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Abstract. In this paper, we consider the wave equation with a weak internal constant
delay term:

u”(x,t) — Aqu(x, t) +uy(t) v/ (x,8) + pa(t) w' (x,t —7) =0

in a bounded domain. Under appropriate conditions on y; and u,, we prove global
existence of solutions by the Faedo—Galerkin method and establish a decay rate estimate
for the energy using the multiplier method.
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1 Introduction

In this paper we investigate the decay properties of solutions for the initial boundary value
problem for the linear wave equation of the form

u”(x,t) — Axu(x, t) + pr () w'(x, ) + p2(t) w'(x,t —7) =0 in Qx]0,+o0],

u(x,t) =0 on I'x]0, o0/, )
u(x,0) = up(x), u(x,0) = uy(x) on (),
u(x, t — 1) = folx,t— 1) on Ox]0, 7],

where () is a bounded domain in R", n € IN*, with a smooth boundary 00 =T, T > Oisa
time delay and the initial data (1, u1, fo) belong to a suitable function space.

In absence of delay (1, = 0), the energy of problem (P) is exponentially decaying to zero
provided that y; is constant, see, for instance, [3, 4, 7, 8] and [12]. On the contrary, if 41 = 0
and pu» > 0 (a constant weight), that is, there exists only the internal delay, the system (I)
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becomes unstable (see, for instance, [5]). In recent years, the PDEs with time delay effects
have become an active area of research since they arise in many practical problems (see, for
example, [1, 19]). In [5], it was shown that a small delay in a boundary control could turn
a well-behaved hyperbolic system into a wild one and, therefore, delay becomes a source of
instability. To stabilize a hyperbolic system involving input delay terms, additional control
terms will be necessary (see [13, 15, 20]). For instance, the authors of [13] studied the wave
equation with a linear internal damping term with constant delay (T = const in the problem
(P) and determined suitable relations between i1 and o, for which the stability or alternatively
instability takes place. More precisely, they showed that the energy is exponentially stable if
H2 < py and they also found a sequence of delays for which the corresponding solution of
(P) will be unstable if y» > p1. The main approach used in [13] is an observability inequality
obtained with a Carleman estimate. The same results were obtained if both the damping and
the delay are acting on the boundary. We also recall the result by Xu, Yung and Li [20], where
the authors proved a result similar to the one in [13] for the one-space dimension by adopting
the spectral analysis approach.

In [17], Nicaise, Pignotti and Valein extended the above result to higher space dimensions
and established an exponential decay.

Our purpose in this paper is to give an energy decay estimate of the solution of problem
(P) in the presence of a delay term with a weight depending on time. We use the Galerkin
approximation scheme and the multiplier technique to prove our results.

2 Preliminaries and main results

First assume the following hypotheses:

(H1) p1: R4 —]0, +o00[ is a non-increasing function of class C! (IR ) satisfying

P (t) ’ <M 2.1)

(H2) up: IRy — R is a function of class C!(IR..), which is not necessarily positive or mono-
tone, such that

|2 ()] < B (t), 2.2)
o (t)]| < Mua(t), (2.3)

for some 0 < B < 1and M > 0.
We now state a Lemma needed later.

Lemma 2.1 (Martinez [10]). Let E: IRy — IR be a non increasing function and ¢: IRy — IRy an
increasing C! function such that

$(0) =0 and ¢(t) — +o0 as t— +oo.

