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1 Introduction

The problem of exact controllability of linear systems represented by infi-
nite conservative systems has been extensively studied by several authors A.
Haraux [8], R.Triggiani [16]|, Z.H. Guan, T.H. Qian, and X.Yu [7], see also
the references [1, 2, 6, 10,15]. In the sequel, we shall be concerned with the
problem of null controllability of some first order evolution equation sub-
ject to impulsive conditions and so we shall derive a necessary and sufficient
condition under which null controllability occurs. Actually, we shall estab-
lish an equivalence between the null-controllability and some "observability”
inequality in somehow more general framework than that proposed by A Ha-
raux [8]. Regarding the literature on the impulsive differential equations we
refer the reader to the works of D.D. Bainov and P.S. Simeonov [3, 4] and
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the references [5, 9,11, 12, 13|. We are going to study the following problem

y () +Ay(t) = Bu(t), t€(0,7)\{t}yeop (1)
y(0) = "
Ay(tk) = Iky(tk)+Dkvk, ]{JEO'?L, (1k)

where the final time T is a positive number, 3° is an initial condition in a
Hilbert space H endowed with an inner product (., .)g, y (¢) : [0,7] — H is a
vector function, o7 is a subset of N given by o" = {1,2,...,m}, and finally,
{tk}keo;n is an increasing sequence of numbers in the open interval (0,7,
and Ay (tx) denotes the jump of y (¢) at t = ty, i.e.,

Ay (te) =y (tF) —y ()

where y (t;:) and y (t;) represent the right and left limits of y (¢) at t = t;
respectively. On the other hand, the operators A, B, I, D, : H — H are
given linear bounded operators. Moreover, we set the following assumptions:

(H1) A* = —A,

(H2) I} = —1I, for every k € o}", and for each k € o7", the operator
1) = I, + I is invertible,

(H3) B* = B > 0 and there is dy > 0 such that

(Bu,u), < dollull?, foralluec H,

(H4) D; = Dy > 0, for every k € o}", and for each k € o}* there is
di, > 0 such that

(Dyu, )y, < dy|ul)?,, forallu e H.

In the sequel we shall designate by A the function
h(t) = (w ) {rbieop )

where u (t) € L? ((o, T)\ {t}peop H) and

{Uk‘}keo{” el (07" H) = {{Uk‘}keg{n , U € H} .
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We point out that the space K,,, = L? ((0, T)\ Atk teeor ; H) x 2 (o H) is
a Hilbert space with respect to the inner product

(1) = [ OO+ i,

defined for all h = (u (), {vp}7,) and h = (@ (t), {Tx}1",) € K.
We shall denote by B the control operator given by

B = (B, {Dk}kEzri") €L <L2 <(0’T) \ {tk}kgf{” ) H) o (1" H)) ’

so that
Bh(t) = (Bu OF {Dkvk}k@{n) .
We have for every h = (u(t), {vg}1,) € K

(Bh,h)y = / (Bu(t),u(t)ydt+ > (Dyvg,vp)y
0 k=1

— / (u(t),Bu(t))HdHZ(vk,Dkvk)H
0 k=1

= (h,Bh)g, ,

which shows that B* = B, that is, B is self-adjoint. On the other hand, we
have

(Bh,h) = /0 (Bu(t),u(t)y dt+ Y (Dyvg,vn)

T m
< d / la @)% dt+ S di lloglly
k=1

< S|hl, .

where 6 = max {dy, dy, ..., d,,} . Thus, the operator is B bounded in /C,,.
Next, we consider the homogeneous system associated with (1) :

(pl (t) + AQD (t) =0, te (0’ T) \ {tk}keo{” ) (2)
p(0) = ¢
Ap(ty) = Irp(te), k€ of". (2%)

EJQTDE, 2007 No. 19, p. 3



We point out that on each interval [ty, tx. 1), for k =0, ..., m, the solution ¢
is left continuous at each time #;.
Consider the corresponding homogeneous backward problem :

