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Abstract

By using the Guo-Krasnoselskii fixed point theorem, we investigate the following third-

order three-point boundary value problem
u”(t) = f(t,u(t)), t €0,1],
w/'(0) = u(1) =0, u’(n) + au(0) =0,

where o € [0,2) and 7 € [7W, 1). The emphasis is mainly that although the cor-

responding Green’s function is sign-changing, the solution obtained is still positive.
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1 Introduction

Third-order differential equations arise from a variety of different areas of applied mathe-
matics and physics, e.g., in the deflection of a curved beam having a constant or varying cross
section, a three-layer beam, electromagnetic waves or gravity driven flows and so on [3].

Recently, the existence of single or multiple positive solutions to some third-order three-point
boundary value problems (BVPs for short) has received much attention from many authors,
see [1,2,5,12,15,16] and the references therein.

However, all the above-mentioned papers are achieved when the corresponding Green’s
functions are positive, which is a very important condition. A natural question is that whether
we can obtain the existence of positive solutions to some third-order three-point BVPs when
the corresponding Green’s functions are sign-changing.

In 2008, Palamides and Smyrlis [11] studied the existence of at least one positive solution

to the singular third-order three-point BVP with an indefinitely signed Green’s function

u"(t) = a(t) f(t u(t), t € (0,1),
u(0) = u(1l) = u"(n) =0,

o1

TR ) . Their technique was a combination of the Guo-Krasnoselskii fixed point

where 1 € (
theorem and properties of the corresponding vector field.
In 2012, by using the Guo-Krasnoselskii and Leggett-Williams fixed point theorems, Sun and

Zhao [13,14] discussed the third-order three-point BVP with sign-changing Green’s function

u(t) = f(t,u(t), t €[0,1],
u'(0) = u(1) = u"(n) = 0,

(1.1)

where € (1,1). They obtained the existence of single or multiple positive solutions to the
BVP (1.1) and proved that the obtained solutions were concave on [0, 7] and convex on [n, 1].

It is worth mentioning that there are other type of works on sign-changing Green’s functions
which prove the existence of sign-changing solutions, positive in some cases, see Infante and

Webb’s papers [6-8].
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In this paper we study the following third-order three-point BVP

u”(t) = f(t,u(t)), t €10,1],

(1.2)
uw'(0) =u(l) =0, u"(n) + au(0) = 0.

Throughout this paper, we always assume that a € [0,2) and 7 € [%, 1). Obviously,
the BVP (1.1) is a special case of the BVP (1.2). However, it is necessary to point out that
this paper is not a simple extension of [13]. In fact, if we let a = 0, then 7 € [%, 1), which is
different from the restriction in [13]. On the other hand, compared with [13], we can only prove

that the obtained solution is concave on [0, ].

Our main tool is the following well-known Guo-Krasnoselskii fixed point theorem [4,9]:

Theorem 1.1 Let E be a Banach space and K be a cone in E. Assume that Q0 and Qs are
bounded open subsets of E such that 0 € Qy, Oy C Qy, and let T : KN (QW\Q) — K be a
completely continuous operator such that either

(1) || Tul|| < ||lu|| for we KNoQy and ||Tul| > ||u|| for uwe KN, or

(2) || Tu|| > ||lu|| for we KNoQ and ||Tul| < ||u|| for uwe KN os.

Then T has a fized point in K N (Qy \ Q).

2 Preliminaries

For the BVP
u”(t) =0, t €[0,1],

v (0) = u(l) =0, u’(n) + au(0) = 0,

we have the following lemma.
Lemma 2.1 The BVP (2.1) has only trivial solution.

Proof. It is simple to check. O
In the remainder of this paper, we always assume that Banach space C'[0, 1] is equipped

with the norm ||ul| = m[ax] lu(t)].
tel0,1
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Now, for any y € C'[0, 1], we consider the BVP

u"(t) = y(t), t €0, 1],

B (2.2)
uw'(0) =u(l) =0, u"(n) + au(0) = 0.

