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REMARKS ON INHOMOGENEOUS ELLIPTIC

PROBLEMS ARISING IN ASTROPHYSICS

MARCO CALAHORRANO & HERMANN MENA

Abstract. We deal with the variational study of some type of
nonlinear inhomogeneous elliptic problems arising in models of so-
lar flares on the halfplane R

n

+.

1. Introduction

In this paper we study a boundary value problem of type

(1.1)

{
−∆u + c(x)u = λm(y)f(u) R

n
+

u(z, 0) = h(z) ∀z ∈ R
n−1

where x = (z, y) ∈ R
n−1 × R+ ≡ R

n
+ with R+ = {y ∈ R : y > 0} and

n ≥ 2, f :] −∞, +∞[→ R is a function satisfying:

(f-1) There exists s0 > 0 such that f(s) > 0 for all s ∈]0, s0[.
(f-2) f(s) = 0 for s ≤ 0 o s ≥ s0.
(f-3) f(s) ≤ asσ, a is a positive constant and 1 < σ < n+2

n−2
if n > 2

or σ > 1 if n = 2.
(f-4) There exists l > 0 such that |f(s1) − f(s2)| ≤ l|s1 − s2|, for all

s1, s2 ∈ R.

h is a non-negative bounded smooth function, h 6= 0, min h < s0, c ≥ 0,
c ∈ L∞(Ω)

⋂
C(Ω) and mes{x ∈ Ω : c(x) = 0} = 0.

The problem (1.1) is a generalization of an astrophysical gravity model
of solar flares in the half plane R

2
+, given in [1], namely:

(1.2)

{
−∆u = λe−βyf(u) R

2
+

u(x, 0) = h(x) ∀x ∈ R

besides the above mentioned conditions for f , h and β > 0. See [1], [8]
and [6] for a detailed description and related problems.
By this, we study the problem (1.1) with m : R+ → R+ a C1 function
such that ∫ +∞

0

ym(y)dy < +∞

more general than e−βy.
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We shall follow the ideas of F. Dobarro and E. Lami Dozo in [8].
The authors prove the existence of solutions of (1.1) in the special case
c(x) = 0. In fact, the result presented here follows from the one ob-
tained by the authors.

First of all we note that problem (1.1) is equivalent to

(1.3)

{
−∆ω + c(x)ω = λm(y)f(ω + τ) R

n
+

ω(z, 0) = 0 ∀z ∈ R
n−1

where ω = u − τ and τ is solution of the problem

(1.4)

{
−∆τ + c(x)τ = 0 R

n
+

τ(z, 0) = h(z) ∀z ∈ R
n−1

We will study (1.3) instead of (1.1).

The problem (1.1), or equivalently (1.3), is interesting not only on
whole R

n
+, but also in an arbitrary big but finite domain in R

n
+, for ex-

ample for semidisks DR = {(x, y) ∈ R
n−1×R+ : |x|2+y2 < R2, y > 0},

with R big enough.

Motivated by this observation in section 2, we will study the following
approximate problem

(1.5)

{
−∆ω + c(x)ω = λm(y)f(ω + τ) DR

ω = 0 ∂DR

whose solutions are related to those of (1.3).

Using variational techniques we will prove the existence of an inter-
val Λ ⊂ R+ such that for all λ ∈ Λ there exists at least three positive
solutions of (1.5), with R large enough.

Finally in section 3 we prove the existence of solutions of (1.3) as
limit of a special family of solutions of (1.5) obtained in theorem 5 and
its uniqueness to λ small enough.

2. Problem in DR

Letting Ω be either DR or R
n
+, we denote by Lp

m(Ω) the usual weighted
Lp space on Ω for a suitable weight m and 1 ≤ p < ∞, and by V 1,2

m (Ω),
V 1,2

c (Ω) the completion of C∞
0 (Ω) in the norm

‖u‖2
V

1,2
m (Ω)

=

∫

Ω

u2(z, y)m(y)dzdy +

∫

Ω

|∇u|2dzdy
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and

‖u‖2
V

1,2
c (Ω)

=

∫

Ω

u2(x)c(x)dx +

∫

Ω

|∇u|2dx

Let m : R+ → R+ be such that

(2.1) 0 < M ≡

∫ +∞

0

ym(y)dy < +∞

it is easy to prove for all functions u ∈ C∞
0 (Ω) the following inequality

holds, see [8].

