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Existence of global solution for a nonlocal parabolic
problem
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Abstract

In this paper, we study a non-local initial boundary-value problem arising
in Ohmic heating. By using a dynamical systems approach, some existence and
uniqueness results are proved and the existence of a compact attractor is shown.
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1 Introduction

In this paper, we shall deal with the following nonlocal parabolic problem

— —Au= ) \————— in Ox]0;T7, 1.1
Z (o faazy? " T o
u=0 on 9Nx]0;T], (1.2)

w/t=o = up in Q, (1.3)

where T > 0, is a regular open bounded subset of RV, N > 1, \ is a positive
parameter and f a function from R to R satisfying the hypotheses (H;)— (Hz2) below.
Problem (1.1) — (1.3) represents, for example, static materiel such as thermistors
[3, 6, 14, 15] and arises by reducing the system of two equations

up = V.(k(u)Vu) + o(u)|Vel|?, (1.4)

V(o(u)Ve) =0, (1.5)

to a simple but realistic equation (see [8]). More precisely, u represents the temper-
ature produced by an electric current flowing through a conductor, ¢ the electric
potential, o(u) is the electrical conductivity and k(u) is the thermal conductivity.
Taking the latter to be constant, problem (1.4) — (1.5) can then be reduced to the
single nonlocal equation(1.1), where f(u) = o(u) and A = % > 0,1 is the electric
current which is supposed to be constant and || is the measure of Q.
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Our goal here concerns the existence and uniqueness of weak solutions to (1.1)—(1.3).
We shall also show existence of global attractor.

Let us first recall that problem (1.1) — (1.3) has been the subject of variety of inves-
tigation in the past decade. Particularly, some results have been obtained by many
authors in the case where N = 1 and f taking particular forms: Montesinos and
Gallego [11] proved the existence of weak solution under

0<o01<o0(s) <o9,Vs €R. (1.6)

Antontsev and Chipot [1] obtained also an existence and uniqueness results for (1.4)—
(1.5) supposing that o € C°(Q) and (1.6); furthermore, a study of smoothness of
solutions was treated in that paper under some assumptions on the conductivity and
initial data.

In [8, 9, 13|, major emphasis is placed on cases where the spatial dimension N is 1 or
2 and f is of the form f(u) = exp(u)or exp(—u). In these works, additional regularity
assumptions are made on ug and a combination of usual Lyapounov functional and
a comparison method is the main ingredient. Qur purpose is to extend some of the
results therein to problem (1.1) — (1.3), where here, the condition (1.6) is weakened
to (Hz) below. Following the frame work of Fioas and Temam [12], we shall also
deal with the asymptotic behaviour of the solutions of problem (1.1) — (1.3) via a
dynamical systems approach. We start by proving the existence of absorbing sets in
L>®() and in H{(Q), which in turn paves the way for the existence of the global
attractor. Cimatti [4] obtained similar results for particular cases, when N = 1,
by constructing a Lyapounov functional. As a concluding result, we show that the
attractor is bounded subset of H2(£2) under restrictive assumptions on data.

2 [Existence and regularity of global attractor.

a) Existence and uniqueness.
We assume the following

(H1) f:R — R is a locally Lipschitzian function .

(H2) There exist positive constants ¢, ¢y and « such that, for all £ € R

o < f(€) < arlg]*t + ca.

Let us denote by .|| the norm in L*(9) .
We adopt the following weak formulation for (1.1) — (1.3):
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u is a solution of (1.1) — (1.3) if and only if

u € L®(1, +o0, H} (Q) N L*°(Q)) with% € L*(r, 400, L*(Q))

for any 7 > 0, and satisfying

Tr oo T A
for any ¢ € C°((0, 00), ).

Now, we state our main result.