(1) +Apt) = 0, € 0,1\ {li}peop s (3)
P(IT) = ¢,
AG(tm—k—1)) = —[m_(k—l)ﬁ(t;_(k_l)% ke o, (3%)
where

A=A =—A Ing-yy=1 41y = —In-x-1), k € 07"

We observe that the problem (3) on the interval [¢,,, T] is equivalent to the
classical backward problem

—¢ (1) + Ap(t) =0, t € [tm, T],
P(T) = "

We introduce the following space : PC([0,T];H) = {y,y : [0,T] — H
such that y(t) is continuous at t # ty, and has discontinuities of first kind at
t = tg, for every k € o'}

Evidently, PC ([0,T]; H) is a Banach space with respect to the norm

yllpe = sup [ly(@)]l-
te(0,T)

On the other hand, we define the subspaces PLC, (respectively, PRC)=
{y,y € PC such that y(t) is left (respectively, right) continuous at t = ty,
for every k € of"}.

Remark 1 1) The space PLC, (respectively, PRC) can be identified to a
subspace of KC,,. That is, to each y € PLC, (respectively, y € PRC) is
assigned the function h (respectively, h) defined by

h(6) = (30 Ay () heop )

and

R0 = (50) 4700}y )-

The mapping y — h (t) (respectively, § — H) is a linear injection.
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2) Let y € PRC, the function y can be written as :

Jo(t) if t€to,tr)
y(t) =< gwt) i t € [te,tri)
Yy (t) if t € [tm, T).

Next, let 7, = tp — tx_1, we define the operator 7 : D(7) = PRC C K,, —
Ko, by

Yol (T = )7 + o) if t € [tm, T),
(T)() = Um(Em—k—1) — t)Tmféil) +tp) if te [tm—katm—(k—l)), ke ot
o) (b — )22 1) i te (0t

(4)
We note that the range of 7 is exactly PLC. The function (7y)(¢) can be
written as follows:

yol(t) if  t € fto,t],
(TY)(t) =14 yw(t) if t€ (tytyp), keay ™,
Yim) (t) if te (tm, T] .

Let X (¢) be the resolvent solution of the operator system

’(t)+AX()—0,0:t0<t<tm+1:T, t#t, k=1,2,....,m,
(0)

where [ : H — H is the identity operator. We shall suppose that the operator
I, = I, + I has a bounded inverse.

Definition 1 A function y € PC ([0, T); H)is a mild solution to the impul-
sive problem (1) if the impulsive conditions are satisfied and

yt) = G(t,0%)y" + [o G(t,s)Bu(s)ds
+ 2 0ct <t G(t, 1) (Dyvy), for every t € (0,7),

where the evolution operator G(t, s) is given by

G(t,s) = X(H)X(s).
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It is not hard to check that the operator G(t,t) satisfies the operator system

G'(t, ) + AG(t, 1) =0, t € [ty trr1), k € o0,
G(te, ty) = 1,
G@L—lv tk) - G@I;-Hv tk) = [k‘+1G<tI;+17 tk)'

It is well known that (1) has a unique solution y such that
y e PLC (0,71 H) N C* ([0, TI\ {tibyeny : H) -

Now, we define the concept of mild solution for the backward impulsive
system (3) associated with system (2).

Definition 2 We say that ¢ € PRC ([0,T]; H) is a mild solution for the
backward impulsive system (3) if T p is a mild solution for the homogeneous
impulsive system (2).

Let us introduce the notion of the null controllability of the initial state
as follows:

Definition 3 We say that the initial state y° € H is null controllable at time

T, if there is a control function h € K., for which the solution y of system
(1) satisfies y (T') = 0.

2 Main Results
First we begin by the following lemma.

Lemma 1 Assume that £(t),¢(t) € L' ([0,T); H) and {&},  {C )iy €
IY(o, H). Then, for every vector functions

7(t) € PLC(0.T); H) N C* ([0, T\ {tabyeop s H)

and
n(t) € PRC(0,7); H) N C ([0, T\ {tabyeop i H)
satisfying the problem

S m) = €0.C0), 14t forkeof,

Aly (k) sn (b)) = (A () () + (v (te) , An (t)) = (&, Gr)» K € 07",
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we have the following identity

(@)l = (V(T),n(T)) = {v(0).7(0) (5)
- /0<§ dt+Z§k,§k
Proof. Tt is straightforward. OJ

We also need the following Lemmas.
Lemma 2 [14] If B € L(K,,) is self-adjoint and nonnegative, then
|Bhl| < (1B (Bh,b)2, b€ K.