After a direct computation, one may obtain the expression of Green’s function G(t,s) of

the BVP (2.2) as follows:

G(t’ S) = gl(t’ S) + 92(t7 5) + 93(7%75, S)a

where
(2 —at?)(1 — s)*
t = — t € 10,1 x (0,1
gl(,S) 2(2—&) ) (75) [7 ] [7 ]7
0, 0<t<s <1,
g2<t78>: i—s)2
ek p<s<t<1
and
0, s=mn,
93(7177575): 12
Soar S <.

It is not difficult to verify that the G(t, s) has the following properties:
G(t,s) >0 for 0<s<n and G(t,s) <0 for n<s<1.

Moreover, for s > 7,

max{G(t,s): t € [0,1]} = G(1,s) =0,

)2
min{G(t.) 1 € [0.1]) = G(0,5) = — 5
and for s <,
25 — s?
max{G(t,5) 1 € [0,1]} = G(0,5) = = —,

min{G(t,s) : t € [0,1]} = G(1,s) = 0.

Let

Ko ={y € C[0,1] : y(¢) is nonnegative and decreasing on [0, 1]}.

Then K is a cone in C'[0, 1].
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Lemma 2.2 Lety € Ky and u(t fo s)ds, t € [0,1]. Then u is the unique solution
of the BVP (2.2) and u € K,. Moreover, u(t) is concave on [0,7).

Proof. For 0 <t <n, we have

)= [ t it + 5 Oy 1o tz] sl + [ o) + 5= tz] sy + | gt S)y(s)ds.

2 2—« — o

v 12};1?3‘ % implies that 1 >

W) = - /On(Qs—sQ)y(s)ds—/Otsy(s)ds—t/tny(s)der2(ita /nl(l—s)Qy(s)ds

Since n > 3a+6, we get

2—«
< y(n) {_ ot /"( s—s)ds—/otsds—t/tnds+Qita/l(l—s)st]
[al—?m t] '
32—a) >
{agilz__?;n —5}

VI21+24a—5 % shows that

At the same time, 1 > 3(+a)

o [
<080 o vyt [Mas+ 520 [ - s

2—-« -G

ay(n)(1 = 3n)
- 32-a)

W(t) =~ /On@s ~ #y(eyds - /tny@ds =

<0.

For n <t <1, we have

u(t) :/On {gl(t, g4 8= l_tz} y(s)ds+/nt [gl(t, 5+ “‘23)2} y(s)der/tlgl(t, $)y(s)ds.

2 2 —«
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Since n > 7W implies that > =2, we get
at K ¢ " at !
u'(t) = — / (25 — s%)y(s)ds +/ (t—s)y(s)ds — / sy(s)ds + / (1 —s)*y(s)ds
2—a " 0 2—-a/,

g_@wm{A%k_§M&+Mmm—02_mmliwy+mwmﬂ—nf

2 -« 2 3(2 —«)
B a(l—=3n) t—2n
—w@ﬂgw_a)+ 5 ]
<0.

Obviously, u"”(t) = y(t) for t € [0,1], ¥/(0) = u(1) = 0 and u”’(n) + au(0) = 0. This shows
that u is a solution of the BVP (2.2). The uniqueness follows immediately from Lemma 2.1.
Since u/(t) < 0 for ¢t € [0,1] and u(1) = 0, we have u(t) > 0 for ¢t € [0,1]. So, u € Ky. In view
of u”(t) <0 for t € [0,n], we know that u(t) is concave on [0, 7]. O

Lemma 2.3 Let y € Ky. Then the unique solution u of the BVP (2.2) satisfies

in u(t) > ¢*
o u(t) 2 0" flul

where 0 € (0, 3] and 6* = %9.

Proof. By Lemma 2.2, we know that w(t) is concave on [0, n], thus for ¢ € [0, 7],

mwz<1—%m@y+%mm. (2.3)

In view of u € Ky, we know that ||u|| = u(0), which together with (2.3) implies that

n—_t

u(t) > p

lull, 0 <t <n.

Consequently,

-y
min u(t) = u(f) > .
te[0,6] n

lull = 6" [[ull.
0
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3 Main results

For convenience, we denote

n 0
A:/ G(0, s)ds and B :/ G(n, s)ds.
0 0
Then it is obvious that 0 < B < A.