Assume that there exist o > —1 and w > 0 such that

/;Oo EYo()¢/ () dt < éE"(O)E(S), 0<S < +oo. (2.4)
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Then E(O)”
E(t) = t> if —1 2.
(t)y=0 V el if <o <O, (2.5)
1+0 v .
t> 2.
<1+w0cp > Vt>0, if oc>0, (2.6)
< E(0)e!~ vt >0, if o=0. 2.7)
We introduce, as in [13], the new variable
z(x,0,t) = u(x,t —1p), x€Q,pe(0,1), t>0. (2.8)
Then, we have
Tz (%, 0,t) +2p(x,0,t) =0, in Q x (0,1) x (0, +00). (2.9)

Therefore, problem (P) takes the form:

(" (x,t) — Aqu(x, t) + pr (D' (x,t) + pa()z(x,1,¢) =0, x € Q,t >0,
Tz¢(x,0,t) + 2p(x,0,t) =0, xeQ,pe(0,1),t>0,
1) =0, 00, t >0,
u(x,t) X € > (2.10)
z(x,0,t) = u'(x, 1), xeO,t>0,
u(x,0) = up(x), us(x,0) = ui(x), x e,
Lz(x,0,0) = fo(x, —Tp), xeQ,pe(0,1).
Let ¢ be a positive constant such that
B <& <T(2-p). (2.11)
We define the energy of the solution by:
1 1 t 1
B0 = I @B+ IV B+ S [ [ 2000 dpdx, 1)
aJo

where
&(t) = ¢ (t).

We have the following theorem.

Theorem 2.2. Let (ug, u1, fo) € (H2(QY) N H{(Q)) x HY(Q) x HY(Q; H'(0,1)) satisfy the compat-
ibility condition

fo(', 0) = Uq.
Assume that (H1) and (H2) hold. Then problem (P) admits a unique global weak solution

u € Lig (=7, 00); HX(Q) N Hy(Q)), u' € L ((—7,00); Hy(Q)), u” € L ((—T,0); L*(0)).
Moreover, for some positive constants c, w, we obtain the following decay property:

E(t) < cE(0)ewhm®ds yi>q, (2.13)
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Lemma 2.3. Let (u, z) be a solution to the problem (2.10). Then, the energy functional defined by (2.12)
satisfies

£t < - (1)~ 52— 200 ey - (52 - B2O1) oo,

<o0. (2.14)

Proof. Multiplying the first equation in (2.10) by u;(x, t), integrating over () and using Green'’s
identity, we obtain:

0
ol O3+ 5 | Vu(x )3

(2.15)
+ 1 () |Jur (x, ) |15 + pa(t) /Q ur(x, t — T)u(x,t) dx = 0.

We multiply the second equation in (2.10) by ¢(#)z and integrate over () x (0,1) to obtain:

1 1
¢ t)T/Q/O zt(x,p,t)z(x,p,t)dpdx+§(t)/Q/O zo(x,0,t)z(x,0,t)) dodx = 0. (2.16)

This yields

15 2
2 dt// (x,p,t dpdx+—// (x,p,t))dpdx =0,

which gives

;[;t (C(t)/Q/Olzz(x,p,t)dpdx> - / / (x. ot dde]
+T/Q 2%(x,1,t) dx — g(;)/ﬂuf(x,t)dxzo.

Consequently,

14 (10, [ onon)
’t)/Q/O zz(x,p,t)dpdx—g(zt)/ﬂz2(x,1,t)dx+§(2ﬂ./Qu%(x,t)dx.

Combination of (2.15) and (2.17) leads to

(2.17)

QJ‘QJ

[Hut(x DR+ IVaCe I3 +20) [ [ e )dpdx]
= (Ol DB = palt) [ 21,1 d
e t)/o/olzz(x,p,t)dpdx—52(?/sz(x,1,t)dx+i(i)nut(x,t)ug.

NI —
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Recalling the definition of E(t) in (2.12), we arrive at

B0 = = (1) = G2 st 1)1 - palt) | =61, 0 0)

g [ [ 2pndone— S0 [ 201,00

< = ()= 52 ) )1 = ) [ 2051, 0, 1)
—{:;_?/()zz(x,l,t) dx. (2.18)

Due to Young’s inequality, we have

1 1
[ 201, D 0 dx < 3 ()13 + 5 126, 1,0) . 2.19)