Theorem 2.1. Let hypotheses (Hy) — (Hs) be satisfied. Assume that ug € L*+2(Q)
with kg such that

ko > max (0, % -2). (2.1)

Then, there exists dy > 0 such that if |uol|xy+2 < do, the problem (1.1) admits a
solution u verifying for all 7 >0

k
u € L1, 400, LFF2(Q)), lu[Tu € L>®(7, 400, Hi(Q)), with v = EO'

Moreover, if ug € L*>(Q), then u € L*°(1,+00, L>(2)) and is unique.

Remark. The value of dy will be given in the course of the proof.

Proof. We use a Faedo-Galerkin method see [10]. Let u,, C D(2) be such that
Uom — up in HY(Q) and let (w;); € H}(Q) a special basis. We seek u to be the limit
of a sequence (U, ), such that

U (t) = XL gjm (t)w;,

where g;,, is the solution of the following ordinary differential system

/ ) N — A . i
Wiy 05} + (1 05) = (fo Fum) dz)’ lim)wg), 1< 5 < m, (2.2)

Um (0) = Uom.-

It is easy to see that (2.2) has a unique solution u,, according to hypotheses (Hy) —
(H2) and Cartan’s existence theorem concerning ordinary differential equations (see
[5]). This solution is shown to exist on a maximal interval [0;¢,,[. The following
estimates enable us to assert that it can be continued on the whole interval [0; 7.
We shall denote by C; different positive constants, depending on data, but not on
m.
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Lemma 2.2. For any 7 > 0, there exists a constant c3(7), ca(T) such that
tm () ||ko+2 < e3(7),Vt > T, (2.3)
[t ()[loo < ca(T), ¥t > 7. (2.4)

Proof. (i) Multiplying the first equation of (2.2) by |um|*gjm, integrating on €,
adding from j = 1 to m and using (H;) — (Ha), yields

L d k2 4

ezl g

k
mllvluml 2upl|3 < esllumllitats + co- (2.3)

k4+a+-2

By using well-known Sobolev and Gagliardo-Nirenberg’s inequalities, we have

k 2
g tots < erllumllfy 2l V tm| w3, (2.6)

Thus, from (2.5) and (2.6), we obtain

1 d. s 4
ma“um”kgiQ < (csllumlligg o — m)!lvlum\”umllé + cg- (2.7)

We shall make the following compatibility condition on wug

1
leollioss < (—gz)” = o (28)
Then, there exists a small 7 > 0 such that
[t () ||k +2 < do for t €]0, 7. (2.9)
Hence 1 4
mEHumHigig + co||V]tum| um||3 < e ¥V 0<t<T. (2.10)

By Poincaré’s inequality and after integrating, it follows that
[um (@) lkot2 < 10, ¥V 0<t<T,

Therefore, relation (2.3) is achieved by iterating successively the same process on
intervals of periode 7 such as [0, 7], [7,t + 7], .....
(ii) By using Hoélder’s inequality, we get

k [% [% 0
lumliztots < cntllumllyyollumlz? ollum g, (2.11)

with 61,605 and 63 satisfying

61 0 05
—=1 d 01+60:+05=k 2.
it 2 k0—|—2+q an 1+ 02+ 03 +a+
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We require moreover

61 Z
T 2(v+1)
Using the boundedness of ||, ||k,+2, the choice of ¢, Sobolev and Young’s inequalities
and relation (2.11), we derive that

O3
C5Hum‘|£igi§ < 012HumHk_,’_2||V|um|7umH;+l
2
k
< c13(k + 2)" |l |15 + m”vmm’vum\\%a

where 6, is some positive constant. Hence (2.5) becomes

1 k 14 k42
k+2dt|| um 413 + (k+2)2||v|um|vum||2 < e15(k +2)" [um |15 + cs.

Therefore, by applying lemma 4 ([7]) we conclude to (2.4).

