m+1.

For every n > m + 1, and by letting | — oo, we obtain that
0 0) 9 exp(G) o, = 00)(Ti) = Tiw))
+ /Q Hy (z, un, V) exp(G(tn)) b (tn, — vo) (Tk (un) — Ti(w))dx
+ /Q 6(1n)V exD(G (1) o (10 — 0) (T (1) — T () de
< [ 10 expG ) (1 = 00)(Ti (1) — Tilw)d
Q
+ | PV exp(Glua) o, = 00)(Ti) = Tufu)
which implies that

/Qa(:zr7 Uy Vn )V (Tk () — T (w)) b (Ur, — v0) exp(G(uy,))dx

+ /Q a(x, Uy, Vun)Vung(Zn> (Ti(un) — Ti(w) oy, (i, — v0) exp(G(uy,))dx
+ /Q a(, Up, Vg )V (uy — vo)hl, (un — v0) (T (upn) — Ti(w)) exp(G(uy,))dz
+ ; &(un)V (Up —v0)hl, (un, — v0)(Tk (upn) — Tk (w)) exp(G(uy,))dz

+ /Q O (un)V (Ti(un) — T (w)) b (un, — vo) exp(G (uy,))dx

+ / (1) Vi 2 (un) (Tho(un) — T (1)) o (i — v0) exp(G(un))da
O Q
< / (fr + (@) P (U — v0) (Th(tn) — Ti(u)) exp(G(uy))dz
Q
+ / G|Vt [P oy (g, — 00) (T () — The (1)) exp(G(uy ) )da
Q
+ / FYV (uy, — vo)hl, (un — vo)(Tk(un) — Tk (u)) exp(G(uy,))dx
Q
+/ FVunM(Tk(un) — T (w)hm (un — vo) exp(G(uy,))dx
o) a

4 /Q FV (T (ttn) — Tio(t0) ) o (10, — v0) exp(G (1) ).
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In view of (3.3) we have
/Q (@, s Vi)V (Ti (tn) — T (1)) (11, — v0) exp(G (uy,))dex
+ /Q (2, U, Vit )V (tt, — v0) 1, (1, — 00)(The (1) — The(w)) exp(G (un))da
+ /Q P(un)V (tn — v0) iy, (un — v0)(Th (un) — Th(u)) exp(G (uy))da

+ / P(un)V (Ti(un) = Ti(w))hin (un — vo) exp(G (un))dz
Q

+ /Q (1) V2 (Z”) (T (1) — T (1)) (11, — v0) exp(Gi(uin )z
< [ (1) = 00) (T 1) = Ti(w) exp(Glun)
Q
+ /Q FV (uy, —vo)hi, (un — vo)(Tk(un) — Tk (u)) exp(G(uy,))dx
+ / Fvu, 9
Q a

+ / FV(Ti(upn) — T (w) o (un, — vo) exp(G(uy,))dx.
Q

(T (un) — T (W) oy (uy, — v0) exp(G(uy,))dx

The pointwise convergence of u, to u, the bounded character of h,, and Ty make it possible to
conclude that A, (u, — vo)(Tk(un) — Tk(u)) converges to 0 in L () weakly-*, as n — oo, remark

that exp(G(u,)) < exp (W#) then

[ 20 ot = 20) (T ) = T () exp(Gan ) = e, (3.27)
Q
where ¢(n) tends to 0 as n tends to +00. Moreover, by using Lebesgue’s theorem, we get ¢ ()l (b, —

vo) converges to ¢(u)hy, (u—1vo) strongly in L' (*)(Q2), and since VT}(u,) converges to VT (u) weakly
in LP(*)(Q), we can deduce that

/qu(un)V(Tk(un) — T (w)) o (un, — vo) exp(G(uy,))dz = e(n). (3.28)
Similarly we have
/QFV(Tk(un) — Ti(w)) A (uy, — vo) exp(G(uy,))dx = €(n). (3.29)

On the other hand, remark that

/QFV(un — o)A (1t — v0) (T (1) — Th(0))dz

/QFV(U’TL - UO)(Tk(un) - Tk(’U/))X{m<|unfvo\<m+1}dx
< [ 1V (T (an) = 0) (Tuli) — Tiw)|
Q
with M = m—+1+4||vg||oo- By Lebesgue’s dominated convergence theorem, we deduce that F (T (u,)—