Lemma 3 If 7441 = Tp_ (1), k € o1, then for the mild solution ¢ of (3),
the identity holds :

T m T m
/O BEydt+ Y | D ()3, = /0 |Belf dt+ > |Digp (tmis1) |
k=1 k=1
(6)

Proof.  For each k € o7, using the change of variable t — (t,_x_1) —

)= — + ¢, we have
Tm—(k—1)

(k—1)
/ (B(p[mfk] (t)a Bw[mfk}(t))dt
tn—k

k=D Th+ Th+1
= (B ((bn—ge—1) — 1)~ + i), B (tm—-1) — 1) + 1g))dt
tm—k m—(k—1) Tm—(k—1)

Trk+1

~T—h-1) [~ ~
= 7/ (Bow(s), Bow(s))ds
(]
tht1
:/t (B¢ (s), B (s))ds.
k

Summing up with respect to k, we get

Z / m—(k—1) (Bgo[m—k}«t))’ BQO[m—k] (t))dt = Z/t Hl(BSZ[k] (t), B@[k]@))dt'

k=0 7 tm—

EJQTDE, 2007 No. 19, p. 7



Thus, we obtain

r 2 r 2
/0 B dt = / Bol? dt.

On the other hand, by virtue of the definition of the function ¢ we get

¢ (tmr) = @ (tir1), k€og ™

Also, we have

@ (o)) = 2 (te), k€ o,

and

@ (tm-r) = @ (trs1), k€05

This implies that

Z | D (t) |
o

which gives (6).

3
L

<Dm—k6 (tm—k) ) Dm—k‘z (tm—k)>H

i

o

3
L

(Dp—re (tgs1) s Din—rp (tk+1)>H

i

o

NE

(D (tm--1) » D (tm--1)) )

~

—_

NE

(Dip (tm—(k-1)) » Diep (tm—(k—l))>H

ol

1

NE

| Dip (tm—s—))

ol
—

O

Corollary 1 If 7441 = Ty—(r—1), for k € 06”_1, and B, Dy, are nonnegative
in H, then the following holds:

k=

3

/0 (B3, 30t + S (De(te), 3(t))

T
Il
—

3

= /O<B<P(t),90(t))dt+ (Dr(tm—(k-1))s (tm—(k-1)))-

ol
—
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Proof.  This follows immediately from Lemma 3 if we substitute B by B %,
and Dy by D2. O
Now, we state and establish the following Theorem.

Theorem 1 Let y° € H be a given initial state for the system (1), then y° is
null controllable at time T if and only if there is a positive constant C' such
that

T m 1/2
‘(yo,@0>H‘ <C {/0 |Bg0|§{dt + Z ‘Dkgo (tm,(k,l)) ‘2} , V@' e H,
k=1

where p € PLC ([0,T); H) is the unique mild solution to (2) with ¢ (T) = @.

Proof. Tt suffices to prove this Theorem for the special case 741 = Ty (k—1),

1/2
for k € of"', because the norm |||.||| = > 1", T(Jl: D) j;i’““| |Hdt} is

equivalent to the usual norm of L?([0,T]; H).

We shall proceed in several steps.

