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REMARKS ON INHOMOGENEOUS ELLIPTIC
PROBLEMS ARISING IN ASTROPHYSICS

MARCO CALAHORRANO & HERMANN MENA

ABSTRACT. We deal with the variational study of some type of
nonlinear inhomogeneous elliptic problems arising in models of so-
lar flares on the halfplane R} .

1. INTRODUCTION

In this paper we study a boundary value problem of type

—Au+c(x)u = Im(y) f(u) R}
(1.1) { u(z,0) = h(z) sz e Rn1

where = (z,y) €e R" ' x Ry =R} with Ry = {y € R:y > 0} and
n>2, f:] — oo, +o0[— R is a function satisfying:
(f-1) There exists so > 0 such that f(s) > 0 for all s €]0, sq].
(f-2) f(s)=0for s <00 s> sp.
(£-3) f(s) < as”, a is a positive constant and 1 < o < 22 if n > 2
oro>1ifn=2.
(f-4) There exists [ > 0 such that |f(s1) — f(s2)| < I|s1 — s2f, for all
s1, S € R.
h is a non-negative bounded smooth function, A # 0, minh < sq, ¢ > 0,
ce€ L®(Q)NC(Q) and mes{z € Q: c(z) =0} = 0.
The problem (1.1) is a generalization of an astrophysical gravity model
of solar flares in the half plane R, given in [1], namely:

—Au = de P f(u) R?
(1.2) {u(x,O) = h(x) Vx€R+

besides the above mentioned conditions for f, h and 8 > 0. See [1], [§]
and [6] for a detailed description and related problems.

By this, we study the problem (1.1) with m : R, — R, a C! function
such that

+oo
/ ym(y)dy < 400
0

more general than e=?.
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We shall follow the ideas of F. Dobarro and E. Lami Dozo in [§].
The authors prove the existence of solutions of (1.1) in the special case
c(x) = 0. In fact, the result presented here follows from the one ob-
tained by the authors.

First of all we note that problem (1.1) is equivalent to

—Aw + ¢(z)w = Im(y) f(w+T) R%
(1.3) { w(z,0)=0 ! Vz e R*!

where w = u — 7 and 7 is solution of the problem

—AT +c(x)T =0 R?
7(2,0) =h(z) VzeR"!

We will study (1.3) instead of (1.1).

(1.4)

The problem (1.1), or equivalently (1.3), is interesting not only on
whole R, but also in an arbitrary big but finite domain in R”, for ex-
ample for semidisks Dg = {(z,y) € R" ' xR, : |z|*+y? < R% y > 0},
with R big enough.

Motivated by this observation in section 2, we will study the following
approximate problem

—Aw + c(z)w = Im(y) f(w+T) Dgr

whose solutions are related to those of (1.3).
Using variational techniques we will prove the existence of an inter-

val A C Ry such that for all A € A there exists at least three positive
solutions of (1.5), with R large enough.

Finally in section 3 we prove the existence of solutions of (1.3) as
limit of a special family of solutions of (1.5) obtained in theorem 5 and
its uniqueness to A small enough.

2. PROBLEM IN Dpg

Letting 2 be either Dy or R}, we denote by L? (£2) the usual weighted
L? space on ( for a suitable weight m and 1 < p < oo, and by V,1%(Q),
V12(Q) the completion of C§°(Q2) in the norm

Jull o) = [ Gmmudedy + [ [Vufdzdy
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and
||u||3/61,2(m :/QUQ(x)c(m)dxwL/Q|Vu|2dx

Let m: R, — Ry be such that
+o0o
(2.1) 0< M= / ym(y)dy < 400
0

it is easy to prove for all functions u € C§°(Q2) the following inequality
holds, see [8].