Ti(u)) converges to 0 strongly in L¥' (*)(Q), and since V(Tas(un) — vo) converges to V(Tar(u) — vo)
weakly in (LP®)(Q))V, we obtain

/QFV(un —vo)hl, (un — o) (Tk(un) — T (u)) exp(G(uy))dz| = €(n). (3.30)
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Similarly, we can write
/Qqﬁ(un)V(un —vo)hl, (un — v0) (Tk(un) — T (u)) exp(G(uy))dz = €(n). (3.31)

Moreover, by using Lebesgue’s theorem, we have

Fg(Zn)hm(un —v0)(Tk(up) = Ti(u)) = 0 in L;Dl(a;)(Q)7

and since Vu,, — Vu weakly in (LP(®) (Q))Y, we have

/Q Fvu,? (Z”) (Tio(tn) — Tho (1)) (1, — v0) exp(G(un))da = €(n). (3.32)

Similarly, we can write

) (1) Vi 2 (Z") (Tho(un) — Tio(u) ) g (4, — v0) exp(G(un ) )dz = €(n). (3.33)
We claim that
/Qa(a:, Un, V)V (up, — vo) il (U — v0) (Tk (un) — Tk (u))dz = €(n). (3.34)

Indeed, we have

/Qa(:c, Uny Vun )V (upn, — vo)hl, (t — v0)(Tk(un) — T (u))dz

§2k/ a(x, Up, Vg )V (U, — vo)‘das
{m<|un—vo|<m+1}

<2k / a(x,un,Vun)Vundx—i—/ la(x, Vuy,)||Vvg|dz
{I<]|un|<l+s} {I<un|<l+s}

where | = m — ||vo||oo and s = 2||vg||e + 1. Now we choose v = wu,, — Ts(un — Tj(uy,)) as test function
in (P,), we get

/ a(ac,un,Vun)Vundx—l—/ Hn(x,un,Vun)undx—l—/ div(é(un))dx
(1< un| <Lts} (1< un|<l+5} Q

< /Q FuTs(up — Ty (uy))dx + /Q FVTs(uy — Ty (uy))dx,

where 0,(t) = /0 0s(z)dz and 6,(z) = ¢(2)xsi(z) with

_J1 I<t<l+s
Xsl 0 otherwise.

Since 0(uy,) € (Wol’p(z) (2))" and by Lemma 3.4, we get

/ a(x, Un, Vi) Vuyde < s/ | frld +/ FYVu,dz. (3.35)
(1< un|<i5} {lun|>1} (1< un|<l45}

Firstly, we show that
/ FVu,dx = e(n,l).
{I<]un|<l+s}
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Indeed, by (3.35) and Young’s inequality, we get

{I<|un|<i+s} {Jun|>1} (un| >0}

—|—g/ |V, [P da.
2 Ju<fun|<t+s}

By (3.3), we obtain
g/ |V, |P@ da < s/ | frnldx + c/ |F|P"®) dg,
2 Jugiuni<i+s) {lunl>1} {lunl>1}
which implies that
2s 2c

/ IVTs(uy — Tl(7~‘n))|p(w)dm < — | fnldx + — |F|p/($)dx.
Q2 @ {lun|>1} @ {lun|>1}

We use the L'(2) strong convergence of f, and since F € Lp/(“")(ﬂ), we have by using Lebesgue’s

theorem, as first n and then [ tends to infinity
lim  lim / VT — Ti(u)) Pz = 0,
l—+4oon—+oo Jo
which implies by Holder’s inequality that
lim lim FVTs(un — Ti(uy))dx = 0.

l=>+ocon—+o0 [o

So that

/ FVu,dx = e(n,l).
{I<lun|<l+s}

Finally by (3.35) and (3.36) we deduce
/ a(‘r’unvvun)vundx = e(n,l).

{lg‘un|§l+s}
On the other hand

/ |a(m7un7 vun)l|VUO|d(E
(1< un|<l+s}

, ¥
<c (/Q la(x, VTs(un — Ti(un))) P (w)dx) V00X {1} ()

Y
<c (/Q |k(x) + |VTS(un - Tl(un))‘p(z) + |TS(un - Tl(un))|p(m)dm> HVUOX{|UTL|>1}HP(I)’

where

o { o= i [lae, VT (un = Ti(un))|lp ) > 1
it fla(x, VTs(un — Ti(un)))lp @) < 1.