Step 1: Let y and ¢ be strong solutions to (1) and (3), respectively.
Then, for ¢ # i, k € of", we have

.50 = /

)
Multiplying equation (3;) in (3) from the left by y (¢,,—(—1)) the solution of
(1), and multiplying equation (1;) in (1) from the right by @ (¢x) the solution
of (3), and finally adding memberwise we get

Ay(t), p(t)) =1, (y(tr), Ap(te)) + (Ay(tr), o(tr)) (9)
= <y(tk> Iip(tr)) + (Ley(te) + Drok, 6(tx))

(y(tr), IkSO(t ) + (Dy(te), o(tr)) + (Drvw, 9(t))

( tr

Setting () = y(t), n(t) = (1), £(t) = Bu(t), (t) = (1), & = Diuvg,
Cx = @(tx), then equations (5), (8) and (9) give
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T k=m
(D). E(T) = (0).50) = [ (Bult) GOt + Y (Duwn. G0 (10)
0 k=1
Since B is bounded, self-adjoint and B >0, then by density the latter identity
is still valid for mild solutions y of (1). Identity (10) can be written as follows
T k=m
()BT ~ (9(0).50)) = [ (a0, BE)d1+ 3w, D). (1)
0 k=1

Next, if there is a certain h(t) € I, such that the mild solution of (1) with
y(0) = y° satisfies y(T) = 0, then

k=m

~0).70) = [ (u(v). BEO)+ 3 (0, DF0)

k=1

and so by Cauchy-Schwarz Inequality we obtain

T P 1/2
[(¥(0), 2(0))u| < {/0 IIU(t)IﬁIdHZIIkaIE} (12)

- P 1/2
X {/0 BRI dt + ) HDk@((tk)Hi} :

Using Lemma 3, and equation (12) we have

T e 1/2
[(¥(0),2(0)n| < {/0 IIU(t)H?{dHZIIkaIZ}

T kem 1/2
{ / HBso<t>Hédt+ZHDw@m-(k-u)Hz} -

k=1

Setting
T k=m 1/2
C = [a®ll,, = {/0 )15 dt + Hvklﬁq}
k=1
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we find that

T k=m 1/2
|((y(0), 2(0))u| < C {/0 1Be@)lldt+ HDkSO(tm—(k—n)Hi} :

k=1

This shows the necessary condition of the Theorem.
Step 2: To prove the sufficiency we need the following result when B >
a> 0.

Claim 1 Assume that there is o > 0 such that

T k=m T k=m
{/ | Bu(t)||7 dt+ HDkkafq} > Oé{/o ()17 dt -+ HkafH}
k=1

0 k=1

then, for every y° € H there is ©° € H such that the mild solution of (1)
with

h(t) = (B(t), 2(t1), s B(tr)- P(tm)) € Ky and y(0) = y"
satisfies y(T') = 0.

To prove this Claim, we consider for every z € H the solution ¢ of (2)
satisfying ¢(7T") = z and the unique mild solution y to the problem

YO+ Ay(t) = B(t),t € (0.7)\{thcop -

Ay(te) = Ly(te) + Dro(te),
y(T) = 0.

Next, we introduce a bounded linear operator A : H — H defined by
Az = —y(0).

According to formula (11) and the Corollary 1 we have

(Az2) = |—{y(0),30))] = / <B¢<t>,¢<t>>dt+iwmw,@(tk»‘
- / (Bo(t), o)t + S (Dot e oltm k1))

< c{/o HSO(t)HZdt—l—Z”‘P(tk)”Q}a
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where
¢ = sup {di} < 0.

keol

We have

/O lot)|12 dt = / el dt + / el dt+ .+ / lo(t)] dt.

t1 tm

Since there is no impulse in the interval [¢;, tx1) we have
le@)ll = Jle(6)

HSO(tl;q)H = H@(t;_l)H , keaol.

Therefore, there are 7,11 = ty41 — tp > 0, k € 0" such that

, for every t € [ty, tpr1), k € o,

S le@I dt < pr |l = i e (1) + o(t5)|)

On the other hand, the continuity of I}, implies that

eI = [T + Deot)||* < (1 + L)) || t) ||

It follows from (14) and (15) that

, keol

ftikﬂ le))I* dt < mra(1+ L(I))? e (t)] 2 ke o

, keol™

(16)

Since m is finite, and due to (13),(16), then there is a constant 0 < pu < co

such that (Az, z) < pulz||*, and thus, A is bounded.
Now, as B is nonnegative in IC,,, we have