Inserting (2.19) into (2.18), we obtain

() < (m(t) _ '”2“)') e, £) 3 — (5“) - '”2“”) l2(x,1,0)|1

27T 2 27 2

< —m(®) (1 - ﬁ) a3 = 1) (f - ﬁ) ls(x 1L 0E<0. @20

This completes the proof of the lemma. O

3 Global existence

Throughout this section we assume 19 € H*(Q) NH}(Q) and u; € HY(Q), fo € L*(Q; H'(0,1)).
We employ the Galerkin method to construct a global solution. Let T > 0 be fixed and
denote by V the space generated by {w1, wy, ..., wy} where the set {wy, k € IN} is a basis of
H?(Q) N H{(Q).
Now, we define for 1 < j < k the sequence ¢;(x, p) as follows:

¢i(x,0) = wj.

Then, we may extend ¢;(x,0) by ¢;(x,p) over L>(Q x (0,1)) such that (¢;); form a basis of
L?(0; H'(0,1)) and denote by Zj the space generated by {¢1, ¢2, . .., ¢x }-
We construct approximate solutions (ug, zx), k = 1,2,3,..., in the form

=~

j=1

k
u(t) = _Z;gjk(f)wj/ zk(t) = Y hi(t)gy,
i

where gjx and hj (j = 1,2,...,k) are determined by the following system of ordinary differen-
tial equations:

(u;{’(t),w]') + (quk(t), wa]') + yl(t)(ufc, w]-) -+ ,‘l/lz(t) (zk(.,l),w]-) =0,
1 <<k, (3.1)
zi(x,0,1) = up(x,t),
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associated with the initial conditions

k
ug(0) = ugr = Y _ (1o, wj)wj — ug in H*(Q) N H{(Q) as k — +oo, (3.2)
j=1
k
e (0) = uye = Y_(ur, wj)w; — uy in H}(Q) as k — +oo, (3.3)
j=1
and
(T2 + 20, 0y) =0, (3.4)
1<j<k
k
zk(p,0) = zogx = Z(fo, ¢j)(pj — foin LZ(Q,' H? (0,1)) ask — +o0. (3.5)
j=1

By virtue of the theory of ordinary differential equations, the system (3.1)—(3.5) has a unique
local solution which is extended to a maximal interval [0, Ty (with 0 < Ty < 4o0) by Zorn
lemma. Note that u(t) is of class C2.

In the next step, we obtain a priori estimates for the solution of the system (3.1)—(3.5), so
that it can be extended beyond [0, Tx[ to obtain a solution defined for all ¢ > 0. Then, we utilize
a standard compactness argument for the limiting procedure.

The first estimate. Since the sequences ugy, 11 and zg, converge, then from (2.14) we can find
a positive constant C independent of k such that

t t
Ec(t)+ [ m(@) | (&)Bds + | ax(s)zu(x 1,9)[3ds < Ei(0) <, (3.6)

where ) ) 0 .
t
E(t) = 5 I3 + 5 IV (DB + > [ [ 2w, t)dpd,

ax(t) = i (8) (1 - % - /;) and as(£) = n (1) (fT - /;) .

These estimates imply that the solution (1, zx) exists globally in [0, 4.
Estimate (3.6) yields

(ux) is bounded in L2 (0, c0; HY (QY)), (3.7)
(u},) is bounded in L{>.(0, 00; L?(QY)), (3.8)
u1(t) (w3 (t)) is bounded in L' (Q x (0, T)), (3.9)
u1(t)(z2(x,p,t)) is bounded in L2 (0, 00; L' (Q x (0,1))), (3.10)
u1(t)(z2(x,1,t)) is bounded in L' (Q x (0, T)). (3.11)

The second estimate. We first estimate u;/(0). Replacing w; by u)/(t) in (3.1) and taking t = 0,
we obtain:

[ (0)[l2 < 1 Axuiollz + 11 (0) uall2 + [p2(0) [0k 12
< [[Axtoll2 + p1(0) [l |2 + |#2(0) [|z0l2
<C.
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Differentiating (3.1) with respect to t, we get

(ug () + Aaug (8) 4+ pa (D uy (8) + py (D) () + p2 ()2 (1, £) 4 pp ()2 (1, 1), wj) = 0.