't

Furthermore, by Lemma 3.6 we have
/ VT (un, — Ti(un)) P@dz < c(s),
Q

and
/ (Tt — i) P < ¢/ (5),
Q

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)
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where ¢(s) and ¢/(s) are two constants independent of [. By (3.38), (3.39) and (3.40), we obtain
/ la(z, wp, Vu,)||Vugldz = e(n,1). (3.41)
(1< un|<l+s}

Finally, from (3.37) and (3.41) follows the estimate (3.34) combining (3.27), (3.28), (3.29), (3.30),
(3.31), (3.34) and | = m — ||vo||ec, We get

/ a(@, Un, V)V (Tk (un) — Ti(w)) A (wn, — vo)dx < €(n, m). (3.42)
Q
Splitting the first integral on the left hand side of (3.42) where |u,| < k and |u,| > k, we can write
/ a(x, Up, V)V (Tk (un) — Ti(w) b (wn, — vo)da
Q
:/ a(z, T (un), VI (un))V(Tk(un) — T (@) by (ur, — vo)da
{‘u'n‘gk}
— / a(x, Up, Vg ) VT (W) iy (4, — vo)dz
{lun|>k}
2/{ T (), VT 00) ¥ (Ti) — T~ o)
un | <k
= | 1o Tas ), 9T ) VT 1

where M = m + ||vg|oo + 1. Since a(z, Tas(un), Vs (uy)) is bounded in (LP'®)(Q)N | we have for a

subsequence a(z, Tas (un), Vs (un)) — Ly, weakly in (L>°(Q))Y asn — +o0. Since ’87:{;7567") X{Jun|>k}
converges to ’82’;&“) ‘ X{u|>k} = 0 strongly in LP(I)(Q), we get
[ 1ol Tas(n). 931 () [ VL@ 101209 = ). (3.43)
Q
From (3.42) and (3.43), we have
/ a(z, T (un), VT (un))V(Tk(wr) — Ti(w)) A (un — vo)dz < e(n,m). (3.44)
Q

It is easy to see that
/sz a(z, T (un), VT (un))V (Ti(un) — T (w)) Ay (uy, — vo)d
- /Q (a(z,Tk(un), YTk (un)) — a(z, Th(un), VTk(u))>V(Tk(un) — T () (11 — v0)da:
+/ a(z, T (un), VIE(u))V (T (ur) — Ti(w)) b (un — vo)dx
Q (3.45)
:/Q (a(:z:,Tk(un), VTi(un)) — alz, T(un), VTk(u))>V(Tk(un) — Ty () (1 — v0)da
+/Qa(x,Tk(un),VTk(u))VTk(un)hm(un — vg)dx

- /Qa(x,Tk(un),VTk(u))VTk(u)hm(un —vg)dx.

By using the continuity of the Nemytskii operator, we have that a(x, Ty (un), VIk(w))hm (tn — vo)
0Ty (u)

converges to a(x, Ty (w), VI (1) ) o (u — 1) strongly in (LP' @) (Q)N while 9T(un) converges to o

ail?i
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weakly in LP(®)(Q), the second and the third term of the right hand side of (3.45) tend respectively

to / a(x, Ty (u), Vg (u)) VT (w)hy (v — vo)dz and —/ a(x, Ty (u), VT (w)) VT (w)hm (u — vg)dz. So
thatQ(3.44) and (3.45) yield :

/Q (a(z,Tk(un), VT (un)) —a(z, Ty (un), VTk(u))>V(Tk(un)—Tk(u))hm(un—vo)dx < e(n,m) (3.46)
which implies that

/Q (aler. Tian). VTe(wn)) — ale, Teun), VT (w) )V (Ti(u) — Ti(u) e
- /Q (a(m,Tk(un), VTi(un)) — alz, T (un), VTk(u))>V(Tk(un) — T () (1 — v0)dac

+ /Q (a(@, T (un), VTk(un)) = alw, Ti(un), V() ) ¥ (Th(u) = Te(w)) (1 = hn = v9)) o
(3.47)

Since 1 — hy,(up, —vg) = 0in {z € Q : |uy — vo] < m} and since {x € Q : |u,| < k} C {x € Q:
|y, — v < m} for m large enough, we deduce from (3.47)

/Q (aler, Tiotn). Vi) — alar, VT () ) 9 (Tia) — Ti ()
= /Q (a(m,Tk(un), VTi(un)) — a(x, Ty (un), VTk(u)))V(Tk(un) — T (w) o (u, — vo)dx

_ / a(, T (), VT (u)) VT (1) .
{lun|>k}
It is easy to see that, the last term of the last inequality tends to zero as n — +00, which implies that

/Q (a(@, Te(wn), VTi(un)) = ale, Ti(un), V() )V (Tk(wn) = Th(w))de

:/Q (a(x,Tk(un), VTi(un)) — al@, Tr(un), VTk(u))>V(Tk(un) — T3 ()Y (i, — v0)dz (3.48)
+ e(n).