1B @ = a{(€ (1), & (1), )"
for all & € K,y,; thus, by virtue of Lemma 2, we have

k=m

{ /0 (Bu(t), u(t)) dt + (Dkvk,vk)g}

k=1

T k=m
> of B {/0 ()l dt + ) IIUkIIfq}-
k=1

(17)
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It follows from (11), (17) and Corollary 1 that
(Az,2) = —(y(0),9(0))
- / (Bo(t), o)t + S (Dyplbmie): oltm—)
a|Bl| {/0 lp ()11 dt + i ||<P(tk)||2}

t1
> OéHBH/O lp(@)]|* dt = 1B aty ||]* = 6],

v

because there is no impulse before time ;. Therefore, A is coercive on H.
To show that there is a bijection from H onto H, it suffices to prove that
A + I is a bijection from H onto H. Clearly, A 4+ I is injective since

(A2 +2,2) = (Az,2) +{z,2) > (0 + 1) || 2||*.

On the other hand, let y° € H, as the form a(f,g) + (f,g) = (Af,9) + {f, 9)

is symmetric and coercive, then, by virtue of Lax-Milgram Theorem, there
is an element f € H such that

a(f,9)+ (f.g) = (4’ g), forall g € H.

This implies that A(H) = H. Thus, for every y° € H , there is a unique
z € H such that A(z) = —y°, which completes the proof of Claim 1.
Step 3: Assume that B, Dy > 0, then B > 0,

B?=B,D?=Dy.
We define for ¢ > 0, B
35 =DB*+¢l,
5 = D? +el,

and
B = (365,.,05) = (B*+cl; D} +¢l,..,D? +¢l).

According to Claim 1, there is ¢°¢ € H such that the mild solution y. of (1)
with y.(0) = y° satisfies y.(T') = 0; where B(h) has been replaced by

Be(g(t)v @I(tl)v ) (E(tk‘)7 @(tm» € ICm
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We obtain from (11) and Corollary 1

k=m

~(9(0), 3.(0)) = / (B, B(D)dt + S (05 (t), (), (1)

and (7) gives

- 1/2
—(y(0),9:(0)) < C {/0 (B2p.(t) ))dt + Z rpe(t 1))7()0€<tm—(k—1)>>} -
(19)
Whence,
. e 1/2
—(y(0),:(0)) < C {/0 (B°pe(t), pe(t))dt + ;@i%(tm—(k-l)),soe(tm—(k_n))} :
(20)

It follows at once from (18), (19) and (20) that

{fo o1 e +'5 el }
T (Beelt). Beoo(t))dt + zm (B (o)) Do (b))

= [ (B°p.(), p-(1))dt + z (550 (b)), = (tm—(r—1))) < C2.
(21)

Step 4: According to the estimate (20) the family

be = BS(&&( )??&(tl)---a&a(jm)
= <B290( );D%¢€<t1)"'7Dm@€<tM)) +8(@6@);ge(tl)'“v@e(tm»

is contained in a bounded subset IC,,.
Thus, both of the families

VE(@e(t); @e(tr)-., @e(tm)) and (BP(t); D1&e(t1)--., DimnPe(tm))
are bounded in /C,,,. Therefore, we may extract a subfamily, say

(Bp:(t); D1pe(t1)., Dinpe(tm)) — h, weakly in IC,,.
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Then clearly
(B@e(t); DI@e(tr)-, D@ (tm))+2(@=(); @e(t1).o, P (b)) — Bh, weakly in K.

Step 5: Taking the limit as ¢ — 0, we see that the solution y of (1) with
initial condition y(0) = y°, h being as in step 4 satisfies y(T') = 0. This
completes the proof of Theorem 1. O

As an immediate application of the foregoing Theorem we give the fol-
lowing example.