(2.2)

∫

Ω

u2(x, y)m(y)dxdy ≤ M

∫

Ω

|∇u|2dxdy

then V 1,2
m (DR) ∼ H1

0 (DR) ∼ V 1,2
c (DR) and V 1,2

m (Rn
+) ∼ D1,2(Rn

+) where
H1

0 (DR) is the usual Sobolev space with the norm ‖∇(.)‖L2(DR) and
D1,2(Rn

+) is the completion of C∞
0 (Rn

+) for the norm ‖∇(.)‖L2(
�

n
+).

On the other hand if R
′

≥ R, then

(2.3) V 1,2
c (DR) ⊂ V 1,2

c (DR
′ ) ⊂ V 1,2

c (Rn
+) ⊂ V 1,2

m (Rn
+)

There exists many results about immersion of weighted Sobolev
spaces into weighted Lebesgue spaces. Here we will take into account
one suitable result for our problem.

Let m : R+ → R+ be a bounded C1 function such that there exists
k > 0 such that

(2.4) |(log m)
′

| ≤ k

then the identity map is an immersion from V 1,2
m (Ω) into L

p

m
p
2
(Ω) for

1 < p < 2n
n−2

if n ≥ 3
1 < p if n=2

More precisely, there exists a constant K = K(k, sup m) such that

(2.5) ‖u‖L
p

m
p
2

(Ω) ≤ CsK‖u‖V
1,2
m (Ω)

where Cs is the usual Sobolev immersion constant. The immersion is
compact if Ω = DR.

Now we will begin to study (1.3) by variational methods. For this
purpose, for all λ ≥ 0 and for all non negative function τ such that
‖τ‖Lσ+1

m
< +∞ we associate the functional Ψλ,τ : V 1,2

c (Rn
+) → R

(2.6) Ψλ,τ (u) =
1

2

∫
�

n
+

{|∇u|2 + c(x)u2} − λ

∫
�

n
+

mF (u + τ)
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where F (t) =
∫ t

0
f(s)ds, m ∈ C1(R+) and m̂ ≡ m

2
σ+1 satisfying (2.1)

and (2.4).

Ψλ,τ is a C1 functional, so if u ∈ V 1,2
c (Rn

+) is a critical point of Ψλ,τ

then u is a weak, and by regularity a classical solution of (1.3).

Remark 1. i. If we consider Ψλ,τ,R : V 1,2
c (DR) → R,

Ψλ,τ,R(u) =
1

2

∫

DR

{|∇u|2 + c(x)u2} − λ

∫

DR

mF (u + τ)

its critical points are weak, and by regularity, strong solutions of (1.5).
Furthermore if R ≤ R

′

≤ +∞, then for all u ∈ V 1,2
c (DR)

Ψλ,τ,R
′ (u) ≤ Ψλ,τ,R(u) ≤ Ψλ,0,R(u)

more precisely

Ψλ,τ,R
′ (u) = Ψλ,τ,R(u) − λ

∫

D
R
′−DR

mF (τ) ≤ Ψλ,τ,R(u)

Here DR
′ with R

′

= +∞ means R
n
+.

ii. Since f is bounded, Ψλ,τ,R is coercive, bounded from below and
verifies Palais-Smale condition for all λ non negative.

Lemma 2. For each R > 0 denote θR : Rn → Rn the map

θR(z, y) ≡

(
z

R
, y

)

and ΘR the scaling η → ηR ≡ ηoθR. Then
i. ∀r > 0, ΘR(V 1,2

c (Dr)) ⊂ V 1,2
c (θ−1

R Dr) and if R ≥ 1, V 1,2
c (θ−1

R Dr) ⊂
V 1,2

c (DRr).
ii. If η ∈ C∞

0 (Rn
+), is non identically 0, then

(2.7) ‖∇ηR‖L2(
�

n
+) → +∞ as R → +∞

iii. Let f be defined before and m such that verifies (2.1). Then there
exists 0 < λ < ∞ such that if λ > λ, η ∈ C∞