Combining (3.46) and (3.48), we obtain
/ (@, Tiun), VT4 (un)) = ale, T (), V() ) V(T (1) = Ti(w))da < e(n,m).
Q
By passing to the lim-sup over n and letting m tend to infinity, we obtain

lim sup hmsup/Q (a(xaTk(un)a VTk(un)) - a(vak(un)v VTk(u))>v(Tk(un) - Tk(u))dx =0,

m— o0 n—oo

thus implies by Lemma 3.1

Tk (un) — Tk (u) strongly in Wol’p(a:) (Q). (3.49)
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Step 4: Passing to the limit in (F,)
In order to pass to the limit in approximate equation, we now show that
H,(x,un, Vu,) — H(z,u, Vu) strongly in L*(Q).

In particular, it is enough to prove the equi-integrability of the sequence (H,(z,u,, Vuy)),. To this
purpose, we take Tj11(uy,) — T;(un) as test function in P, we obtain

/ | (2, 1, V)| d g/ \fulda (3.50)
{lun|>1+1} {lun|>1}
Let € > 0 be fixed. Then there exists I(¢) > 1, such that
/ H (2, 4, Vi < & (3.51)
{lun|>1()} 2
For any measurable subset E C 2, we have
[, Fulds < [ @)+ g0 T )P e+ [ e, V)
E E {lun|>1(e)}

In view of (3.49), there exists n(e) > 0, such that

/ ~v(z) + g(l(5)|VTl(6)(un)|p(m)dx < for all E such that meas(FE) < n(e). (3.52)
E

£
2
Finally, by combining (3.51) and (3.52) we have

/ |Hp (2, U, Vuy)|dr < e for all E such that meas(E) < n(e),
B

then, we deduce that (H,(x, un, Vuy)), are uniformly equi-integrable in €.
Let v € Ky NL>®(Q), we take T;(u, — Ti(un —v)) as test function in (P,) and letting I to oo, we can
write, for n large enough (n > k + ||v]|s0)

/ a(, Up, Vun )VTg(uy —v)da + | Hy(x, un, Vup) T (u, —v)de | ¢(un) VT (u, — v)dx
Q Q

Q
< [ £t =)+ /Q FVTy(un — v)da.
We get
Aa(x,Tk+||v“w(un)7 VTt o)) (Un ) VTk(tn — v)dz + /Q H, (z,upn, Vuy)Ti(u, —v)dx
[ 6Tt ) VT = 0)de < [ £ T = v)da+ [ FVTu(u, — )

By Fatou’s lemma and by the fact that a(z, Ty |jv||.. (4n); Vg o] (un)) converges weakly in (Lp/(x) ()N

to a(z, Thy|jv)o (), VTiy o] (w)), it is easy to see that

/Qa(x, Tt o)) (W) Vg o)) () VT (u — v)da

(3.53)
< lirginf a(x, Trpfo])oe (Un)s VIt ||| oo (Un)) VT (1, — v)dz.
n oo Q
On the other hand, since F € (L? ) (Q))", we deduce that the integral
/ FVTi(upn, —v)dx — / FVTi(u—v)dz as n — oo. (3.54)
Q Q
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Moreover, using Lebesgue’s dominated convergence theorem, we deduce that ¢(Ty4 v (un)) con-
verges to ¢(Tjjv||. (1)) strongly in (LY@ (Q))N and VT (u, — v) converges to VT (u — v) weakly
in (LP®)(Q))N as n — 400, so that

/ ¢(Tk+||v\\m(un))VTk(un — ’U)dl’ — / ¢(Tk+‘|vum(u))VTk(u — ’U)dl’ as n — o0. (355)
Q Q
Similarly, we have
/ Tk (up — v)de — / fTi(u —v)de. (3.56)
Q Q
/ Hy(z,upn, Vup) Tk (u, — v)dz — / H(z,u, Vu)Ti(u — v)dz. (3.57)
Q Q