(2.2) /uQ(:p,y)m(y)dmdng/ |Vul*dzdy
Q Q

then V,1*(Dg) ~ Hj(Dg) ~ V.2*(Dg) and V,22(R™%) ~ D%?(R") where
H{(Dg) is the usual Sobolev space with the norm ||V (.)||r2p,) and
D'2(R?) is the completion of Cg°(R?) for the norm ||V (.)||z2@n)-

On the other hand if R > R, then

(2.3) Vo*(DR) C V(D) C VA(RY) C Vo *(RY)

There exists many results about immersion of weighted Sobolev
spaces into weighted Lebesgue spaces. Here we will take into account
one suitable result for our problem.

Let m : R, — R, be a bounded C! function such that there exists
kE > 0 such that

(2.4) |(log m)l| <k

then the identity map is an immersion from V1-*(Q2) into L” %(Q) for

l<p<2 ifn>3

1<p if n=2
More precisely, there exists a constant K = K (k,supm) such that
(25 Juler ) < CoKull oo
where C; is the usual Sobolev immersion constant. The immersion is
compact if Q = Dp.

Now we will begin to study (1.3) by variational methods. For this
purpose, for all A > 0 and for all non negative function 7 such that
|7|| o+ < 400 we associate the functional ¥, : V"*(R}) — R

1
(2.6) Uy (u) = 3 {IVu|> + c(z)u®} =X [ mF(u+7)
R R”
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where F(t) = [3 f(s)ds, m € C*(Ry) and i = me+1 satisfying (2.1)
and (2.4).

W, is a C! functional, so if u € V.»*(R") is a critical point of W) ,
then u is a weak, and by regularity a classical solution of (1.3).

Remark 1. i. If we consider Wy, r : V1*(Dg) — R,

1
Uy, rlu) = 3 {IVu|* + c(z)u®} — A mF(u+ 1)
Dpg

Dgr

its critical points are weak, and by regularity, strong solutions of (1.5).
Furthermore if R < R' < 400, then for all u € V.?(Dg)

Uy (u) <UL p(u) < Uy r(u)

more precisely

¥yt (1) = Un(w) A [ mF(r) < )
D/—Dg
Here D with R’ = +00 means R .
ii. Since f is bounded, W, ; r is coercive, bounded from below and
verifies Palais-Smale condition for all A non negative.

Lemma 2. For each R > 0 denote 0 : R® — R"™ the map

ou0) = (5

and Og the scaling n — ng = nofr. Then

i. ¥r >0, Op(VI3(D,)) C VI2(0,'D,) and if R > 1, V}*(05'D,) C
V.2 (Drgy).

ii. If n € C°(RY), is non identically 0, then

(2.7) IVnrllr2wy) — +o0 as R — 400

iti. Let f be defined before and m such that verifies (2.1). Then there
exists 0 < A < oo such that if X > A, n € Cg°(R%}), n > 0, non
tdentically 0 and

3 Jan UV + ]| oo}

2 JrR?
(2.8) A<Q(n)=—+= <A

Jr m(y)F (1)

then there exists 1, > 0 : ng € V}*(Dp), VR, R: R > Rr, > r, and
for all non negative function 7.
a. U, w(nr) <0,VR', R: R > Rry, > r,.
b. Yxrgr,(Mr) — —00 as R — +00
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Proof.- This proof follows almost directly from lemma 6 in [8]. How-
ever, by completeness we present all the proof.
i. It is immediate from the definition of ©x.
ii. We observe

1 1
Vinl o) = 5l + (1= 5 )10

thus, changing variables

1 1
9 22 = n—1|_~ 2 1— — 2
29 I¥mliay = o [ 190+ (1= 5) [ ot

s0, since [g. |0yn]* > 0, (2.9) implies (2.7).
+

iii. Set
(2.10) A=inf{Q(n) :ne C5°(RY),n = 0,n# 0}
by (f-3) and since F is bounded
b F(s)
(2.11) 5= s:>110) = < +o0

bM
[ e <5 [ 19nP + el
R R?
hence
0< 1 <A<o0

bM —
Let A > Q(n) be, since n € C5°(R" ), there exists r,, > 0 such that supp
n C Dgy,, for all R > 1. Then by i. and (2.3) ng € V.}2(0,'D,,) C
V12(Dg,,) C VI2(Dy) for all R > Rr, > r,.
For simplicity from now on we call Rr,, = R,,, where R > 1.
Then, by remark 1