Multiplying by g7 (t), summing over j from 1 to k, it follows that

o (I O + 17 (O 1B) + i (e) [ w36 -+ (e) [ el ) ax
+ (8 /Q W ()2 (x, 1, ) dx + ) (t) /Q W (H)z(x,1, 1) dx = 0.

N =

(3.12)

Differentiating (3.4) with respect to t, we get

0
(Tzf(/(t) + %Z;(’ 4)]-) =0.
Multiplying by /17, (t), summing over j from 1 to k, it follows that

1d
2dtH z ()5 + 2o 2 (8)]|3 = 0. (3.13)

Taking the sum of (3.12) and (3.13), we obtain that

1
2 / 2 / 2
3 gt (1 O+ 190+ 7 [ 24Dl
1
wne) [ wFOdx+ 5 [ |1 0P dy
= —palt) [ W' (07401, 8) dx =i (1) [ (D (e) dx
1
(1) [ (B2 L 1) dx 4 5 (8]

Using (H1), (H2), Cauchy-Schwarz and Young’s inequalities, we obtain

33t (OB + IV OB + [ el 50,0 de )
+y1(t)/ﬂ W) dx+ > /yzkx1t)|2dx
< o 0) ! 0) a4, 1, )+ 4 ) () ()
OO ol 1O+ 3 1 (1)

t)|? 1 Tt
< W2OF 8+ Dzt 1,013 + P2 g (12 4 1 ) 013

|.”/2(t)| " 2 / 1 2 1 " 2
= (0112 + ()] llze(x, 1, )12+ 5 e ()12

1
< g (O3 + [ ONurllz + (D12 (x, L OE + 5 1 z1(x, 1, )13

. 1
< N (D15 + Mpa (8) 13 + Mpa (8)l|2i(x, 1, )13 + 5 llzi (x, 1, £) 3.
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Integrating the last inequality over (0, t) and using (3.6), we get
(1 O+ 174 O+ 7 [ ka1 s )
< (IIuZ(O)H% + Va3 +7 0,02 dp) +2m | () [ (5) 3 s
420 [ ()00, 1,5) Bas + 2 [t (5) B
<0 [ (6B + Vi (B + [ 2405,0,5) s do )
Using Gronwall’s lemma, we deduce that
I/ () 3+ IV 1B+ 7 [ Nk, ) g o < CE

forall t € R™, therefore, we conclude that

(u})) is bounded in L (0, 00; L?(QY)), (3.14)
(u}.) is bounded in L{>.(0, c0; Hy (QY)), (3.15)
(1z}) is bounded in L. (0, 00; L*(Q x (0,1))). (3.16)

Applying Dunford—-Pettis” theorem, we deduce from (3.7), (3.8), (3.9), (3.10), (3.11), (3.14), (3.15)
and (3.16), replacing the sequence u; with a subsequence if necessary, that

up — u weak-star in L2 (0, 00; H*(Q) N HY(QY)), (3.17)
up — u’ weak-star in L{> (0, 00; H} (Q))),
u"y — u” weak-starin L{ (0,00; L*(Q2)), (3.18)

u — x weakin L?(Q x (0, T); p1(t)),

zy — z weak-star in L>(0,00; H}(Q; L2(0,1)),

zj — 2 weak-starin L{> (0,00; L*(Q x (0,1))), (3.19)
zi(x,1,t) = ¢ weakin L*(Q x (0,T), u1(t))

for suitable functions

ue L0, T; H*(Q) NH}(Q)), ze€ L®(0,T;L*2(Q x (0,1))),
X € L2(Qx (0,T); (1)), Y € LX(Qx (0,T); pa(t)),

for all T > 0. We have to show that u is a solution of (P).