0 (Rn
+), η ≥ 0, non

identically 0 and

(2.8) λ ≤ Q(η) ≡

1
2

∫
�

n
+
{|∇η|2 + ‖c‖L∞η2}
∫

�
n
+

m(y)F (η)
< λ

then there exists rn > 0 : ηR ∈ V 1,2
c (DR

′ ), ∀R
′

, R: R
′

≥ Rrn ≥ rn and
for all non negative function τ .
a. Ψλ,τ,R

′ (ηR) < 0, ∀R
′

, R: R
′

≥ Rrn ≥ rn.
b. Ψλ,τ,Rrn

(ηR) → −∞ as R → +∞
EJQTDE, 2005 No. 19, p. 4



Proof.- This proof follows almost directly from lemma 6 in [8]. How-
ever, by completeness we present all the proof.
i. It is immediate from the definition of ΘR.
ii. We observe

|∇ηR|
2(z, y) =

1

R2
|∇η|2θR

+

(
1 −

1

R2

)
|∂yη|

2
θR(z,y)

thus, changing variables

(2.9) ‖∇ηR‖
2
L2(

�
n
+) = Rn−1

[
1

R2

∫
�

n
+

|∇η|2 +

(
1 −

1

R2

)∫
�

n
+

|∂yη|
2

]

so, since
∫

�
n
+
|∂yη|

2 > 0, (2.9) implies (2.7).

iii. Set

(2.10) λ ≡ inf{Q(η) : η ∈ C∞
0 (Rn

+), η ≥ 0, η 6= 0}

by (f-3) and since F is bounded

(2.11)
b

2
≡ sup

s>0

F (s)

s2
< +∞

so, by (2.2) and since c(x) ≥ 0
∫

�
n
+

m(y)F (η) ≤
bM

2

∫
�

n
+

|∇η|2 + ‖c‖L∞η2

hence

0 <
1

bM
≤ λ < ∞

Let λ > Q(η) be, since η ∈ C∞
0 (Rn

+), there exists rn > 0 such that supp

η ⊂ DRrn
, for all R ≥ 1. Then by i. and (2.3) ηR ∈ V 1,2

c (θ−1
R Drn

) ⊂
V 1,2

c (DRrn
) ⊂ V 1,2

c (DR
′ ) for all R

′

≥ Rrn ≥ rn.
For simplicity from now on we call Rrn ≡ Rn, where R ≥ 1.
Then, by remark 1

(2.12) Ψλ,τ,R
′ (ηR) ≤ Ψλ,τ,Rn

(ηR) ≤ Ψλ,0,Rn
(ηR)

On the other hand, if we define the function ξ : R+ → R

ξ(R) ≡
1

Rn−1
‖∇ηR‖

2
L2(

�
n
+) =

1

R2

∫
�

n
+

|∇η|2 +

(
1 −

1

R2

) ∫
�

n
+

|∂yη|
2

=

[ ∫
�

n
+
|∇zη|

2

R2
∫

�
n
+
|∂yη|2

+ 1

]∫
�

n
+

|∂yη|
2

is non increasing. So applying ξ(R) ≤ ξ(1) to (2.9)
∫

DRn

|∇ηR|
2 =

∫
�

n
+

|∇ηR|
2 ≤ Rn−1

∫
�

n
+

|∇η|2
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furthermore
∫

DRn

c(x)η2
R =

∫
�

n
+

c(x)η2
R ≤ Rn−1‖c‖L∞

∫
�

n
+

η2

and
∫

DRn

m(y)F (ηR) =

∫
�

n
+

m(y)F (ηR) = Rn−1

∫
�

n
+

m(y)F (η)

so

Ψλ,0,Rn
≤ Rn−1

[
1

2

∫
�

n
+

|∇η|2 + ‖c‖L∞η2 − λ

∫
�

n
+

m(y)F (η)

]

then

(2.13) Ψλ,0,Rn
≤

Rn−1

2

∫
�

n
+

|∇η|2 + ‖c‖L∞η2

(
1 −

λ

Q(η)

)

thus, from (2.12) and (2.13) we obtain immediately a and b.

�

Remark 3. i. Let m : R+ → R+ be a bounded C1 function and let

m̂ ≡ m
2

σ+1 . It is easy to prove that m verifies (2.4) if and only if m̂

does it. Furthermore, given a positive constant k, |(log m)
′

| ≤ k if and
only if |(log m̂)

′

| ≤ 2
σ+1

k.
ii. If there exists a non negative value m1 ≥ 0 such that {m > 1} ⊂
[0, m1] and

0 < M̂ ≡

∫ +∞

0

ym̂(y)dy < +∞

then

0 < M ≡

∫ +∞

0

ym(y)dy < +∞

Indeed, since m̂ > 1 if and only if m > 1 and 0 < 2
σ+1

< 1

M =

∫
�

m>1

ym(y)dy +

∫
�

m≤1

ym(y)dy ≤

(
sup m

m1

2

)
+ M̂ < +∞

Lemma 4. There exists a positive constant C = C(a, σ, k, sup m, M̂)
such that for all λ < λ(‖τ‖Lσ+1

m (
�

n
+)) and for all u : ‖u‖

V
1,2
c (

�
n
+) =

‖τ‖Lσ+1
m (

�
n
+), Ψλ,τ (u) > 0 where λ(‖τ‖Lσ+1

m (
�

n
+)) ≡ C‖τ‖1−σ

Lσ+1
m (

�
n
+)

.