Using (3.53), (3.54), (3.55), (3.56) and (3.57), we can pass to the limit in (3.53) then we have
/ a(x,u, Vu)VT,(u — v)dx + / H(z,u, Vu)Ti (v — v)dz + / d(u)VT(u —v)dx
Q Q Q
§/ fTi(u —v)de + / FVTi(u—v)dz.
Q Q
As a conclusion of Step 1, Step 2, Step 3 and Step 4, the proof of Theorem 3.1 is complete. ]

Remark 3.2 Note that the condition (3.10) is used essentially to prove the coercivity of the operator
B,,. We can prove the coercivity of the operator By, if we replace the condition (3.10) by the condition

pt —p~ <1, (3.58)
this is the objective of the following theorem:

Theorem 3.3 Assume that (3.1)-(3.9) hold. In addition, let us assume that (3.58) also holds. Then,
there exists at least one solution of the unilateral problem (P).

Proof. Following the same steps of the argument of the proof of Theorem 3.1, it suffices to show the
coercivity of the operator B,,. Let vy € Ky, from Hoélder’s inequality and the growth condition we
have

(Av,vo) :/a(x7v,Vv)Vvodac
Q

11 i\
< C(pi + p/—_) (/Q |a(z,v, Vo)[P'( )dx> ||UOHW(}'?(“(Q)

’

1 1 / T xT xT K
< C(pi + F)HUOHWULMM(Q) </Q Bk(x)” @ + [pP®) 4 |Vo|P( ))da:>

< Co (C1 + p(v) + p(V0))

’

<Gy <01 +C(p(V) 7~ + p(W)>7 ;

where Lot fae,v, Vo)
— if |la(x,v, Vv / >1
r_ I X s Uy Lp (w)(Q) 3.59
v { it la(@, v, Vo) e o) < 1. (3.59)
From (3.3) we have
Av,v Av,v 1 2t 04
o) (v (ap(V0) = Co(Cr + C(T0) = +p(V0)) . (3.60)
HU”LP(I) ||U||1,p(z) ||U||1,p(z)
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Since ||v|]1 p(z) — 00, we have |la(z,v, VV)||fp@)(q) > 1, then v = p%, and due to the fact that

pt —p~ < 1, we have # < 1, then

(Av,v) (Av, vg)

||U||1,p(a:) HUHl,p(w)

=00 as |[v||1p@) — oo

Since
< Gpu,v > < Gpu,vg> < Rpv,v> an < R,v,v9 >
||U\|1,p(a;) 7 ||v||1,p(w) ’ HUHl,p(g;) ||U||l7p(:v)

are bounded, we have:
< Bpv,v — vy >
——————— — 00 as [|v][1 p(a) = oo
||U||1,p(w)

Therefore Theorem 3.3 holds true. [ |

4 Appendix

Proof of Lemma 3.5. Let vy € K. From Hélder’s inequality and using the growth condition, we
obtain

(Av,v0>:/a(m,v,Vv)Vvodx
Q

< 1 1 P (z) "
< O+ o) Jate, e, Tl @) ol g

]. 1 (x T x K
< Cloz+ o Mllygoco oy [ ARE + 0P+ 90170 o)

’

< Co(C1 + p(v) + p(vm)“

< Co (Cl + Cp(Vv) + P(V”)yy )

e Lot (e, Vo)
if |la(x,v, Vv /o >1
r_ P ) ) Uy L' (=) (Q) = 4.1
7= it (a0, V)l ooy < L (0
From (3.3) we have
A A /
(Av,v) _ {Av,vo) > (ap(Vv) — Co(Cy + Cp(Vv) + p(Vv))Y ) (4.2)
HUHLP(I) ||U‘|1,p(z) ||U|‘1,p(r)
Hence _P(Vv) — 00 as ||v|[1,p(z) — 00, we have
||v||1,p(w)
A A
Aov) _ A0%0) s ol e = .
||U||1,p(r) HUHl,p(ac)
Since
(Gpv,v)  (Gpv,v0)  (Rnv,v) and (Rnv,v0)
||U‘|1,p(z), |[v] 1,p(gc)7 1011 p(x) [v]11,p(x)
are bounded, we have
nY, vV — A s U nt, nt,
(Brv,v — vg) _ (Av,v — vg) n (Gnv,v)  (Gno,vp) s 00 a5 [[o]l1p(e) = 0.