Passage to the limit in (2.2) as m — oco.  Multiplying the jth equation of
system (2.2) by gjm(t), adding these equations for j = 1,...,m and integrating with
respect to the time variable, we deduce the existence of a subsequence of wu,, such
that
Uy, — u weak star in L0, T; L%(Q)),
U, — u weak in L2(0,T; H} (Q)),
Uy — uy weak in L?(0,T; H1(Q)),
Uy, — u strongly in L?(0,T; L*(2)) and a.e in Q7.

Straightforward standard compactness arguments allow us to assert that u is a so-
lution of problem (1.1)

Uniqueness.  Consider u; and uy two weak solutions of the problem (1.1) and
define w = u; — us. Substracting the equations verified by u; and us, we obtain

dw A
&A=
dt (Jo fu) dz)
)\(fQ f(u2) — f(ur) dx) <fQ ug) + f ul)dx)
_l’_
(Jo fu dm) (Jo f(uz dm)
Taking the inner product of (2.12) by w and using (H;) and (2.4), we get

1d
2dt

(£w) = F(u2)

Flug). (2.12)

—llw®)lI3 < csllw®)]3,
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which implies that w = 0. Hence the solution is unique. [J

b)  We denote by {T'(¢),t > 0} the continuous semi-group generated by (1.1) and
defined by
T(t): L®(Q) — L*(Q)
up — T(t)ug = u(t,.).

In this part, we refer to [12] for used concepts.

Theorem 2.3. Assume that (H1)—(Hs2) are satisfied, Then T'(t) possesses a maximal
attractor which is bounded in H} () (N L>®(Q), compact and connected in L>().

Proof.

(i) (2.4) imply that there exists an absorbing set in L*(Q), 1<k < oo.

(ii) To obtain existence of absorbing sets in H3({2) and the uniform compactness
of T'(t), multiply (2.2) by g3,,(t), add from j = 1 to m and integrate on 2 by
using Young’s inequality, it follows therefore that, for any t > 7 > 0

ou, d
[ a2V unl < ear(o) (2.13)
which gives
d
£||Vum||§ < c7(7),Vt > 7> 0. (2.14)
On the other hand, multiplying (2.2) by gjm, adding and integrating on  x
[t,t + 7] we get
t+1
/ [V (s)12ds < c15(r), ¥t > 7 > 0. (2.15)
t

Then, by the uniform Gronwall’s lemma (see [12], p.89) and the lower semi-
continuity of the norm, we have

IVu(t)[ < e19(r), ¥t > 7. (2.16)

Therefore, the open ball B(0,c19(7)) is an absorbing set in H}(€2).
Hence, by theorem (1.1)( [12], p.23), we conclude to the results of theorem
(2.3).

Theorem 2.4. We suppose (H1) — (Hz) and
(H3) f e CYR).
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Then, we have
y(t) = |Jw]|®* < e0(7), for anyt>7>0.

Proof. Differentiating equation (1.1) with respect to time(the justification of the
formal derivatives can be done as in [5]), we get
M (w)u f(u)uys doe
utt—Aut:—f( ) i B} —QAf(U)—fQ ( ) ¢ 3
(Jo f(u)dz) (Jo f(u)dz)

Multiplying (2.17) by wu¢, integrating over {2 and using the L*° estimate of u and
Hoélder’s inequality, yields

(2.17)

1

59’(0 < ca1(T)y(t). (2.18)

On the other hand, taking the scalar product of (1.1) with u;, using Young’s inequal-
ity, integrating on [t,¢ + 7] and using estimate (2.16), then gives

t+1
/ y(s)ds < co3(7),for any ¢ > 7. (2.19)
t

From (2.18) and the uniform Gronwall’s lemma, we have
y(t) < co3(7), for any t > 7.

Therefore,
ug € L7, 00, L*(Q)).

By (1.1), we then get
—Au € LOO(T,OO,LZ(Q)),

that is,
u(t) is in a bounded subset of H2(Q).

Hence the existence of an absorbing set in H?(2) is shown.
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