(2.12) Uy rr(Mr) < Vs r, (Mr) < Vaor, (R)
On the other hand, if we define the function ¢ : Ry — R

1 1 1
R) = P 2y (1- = / 2
§(R) Rn,lHVnRHL (R?) 7 szm +( RQ) e |9yn|

= [ ) [
R? Jay 10y RY

is non increasing. So applying {(R) < (1) to (2.9)

/ Vsl = / Vsl < R / V2
DRn n R"
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furthermore

and
/ m(y)F(ng) = / m(y)F(ng) = R / m(y)F(n)
D, 7 7
SO
n—1 1 2 2
Wnnn, <75 [ V0P fellmr? <3 [ i F0)]
R? n
then
R A
2.13 Uror, < / Vil + |lcl| e 2(1——)
(2.13) o < 7 [P el (1 g

thus, from (2.12) and (2.13) we obtain immediately a and b.

g

Remark 3. 1. Let m : R, — R, be a bounded C! function and let

M= me. Tt s easy to prove that m verifies (2.4) if and only if m
does it. Furthermore, given a positive constant &, |(logm)’| < k if and

only if |(log )’

ii. If there exists a non negative value m; > 0 such that {m > 1} C

[0,m;] and
+o0o
0<M= / y)dy < 400
then

—+00
0< M = / y)dy < +oo

Indeed, since m > 1 if and only if m > 1 and 0 < ULH <1

my
M = ym(y)dy—l—/ ym(y)dy < (sup mT) + M < +00
m>1 m<1

Lemma 4. There exists a positive constant C' = C(a, o0, k,supm, M)
such that for all X < )\(HTHL%FI(Ri)) and for all u : HUHVIQRi) =

Il @y asr(u) > 0 where M7l g my)) = ClITl 0 -

Moreover X(HTHL%FI(R:U) — 400 as ||| o+ gny — 0
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Proof.- Let u € V."*(R) be, using (f-3) and Minkowsky inequality
with respect to measure m(y)dzdy and (2.2), (2.5) we obtain

u+T
0< mF(u+71) = / m/ ft)dt < ¢ m(u + 7)7+
R} v Jo o+ 1 ry

< gy, + Il
a 17 s o+1
< — (O (14 M) Vul gy + 7] 500)
< (O M)y, + 7)™
then
(2.14)

1 g
\I/A’T( ) ||u||212(R”) )‘0. (C K(1+M) ||u||v1 Q(Rn +||T||Lo+1) +1

then, if we define

C_a—i—l

(CsK (k,supm)(1+ M) + 1)t

then W, (u) > 0 for all A < XA = C||7||}7

lemma is proved.

L"“ ®)’ and since 0 > 1. The

g

Theorem 5. Let us assume (f-1-2-3-4), let mR, — R, be a C!

function such that m and M = m=+1 verify (2.1) and (2.4), and let
7 : R? — Ry be a C' function, non identically 0. So there exists

positive constants C' = C(a, o, k,supm, ]\7) and \ such that if

C o—1
(215) Il < (5)
then
VA A< A< A= 7|%, L"+1(R")

there exists a positive Ry = Ro(\) such that for all R > Ry, (1.5) has
at least three strictly positive solutions.