||'U| 1,p(x) ||U||1,p(x) ||U||1,p(x) Hle,p(m)
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It remains to show that B, is pseudo-monotone. Let (uy)r be a sequence in WO1 P (z)(Q) such that

up — u  weakly in Wol’p(x)(Q)

Bjug — yweakly in W‘l’p/(”)(Q) (4.3)
lim sup (B ug, ug) < {x,u).
k—o0

We will prove that
X = Bpu and (Bpug,ur) — (x,u) as k — +oo.
Firstly, since W&’p(m)(Q) — LP®)(Q), then u, — wuin LP®)(Q) for a subsequence still denoted
by (ug)r. We have (uy)x is a bounded sequence in Wol’p(w)(Q), then by the growth condition,
(a(z,up, Vug))x is bounded in (LP @) (Q))N, therefore there exists a function ¢ € (L¥'®)(€Q))N such
that
a(z,up, Vug) — ¢ weakly in (Lp,(m)(Q))N as k — oo. (4.4)

We have ¢,, = ¢ oT,, is a continuous function, and since ur — u in Lp("”)(Q) then
dn(ur) = bn(u) strongly in (LP @ Q)N as k — oco. (4.5)

Similarly, since (H, (z, u, Vuy,))x is bounded in LP'(*) (), then there exists a function ¢,, € L¥'(*)(Q)
such that ,
H, (&, u, Vug) — 1, weakly in LP' ) (Q) as k — oco. (4.6)

It is clear that, for all v € Wol’p(m)(Q),

(x,;v) = lim (Bpug,v)
k—o0

= lim a(x, ug, Vug)Vo dz + lim H,(x,uk, Vug)v de — lim On(uk) Vo dz (4.7)

= / eVudz +/ Ypv dr — / ¢On(u)Vo dz.
Q Q Q
On the one hand, by (4.5) we have

/(bn(u;.c)Vu;C dm—>/q§n(u)Vudx as k — oo, (4.8)
Q Q

and by (4.6) we have
/Hn(m,uk,Vuk)uk dox — / Ypudr as k — oo, (4.9)
Q Q

by combining (4.3) and (4.7), we have

lim sup(B,, (ug), uk)

k—o0

= lim sup { / a(x,ug, Vug)Vug de + / H,(z, u, Vug)uy, de — / On (ug) Vuyg dm} (4.10)
k—o0 Q Q Q
< / eVudr+ [ Ypude — | ¢n(u)Vude.
Q Q Q
Therefore

limsup/ a(z, ug, Vug)Vuyg dxg/ngu dx. (4.11)
Q Q

k—o0

On the other hand, thanks to (3.3), we have

/Q(a(x,uk, Vug) — a(z, ug, Vu))(Vug, — Vu) de > 0, (4.12)
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then

/a(a:,uk,Vuk)Vuk dx > —/ a(:c,uk,Vu)Vudx—F/
Q Q

a(x,uk,Vuk)Vud;v—F/ a(z,ug, Vu)Vuy dz,
Q

Q
and by (4.4), we get
lim inf/ a(x, ug, Vug)Vuy do > / oVu dz.
Q Q

k—o0

This implies, by using (4.11), that

lim [ a(x,uk, Vug)Vug de = / pVu dz. (4.13)
Q

k—oco Q

By combining (4.7), (4.8) and (4.13), we obtain

(Brug, ug) — (x,u) as k — +oo.
On the other hand, by (4.13), and the fact that a(z,ux, Vu) converges to a(z,u, Vu) strongly in
(LY @) (Q))N, we can deduce that

lim (a(z, uk, Vug) — a(z, ug, Vu))(Vur — Vu) de = 0,
k—+oco Q
and by Lemma 3.1, we obtain uj converges to u strongly in Wol"p(z)(Q) and a.e. in 2, we deduce that
a(z, ug, Vug) converges to a(z,u, Vu) weakly in (LP @) (Q))N, ¢, (uz) converges to ¢, (u) strongly in
(LY @(Q)N, and H,(z, ug, Vug) converges to H,(x,u, Vu) strongly in LP' *)(Q) then y = B,u,
which completes the proof of Lemma 3.5. [ |
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