Moreover λ(‖τ‖Lσ+1
m (

�
n
+)) → +∞ as ‖τ‖Lσ+1

m (
�

n
+) → 0
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Proof.- Let u ∈ V 1,2
c (Rn

+) be, using (f-3) and Minkowsky inequality
with respect to measure m(y)dxdy and (2.2), (2.5) we obtain

0 ≤

∫
�

n
+

mF (u + τ) =

∫
�

n
+

m

∫ u+τ

0

f(t)dt ≤
a

σ + 1

∫
�

n
+

m(u + τ)σ+1

≤
a

σ + 1
(‖u‖Lσ+1

�

m
σ+1

2

+ ‖τ‖Lσ+1
m

)σ+1

≤
a

σ + 1
(CsK(1 + M̂)

1
2 ‖∇u‖L2(

�
n
+) + ‖τ‖Lσ+1

m
)σ+1

≤
a

σ + 1
(CsK(1 + M̂)

1
2 ‖u‖

V
1,2
c (

�
n
+) + ‖τ‖Lσ+1

m
)σ+1

then
(2.14)

Ψλ,τ (u) ≥
1

2
‖u‖2

V
1,2
c (

�
n
+)
−λ

a

σ + 1
(CsK(1+M̂)

1
2 ‖u‖V

1,2
c (

�
n
+)+‖τ‖Lσ+1

m
)σ+1

then, if we define

C ≡
σ + 1

2a
(CsK(k, sup m)(1 + M̂)

1
2 + 1)−σ−1

then Ψλ,τ(u) > 0 for all λ < λ ≡ C‖τ‖1−σ

Lσ+1
m (

�
n
+)

, and since σ > 1. The

lemma is proved.

�

Theorem 5. Let us assume (f-1-2-3-4), let m:R+ → R+ be a C1

function such that m and m̂ ≡ m
2

σ+1 verify (2.1) and (2.4), and let
τ : R

n
+ → R+ be a C1 function, non identically 0. So there exists

positive constants C = C(a, σ, k, sup m, M̂) and λ such that if

(2.15) ‖τ‖Lσ+1
m (

�
n
+) <

(
c

λ

) 1
σ−1

then
∀λ : λ < λ < λ ≡ C‖τ‖1−σ

Lσ+1
m (

�
n
+)

there exists a positive R0 = R0(λ) such that for all R ≥ R0, (1.5) has
at least three strictly positive solutions.

Proof.- Let C = C(a, σ, k, sup m, M̂) and λ be the positive constant
defined in lemmas 4 and 2 respectively . Since τ verifies (2.15), by
lemma 4 and remark 1, for all λ ∈]λ, λ[ and for all R ≥ 1

(2.16) Ψλ,τ,R(u) > 0 ∀u ∈ V 1,2
c (DR) : ‖u‖V

1,2
c (DR) = ‖τ‖Lσ+1

m (Rn
+)

On the other hand, fixed λ ∈]λ, λ[, η ∈ C∞
0 (Rn

+), and letting rn > 0, the
radius of any semidisk Drn

such that supp η ⊂ Drn
, by lemma 2 there
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exists R1 ≥ 1 such that for all R ≥ R1rn, we have ηR1 ∈ V 1,2
c (DR),

furthermore

(2.17) ‖τ‖Lσ+1
m (

�
n
+) < ‖∇ηR1‖L2(DR) = ‖∇ηR1‖L2(

�
n
+) < ‖ηR1‖V

1,2
c (

�
n
+)

and

(2.18) Ψλ,τ,R(ηR1) < µ < 0

where µ ∈ R defined as

µ ≡ min
0≤t≤‖τ‖

L
σ+1
m (

� n
+)

1

2
t2 − λ

a

σ + 1
(CsK(1 + M̂)

1
2 t + ‖τ‖Lσ+1

m
)σ+1

Let R ≥ R1, we divide the proof in three steps.
1. Local minimum.- Let

νR ≡ inf
BΓ

Ψλ,τ,R(u)

where BΓ = {u ∈ V 1,2
c (DR) : ‖u‖V

1,2
c (DR) < Γ ≡ ‖τ‖Lσ+1

m (
�

n
+)}.