Proof.- Let C' = C(a, 0, k,supm, M) and A be the positive constant
defined in lemmas 4 and 2 respectively . Since 7 verifies (2.15), by
lemma 4 and remark 1, for all A €]\, \[ and for all R > 1

(216) \I/)\J,R(u) >0 Yu € ‘/CI’Q(DR) : |

vi2(DR) = |\THL;’,L+1(R¢)

On the other hand, fixed A €], A[, n € C°(R™), and letting r,, > 0, the

radius of any semidisk D, such that supp n C D, , by lemma 2 there
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exists Ry > 1 such that for all R > Ryr,, we have ng, € V.}*(Dg),
furthermore

217) 7llgriwey < IVarsl2m) = VR 2@y < 1080l 22 @0y
and
(218) \I;)\,T,R(an) < u< 0

where 11 € R defined as
a

1 —~
p=  min =2 — A (CoK (1 + M)t + |7 pos1) 7+

OStSHTHLU‘Fl(Rn) 2 g + 1
m (R

Let R > Ry, we divide the proof in three steps.
1. Local minimum.- Let

VR = inf \Il,\mR(u)
Br

where Br = {u € V?(Dg) : ullyrep,) <T' = ||THL%L+1(R1)}.

Since ¥, ; r(0) < 0, vg < 0. Furthermore p < vg < 0, by (2.14) and
remark 1 . Therefore infpp. Uy, r > vg.

Now we will prove that vy is achieved in Br. Using a modification in
the proof of proposition 5 and corollaries 6 and 7 in [3], we can obtain
a sequence (u,), in Br such that

\II)\,T,R(un) — VR
\I//)\,T,R(un) —0

since W  r verifies Palais-Smale condition, there exists a subsequence
(tn, )k such that u,, — ui g in V}*(Dg) and uy g # 0 because 0 it is
not a critical point of W) ; p.
2. Absolute minimum.- Let

up= inf W,,p

V2A(DR)

Then ug < p, by (2.17). Now using similar arguments to local min-
imum, but without any modification, we have that ug is achieved in
V12(Dpg) at a function ug g.
3.Mountain pass.- Let

cr = inf sup ¥y, g(u)
dEAR ye§

where Ap is the set of paths

Ap={y:7€C([0.1],V.*(Dr)),7(0) = 0,%(1) =, }
Since U, . r(0) < 0, by (2.15), (2.16) and (2.17), cg > 0.
Then by the mountain pass theorem, see [4], cg is achieved in V(Dg)

at a function us p.
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On the other hand it is clear that uy g, us r and usp are different,
indeed

Uy r(ugr) =up <p <vp=V,,p(u1r) <0<cr=V,,r(usr)
]

Remark 6. When X is small enough it is easy to prove uniqueness for
(1.5), so uy g = ug g, and the local minimum in Br od ¥, ,p is the
absolute in V.'2(Dg).

3. PROBLEM IN R

W, ; does not verifies Palais-Samale condition, furthermore by lemma
2 and remark 1 W, . is not coercive and not bounded from below.
However for A small enough:

Proposition 7. Let f be as above, let b be given by (2.11) and suppose
m verifies (2.1). Then

1. For all A < ﬁ, U, ;- is coercive and bounded from below.

it. For all X\ < 47, (1.3) has at most one solution in V**(R7).

A < A holds in both cases.

Proof.- i. By (2.11), (2.2) and Cauchy-Schwartz for the measure
mdxdy

1, 1y Ab )
\I/)\J(u) Z 5”“”%1’2(11@1)_?/]1{ m(u+7')

i
1 2 Ab 1 )
> Slulpe@ — 5 M2 Vul gy + 7z, p)
1 1
> (L= MM ullyrey) = M 27z, o)l ey =

Ab
- (B i)

S0, i. is proved.
U
ii. Uniqueness is proved as in [1] using the inequality (2.2) and (f-4).
Indeed: if u; and wus are two solutions of (1.3) then
/ (u1—ug)’*m < M |V (g —u2) P+e(z) (g —ug)? < Ml)\/ (u1—ug)*m
R R R7:
U

Now we will prove a sufficient condition to approximate solutions of
(1.3) with solutions of (1.5) with R large enough.
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Lemma 8. Let f and 7 be as above and N € R,. Suppose (R,),
is a sequence Ry such that R, — +oo and (u,), is a sequence of
positive solutions of (1.5) with R,, instead of R, such that for all n,
u, € V'*(Dgn) and (uy), is bounded in V}*(R7), i.e. there exists
I > 0 such that for all n, lunllyizpg,) < I'. Then, there exists a
subsequence (called again (uy,),)) and a function v € VI*(RY) such
that u, — u weakly in V}*(RY) and u is a classical solution (1.3).