From (3.15) we have that (u}) is bounded in L*(0, T; H{(Q))). Then (u}) is bounded in
L?(0, T; H}(Q2)). Since (1) isbounded in L* (0, T; L>(Q2)), then it is bounded in L?(0, T; L*(Q2)),
too. Consequently, (u}) is bounded in H(Q).

Since the embedding H'(Q) < L?(Q) is compact, using the Aubin-Lions theorem [9], we can
extract a subsequence () of (1) such that

u'g — u' strongly in LZ(Q). (3.20)

Therefore
u; — 1 strongly and a.e. in Q. (3.21)
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Similarly we obtain
z. — z strongly in L*(Q x (0,1) x (0, T)) (3.22)

and
z; — z strongly and a.e. in Q) x (0,1) x (0, T). (3.23)

It follows at once from (3.17), (3.18), (3.19), (3.20) and (3.22) that for each fixed v € L?(0, T; L?(Q)))
and w € L2(0, T; L*>(Q)) x (0,1))

T
/0 /Q (ug — Aqug + pr (t)ug + po(t)zg) v dx dt
T
— / / (1" — Axu + pr () u' + pa(t)z)vdx dt,
0o Jo

T /1 o S o
/O/O/Q(ng—i—%%)wdxdpdt%/o/O/Q<Tz —l—az)wdxdpdt (3.25)

as ¢ — +oo. Thus the problem (P) admits a global weak solution u.
Uniqueness. Let (u1,z1) and (u,2z2) be two solutions of problem (2.10). Then (w,®) =
(u1,2z1) — (u2,z2) satisfies

(3.24)

w”(x,t) — Myw(x, t) + pr (Hw'(x, ) + pa(H)@(x,1,¢) =0, in Qx]0, +o0],
@' (x,0,t) + W, (x,p,t) =0, in 1x]0,1[x]0, 400
w(x,t) =0, on 0020, +oo] (3.26)
w(x,0,t) = w'(x,1), on (%10, 00|
w(x,0) =0, w'(x,0) =0, in Q)
w(x,p,0) =0, in Ox]0,1]

Multiplying the first equation in (3.26) by w’, integrating over () and using integration by parts,

we get
1d .
5 77 12+ 1Vxwll2) + p (D) [@']]z + 2 (8) (@ (x, 1, ), w') = 0. (3.27)

Multiplying the second equation in (3.26) by @, integrating over () x (0,1) and using integra-
tion by parts, we get

H~||2+**szT)H =0. (3.28)
Then
T [ helBde -+ 5 (a1, 03 ~ /1) =o. (329)
From (3.27), (3.29), using the Cauchy-Schwarz inequality we get
1d 2 L 2o L 2
577 \lw Hz+HVxWHz+T/O 1@z dp | + itz + S ll@(x 1,52
N 1
= () (@(x,1,1),0) + S||'[3
N 1
< pa(Dll@(x, 1, 8) [allw’ 2 + 5 [[']13

Using Young's inequality, we obtain

1d 1
3t (1WB+ 19wl 7 [ olidp) <l
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where c is a positive constant. Then integrating over (0, t), using Gronwall’s lemma, we con-
clude that

1
'3+ |Vl + 7 [ ll3dp = 0.

Hence, uniqueness follows.

4 Asymptotic behavior

From now on, we denote by c various positive constants which may be different at different
occurrences. We multiply the first equation of (2.10) by ¢'E7u, where ¢ is a bounded function
satisfying all the hypotheses of Lemma 2.1. We obtain

T
O:/ EM;’/ u(u”—Au—|—y1(t)u’+y2(t)z(x,1,t)> dx dt
S 0
T T
= Eq’/ ’d] —/ E'Ei"1¢' + E1 ”/ "dx dt
[qbQuuxS S(q ¢+ <P)Quux
T T
~2 [ B [ wPdxdes B[ (4P o+ |Tul) duds
B9 | uPdxdts | ¢Q(u+!u|)x
T T
+/S E"(])’yl(t)/auu/dxdt—k/s Eq(p/yz(t)/ uz(x,1,t) dxdt.
0