Since Ψλ,τ,R(0) < 0, νR < 0. Furthermore µ ≤ νR < 0, by (2.14) and
remark 1 . Therefore inf∂BΓ

Ψλ,τ,R > νR.
Now we will prove that νR is achieved in BΓ. Using a modification in
the proof of proposition 5 and corollaries 6 and 7 in [3], we can obtain
a sequence (un)n in BΓ such that

Ψλ,τ,R(un) → νR

Ψ
′

λ,τ,R(un) → 0

since Ψλ,τ,R verifies Palais-Smale condition, there exists a subsequence
(unk

)k such that unk
→ u1,R in V 1,2

c (DR) and u1,R 6= 0 because 0 it is
not a critical point of Ψλ,τ,R.
2. Absolute minimum.- Let

uR ≡ inf
V

1,2
c (DR)

Ψλ,τ,R

Then uR < µ, by (2.17). Now using similar arguments to local min-
imum, but without any modification, we have that uR is achieved in
V 1,2

c (DR) at a function u2,R.
3.Mountain pass.- Let

cR ≡ inf
δ∈ΛR

sup
u∈δ

Ψλ,τ,R(u)

where ΛR is the set of paths

ΛR = {γ : γ ∈ C([0, 1], V 1,2
c (DR)), γ(0) = 0, γ(1) = ηR1}

Since Ψλ,τ,R(0) < 0, by (2.15), (2.16) and (2.17), cR > 0.
Then by the mountain pass theorem, see [4], cR is achieved in V 1,2

c (DR)
at a function u3,R.
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On the other hand it is clear that u1,R, u2,R and u3,R are different,
indeed

Ψλ,τ,R(u2,R) = uR < µ ≤ νR = Ψλ,τ,R(u1,R) < 0 < cR = Ψλ,τ,R(u3,R)

�

Remark 6. When λ is small enough it is easy to prove uniqueness for
(1.5), so u1,R = u2,R, and the local minimum in BΓ od Ψλ,τ,R is the
absolute in V 1,2

c (DR).

3. Problem in Rn
+

Ψλ,τ does not verifies Palais-Samale condition, furthermore by lemma
2 and remark 1 Ψλ,τ is not coercive and not bounded from below.
However for λ small enough:

Proposition 7. Let f be as above, let b be given by (2.11) and suppose
m verifies (2.1). Then
i. For all λ < 1

bM
, Ψλ,τ is coercive and bounded from below.

ii. For all λ < 1
lM

, (1.3) has at most one solution in V 1,2
c (Rn

+).
λ < λ holds in both cases.

Proof.- i. By (2.11), (2.2) and Cauchy-Schwartz for the measure
mdxdy

Ψλ,τ (u) ≥
1

2
‖u‖2

V
1,2
c (

�
n
+)

−
λb

2

∫
�

n
+

m(u + τ)2

≥
1

2
‖u‖2

V
1,2
c (

�
n
+)

−
λb

2
(M

1
2‖∇u‖L2(

�
n
+) + ‖τ‖L2

m(
�

n
+))

2

≥
1

2
(1 − λbM)‖u‖2

V
1,2
c (

�
n
+)

− (λbM
1
2 ‖τ‖L2

m(
�

n
+))‖u‖V

1,2
c (

�
n
+) −

−

(
λb

2
‖τ‖2

L2
m(

�
n
+)

)

so, i. is proved.

�

ii. Uniqueness is proved as in [1] using the inequality (2.2) and (f-4).
Indeed: if u1 and u2 are two solutions of (1.3) then
∫

�
n
+

(u1−u2)
2m ≤ M

∫
�

n
+

|∇(u1−u2)|
2+c(x)(u1−u2)

2 ≤ Mlλ

∫
�

n
+

(u1−u2)
2m

�

Now we will prove a sufficient condition to approximate solutions of
(1.3) with solutions of (1.5) with R large enough.
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Lemma 8. Let f and τ be as above and λ ∈ R+. Suppose (Rn)n

is a sequence R+ such that Rn → +∞ and (un)n is a sequence of
positive solutions of (1.5) with Rn instead of R, such that for all n,
un ∈ V 1,2

c (DRn) and (un)n is bounded in V 1,2
c (Rn

+), i.e. there exists

Γ
′

> 0 such that for all n, ‖un‖V
1,2
c (DRn) < Γ

′

. Then, there exists a

subsequence (called again (un)n)) and a function u ∈ V 1,2
c (Rn

+) such
that un → u weakly in V 1,2

c (Rn
+) and u is a classical solution (1.3).