Proof .- By the Calderén-Zygmund' inequality for all n, u,, € HZ(Dg,)
H??(Dp,) and fixed R" > 0, for any Q' CC Dy

B1)  unllgza@y < Cllunllzew,,) + [Am) f(un + 1)l o,))

for all n such that R, > R’. The constant C' depends on D w1, pand

Q. Since m is decreasing and strictly positive, and (uy), is bounded
in V2(R%), by (2.2), (2.5), (3.1) and the hypothesis of f and m, we
obtain

[vnll g2p@ry < C(m(R/)_%CSK(l + M)%l—‘/ + Asup msup f|DR/|%)

for p such that

l<p<2 ifn>3

1<p if n=2
and for all n such that R, > R'.
For this and the Sobolev embedding theorem for ', there exists a

subsequence (u,), such that if n=2,3 u,, — u in C»*(Q") and if n > 4

. n 2n . . ! n
and 1 <p< mm(g, ﬁ) is fixed, u,, —» win L9(2), 1 <¢< n_’;p.

Since ' is an arbitrary and relatively compact such that Q cC Dp,
and R, — 400, we obtain that the above convergences are in C’;&?(Rﬁ)
and L] (R") respectively. In particular

loc
(3.2) Up — U en L,.(RY)

On the other hand, since (uy,), is bounded in V,»*(R%), by (2.3), (2.5)
and reflexivity

(3.3) Uy — U weakly in VI2(RY)
(3.4) Uy — U weakly n LZL% (R7})
where

1<p<% ifn>3
1<p if n=2

Isee theorems 9.9 y 9.11 in [9]
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So, if we prove that for all v € C§°(R")

mf(u, + 7)v — mf(u+7)v

R R
our lemma will follow. Based on this and for a fixed v € C§°(R) we
consider the function

flutT) 2

w=v————=m
u+T

It is easy to prove that w € LZ% (R%), where % + 1% = 1. Now

foen), |

u—+T

mf(u, +7)v = /R

m{f(un—i-T) — (up+7)

n n
R} n

(3.5) + m? (U, + 7)w

RY
by (3.4), the last term of right hand side of (3.5) tends to [g, mf(u+
+
7)v. On the other hand, by (f-4)

Ai

So, by (3.2) the last term of the right hand side of (3.5) tends to 0.
U

flutT)

(3.6) m[f(unJrT)—(un—l—T)T_H_}v' §21/ b

Theorem 9. Let f, m, and 7 as in lemma 8 and let I' = ||T||L%+1(Ri).

Then for all X\, 0 < X\ < X the local minima ui,r of Y- g, approzimate
the local minima of Uy . on the ball Br of center 0 and radius I' in
‘/cLQ(Ri)'

As a consequence Vo, = infp. Wy -, is a minimum and by proposition 7
it is the unique critical point of Wy ., if X small enough(i.e. 0 < A <
1

/-

Proof.- We only need to prove that vg — v as R — oco. With
this aim we consider (ug)g in C5°(R%) such that ur € V,»*(Dg) and
Uy - r(ur) = Ve as R — o0o. By remark 1 )‘fRi—DR mF(1)dx — 0 as
R — o0, because I' < +o00.

Since

Vo < v = U ) < U n(un) = U (ug) — A / mF(7)
R —Dp

then vp — v as R — oo.

O
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