Theorem 3.1 Assume that f : [0,1] x [0,400) — [0,400) is continuous and satisfies the
following conditions:

(H1) For each u € [0,400), the mapping t — f(t,u) is decreasing;

(H2) For each t € [0, 1], the mapping u +— f(t,u) is increasing;

(H3) There exist two positive constants r and R with r # R such that

f(0,r) < % and f(0,0"R) > g

Then the BVP (1.2) has a positive and decreasing solution u satisfying min{r, R} < |ju|| <

max{r, R}. Moreover, the obtained solution u(t) is concave on [0, 7).

Proof. Let
K= {u € Ko : min u(t) > 6~ ||u||} :
te(0,0]

Then it is easy to see that K is a cone in C'[0,1]. Now, we define an operator T' on K by

(Tu)(t) :/0 G(t,s)f(s,u(s))ds, t € [0,1].

Obviously, if u is a fixed point of T" in K, then w is a nonnegative and decreasing solution of
the BVP (1.2). In what follows, we will seek a fixed point of 7" in K by using Theorem 1.1.

First, by Lemma 2.2 and Lemma 2.3, we know that 7' : K — K. Furthermore, although
G(t, s) is not continuous, it follows from known textbook results, for example see [10], that
T : K — K is completely continuous.

Next, for any u € K, we claim that
1 1
/ G(n, s)f(s,u(s))ds+/ G(n,s)f(s,u(s))ds > 0. (3.1)
o 1
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In fact, if u € K, recall that G(t,s) > 0 for 0 < s <nand G(t,s) <0 forn < s <1, then

it follows from n > 3ta)

/enG(Ua s)f(s, ())ds—i—/ G(n,s)f(s,u(s))ds

> f(n,u( {/Gn, ds+/Gn, ]

= 1wt [ [ (st + 85T = Y [ty
_ (=) f(n uln))

[(4+ a)n” + (4 + ab® — 3a6%)n — 66° + ab® — 2]

6(2— )

> 0.

Now, without loss of generality, we assume that r < R. Let
Q={ueC[0,1]:|lu]| <r} and Qo ={uec C[0,1]: |u]| < R}.

For any u € K NoQy, we get 0 < u(s) < r for s € [0, 1], which together with (H3) implies
that

n 1

0< (Tu)(t) < maax G(t,s)f(s,u(s))ds+ [ max G(t,s)f(s,u(s))ds

t€[0,1] n t€[0,1]

= /: u(s))ds
< /0 r)ds

< r=ull, teo,1]
This shows that
| Tu|| < ||u| for u e K NoQy. (3.2)

For any u € K N 0Qy, we get 0*R < u(s) < R for s € [0,6], which together with (3.1) and
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(H3) implies that
Tu(a) = [ Glos) (s u(s)ds
= [ o) stsutonds+ [ Gl s) s, uteis [ 60 (s, uts)is
y n
> [ G5 s, uts)is
/Gm £(6,0°R)ds

= [lull,

This indicates that
|Tu|| > |Ju|| for ue K NoQ,. (3.3)

Therefore, it follows from Theorem 1.1, (3.2) and (3.3) that the operator 7" has a fixed point
u € KN (Q\ Q), which is a desired positive and decreasing solution of the BVP (1.2) with
r < |lu|| £ R. Moreover, similar to the proof of Lemma 2.2, we can prove that the obtained

solution wu(t) is concave on [0, 7). O
Example 3.2 We consider the BVP

w(t) = 0 4 ) e o, 1],

(3.4)
w'(0) = u(l) =0, u"(3) +u(0) =0.
Since a =1 and n = %, if we choose 6 = é, then a simple calculation shows that
1
9*:—,A:Eand8 ’
3 24 108"

Let f(t,u) = —|—w (t,u) € [0,1] x[0,4+00). Then (H1) and (H2) are satisfied. Moreover,
it 1s easy to verify that

6* 1 1
> < =
£6.%) > o F00) <
and
18 556
<2 ) > 2=
F(0,18) < =, £(0,5560°) = 22
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Therefore, it follows from Theorem 3.1 that the BVP (3.4) has positive and decreasing solutions

uy and us satisfying

< Jui] €1 <18 < |Jus|| < 556.

| =
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