Similarly, we multiply the second equation of (2.10) by E1¢/Z(t)e 2*Fz(x, p,t) and get

0= /T E”’qb’/ /1 e 2PE(t)z (TZ[ +zp) dx dp dt
= [ E1¢'&(t) / / o~ 2T0,2 dxdp]s —;/ST/Q/: (Eq(p’g(t)’(e*ZTp)/szxdpdt
+/ E"<p’/ / C(t)< (e72?) +Te2rpzz> dx dp dt
= [ E9¢'E(t) / / ()2 dxdp]:—; (ET¢'Z(t) / / e 2™z dx do dt
+§/s E‘hp’@(t)/ e 2T2%(x,1,t) — 2%(x,0, t))dxdt—i—/ ET¢'Z(t) / / e 222 dx dp dt.
Taking their sum, we obtain
A /S prty < — [E”cp’ /Q uu’dx]i%—/s GEETg + E1) /Q wit' dx dt
+2/STE”4>’ ./Qu/zdxdt—/STyl(t)Eq(p’/ uu dx dt

—/STyz(t)chp’/ uz(x,1,t)dxdt — [ E1¢'Z(t) / / e 21,2 dxdp} 4.1)

2/ (ET¢'E(t) // 2022 dx dp dt

/ E¢/&(t / 22(x,1,t) — (x,O,t)) dx dt,
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where A = 2min{1,e *%}. Using the Cauchy-Schwarz and Poincaré’s inequalities and the
definition of E and assuming that ¢’ is a bounded non-negative function on IR*, we get

Eq(t)cp’/guu’dx

< cE(t)1TL.

By recalling (2.14), we have
T
E'ET! // uu' dx
ke,

dt < C/ST E9(1)|E' ()| dt < C/ST E9(t)(—E'(t)) dt
< cETTY(S),

/ chp”/ un dx dt < c/ ETT(t)(—¢") < cETT(S) /T(—fp”)dt < cETT(S),

S

and
/Tqub// u?dxdt < c 1 /yl(t)u’zdxdt
s 0 —Js m(t) Ja
<[ "e Y CEya (42)
“Js o)
Define ;
:/0 ui(s) ds. (4.3)

It is clear that ¢ is a non-decreasing function of class C! on IR, ¢ is bounded and
¢(t) — +ooast — +oo. (4.4)
So, we deduce, from (4.2), that
T T
/ Elg’ / W dxdt < ¢ / EI(—E')dt < cEI71(S), 4.5)
S Q Js

By the hypothesis (H1), Young’s and Poincaré’s inequality and (2.14), we have

T T
E”hp’/ uu’dxdt‘ < c/ E9¢|[ula]|ut'||» dit
S Q S

T T
<cd [ B uldt+c(e) [ EY! ol Bt
T T
<o, [ EWIVaulBdr+e(e) [ R
S S
T
< €c, / ETt¢" dt + cE1L(S).
S

Recalling that ¢’ < 0 and the definition of E, we have

/ (E9¢(t) // e 272 dxdpdt</ (ETY // e 272 dx dp dt

< c/ E9|E| dt
S

IN

c/ST E9(—E'(t))dt
cETTL(S),

IN
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/ST Eqé(t)/ﬂe_zfzz(x,l,t) dxdt < C/T E"g(t)/ﬂzz(x,l,t) dx dt

S
T

< c/ E7(—E') dt
S

< cETT(S),

/S "Bz /Q 22(x,0,) dx dt = /S " Erze) /Q W2 (x, t) dx dt

< cEIH1(S),

where we have also used the Cauchy-Schwarz inequality. Combining these estimates and
choosing ¢’ sufficiently small, we conclude from (4.1) that

T
/ ES*1¢! dt < CET+(S).
S

This ends the proof of Theorem 2.2.
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