Proof.- By the Calderón-Zygmund1 inequality for all n, un ∈ H1
0 (DRn

)
⋂

H2,p(DRn
) and fixed R

′

> 0, for any Ω
′

⊂⊂ DR
′

(3.1) ‖un‖H2,p(Ω′ ) ≤ C(‖un‖Lp(D
R
′ ) + ‖λm(y)f(un + τ)‖Lp(D

R
′ ))

for all n such that Rn > R
′

. The constant C depends on DR
′ , n, p and

Ω
′

. Since m is decreasing and strictly positive, and (un)n is bounded
in V 1,2

c (Rn
+), by (2.2), (2.5), (3.1) and the hypothesis of f and m, we

obtain

‖un‖H2,p(Ω′ ) ≤ C(m(R
′

)−
1
2 CsK(1 + M)

1
2 Γ

′

+ λ sup m sup f |DR
′ |

1
p )

for p such that

1 < p < 2n
n−2

if n ≥ 3
1 < p if n=2

and for all n such that Rn > R
′

.
For this and the Sobolev embedding theorem for Ω

′

, there exists a
subsequence (un)n such that if n=2,3 un → u in C1,α(Ω′) and if n ≥ 4

and 1 < p < min

(
n
2
, 2n

n−2

)
is fixed, un → u in Lq(Ω

′

), 1 ≤ q < np

n−2p
.

Since Ω
′

is an arbitrary and relatively compact such that Ω
′

⊂⊂ DRn

and Rn → +∞, we obtain that the above convergences are in C
1,α
loc (Rn

+)
and L

q
loc(R

n
+) respectively. In particular

(3.2) un → u en L1
loc(R

n
+)

On the other hand, since (un)n is bounded in V 1,2
c (Rn

+), by (2.3), (2.5)
and reflexivity

un → u weakly in V 1,2
c (Rn

+)(3.3)

un → u weakly in L
p

m
p
2
(Rn

+)(3.4)

where
1 < p < 2n

n−2
if n ≥ 3

1 < p if n=2

1see theorems 9.9 y 9.11 in [9]
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So, if we prove that for all v ∈ C∞
0 (Rn

+)
∫

�
n
+

mf(un + τ)v →

∫
�

n
+

mf(u + τ)v

our lemma will follow. Based on this and for a fixed v ∈ C∞
0 (Rn

+) we
consider the function

w = v
f(u + τ)

u + τ
m

2−p

2

It is easy to prove that w ∈ L
p
′

m
p
2
(Rn

+), where 1
p

+ 1
p
′ = 1. Now

∫
�

n
+

mf(un + τ)v =

∫
�

n
+

m

[
f(un + τ) − (un + τ)

f(u + τ)

u + τ

]
v +

+

∫
�

n
+

m
p

2 (un + τ)w(3.5)

by (3.4), the last term of right hand side of (3.5) tends to
∫

�
n
+

mf(u +

τ)v. On the other hand, by (f-4)

(3.6)

∣∣∣∣
∫

�
n
+

m

[
f(un+τ)−(un+τ)

f(u + τ)

u + τ

]
v

∣∣∣∣ ≤ 2l

∫

supp(v)

m|u−un||v|

So, by (3.2) the last term of the right hand side of (3.5) tends to 0.

�

Theorem 9. Let f, m, and τ as in lemma 8 and let Γ ≡ ‖τ‖Lσ+1
m (

�
n
+).

Then for all λ, 0 < λ < λ the local minima u1,R of Ψλ,τ,R, approximate
the local minima of Ψλ,τ on the ball BΓ of center 0 and radius Γ in
V 1,2

c (Rn
+).

As a consequence ν∞ ≡ infBΓ
Ψλ,τ , is a minimum and by proposition 7

it is the unique critical point of Ψλ,τ , if λ small enough(i.e. 0 < λ <
1

lM
).

Proof.- We only need to prove that νR → ν∞ as R → ∞. With
this aim we consider (uR)R in C∞

0 (Rn
+) such that uR ∈ V 1,2

c (DR) and
Ψλ,τ,R(uR) → ν∞ as R → ∞. By remark 1 λ

∫
�

n
+−DR

mF (τ)dx → 0 as

R → ∞, because Γ < +∞.
Since

ν∞ ≤ νR = Ψλ,τ,R(u1,R) ≤ Ψλ,τ,R(uR) = Ψλ,τ(uR) − λ

∫
�

n
+−DR

mF (τ)

then νR → ν∞ as R → ∞.

�
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