Example. One dimensional impulsive Schrodinger equation :

We consider the problem

dy(tx) %y

T 1532 (t,x) = Xou(t,z), t€(0,T)\{tutyeom v € Q=(0,27),
y(t,0) = y(t,2m) =0, (22)
y(0,2) = ¢,
Ay (te,x) = dagy (tr, ) + Xw,vk(z), k € o7,
where

U1 — g > 27, w = (alfaag) - Qa k€ ng’ {ak‘}kEo"in C R*.
Let

H = I2(Q,C), Aw(z) = iZ%(z), D(A) = {w € H, 2% ¢ H,w(0) = w(r) = 0} ,
and Iyw(x) = iapw(z) and the control operator is given by B = x.,, Dr =

Xwe, then the system (22) becomes an abstract formulation of (1). As a
consequence of Theorem 1, the initial state y° € L*(Q,C) = H of the
solution of (22) is null-controllable at ¢ = T, if and only if, there is C' > 0

such that

/Q §(2)3 () da (23)

T m %
0 wo

k=1"Y %k
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where ¢°(z) = ¢(T, z) and ¢ is the mild solution of

Op(t,x) | 0%p(t )
5 +1 502 = 0, t€0,T)\{te}yeop . v €9Q,
p(t,0) = ¢(t,2m) =0,
p(0,2) = ¢"(2), z€Q,
Ap (tg,x) = dagp (tg,x), v €Q, k € o7

Here ¢ is given by

90[0} (t) s if t e [to,tl)
QO(t) = Plk] (t) , if te [tk, tk+1))
P[m] (t) ) if te [tma T] s

where @p;(t) is a solution of the classical Schrodinger equation

Opp (t,2) P
5t +1 52 (t,x) = Xuwu(t,x), te (to,t1), ze€Q=(0,2m),

o (t,0) = op(t,2m) =0,
e (to,z) = ©(x), x € Q,

and

0 t,x 0?
@[k]ai ) +1 aigﬂ (t, ) Xoot (t, ), t € (tg,trr1),x € Q= (0,27),

(p[k](t, 0) = go[k} (t, 27‘(‘) = 0,
o (te,x) = (1 +iag)ep-1 (tr, ),z € Q,k € 0"

Then a standard application of a variant of Ingham’s Inequality [8] shows
that

tht+1
[ ol et = et [ ol 21z
tk wo Q

for some positive constants ¢(7y, wp) > 0. Summing up we get

m tet1 T ,
Z/ }So[k}’ (t,z)dtdr = / / lo|” (t, x)dxdt
k=0 7tk wo 0 Juwo
> 012/ ’go[kﬂ(t;,x)da:,
k=179
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where ¢; = minc(7, wg) > 0.
keol®

On the other hand, there is a positive constant ¢y > 0 such that

Z ll” (bm—r1) >CQZ/‘§0[I€ (ty,x)

=1 Y%k

It follows that

T
|| 1ol iz
0 wo

+ Z o* (tm—(r—1, @)

k=1 "%k
> (01—1-02)2/}@%]‘2(%,3:)613:
k=1
> (Cl+c2>/’§0[m”2<t;,x)dx
Q
— (a+e) [ Jof (s
0

Now, since @¥(z) = §(0,x) = (T, x), then,

T m
/ / o (6 2)dwdt + 3 [ o (b 2) > mer + ) / 12 (2)da
0 wo Q

k=1 "%k

from which we get

(t, z)dxdt % (b (b .
/!w! e e <//|so| )da +Z [ 1l (s M))

We conclude by Cauchy-Schwarz inequality that

/{Zyo(x)ﬁo(x)dx {/ }yO}Q(IL‘)d:L‘/ }@Olz(x)dx}m
{th(Jcl'ﬂQ } </ / o (¢, z)dwdt

+Z o (bm—(—1), @ )dfb’> ;

IN

=1Y%k
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which establishes the necessary and sufficient condition of null controllability
stated in Theorem 1.

We conclude our paper by a special case when our initial state is an
eigensolution of the following linear operator I' : H — H defined by

k=m
/X X(s)bds + Y XM (tw) DEX (1),
k=1

We have the following result of null-controllability.

Proposition 1 Let A > 0 be an eigenvalue of I' with eigenvector v € H.
Then, the solution y to the problem

Y0+ Ay(t) = —3BAX@w), £ (0.7) \ {tihieny |
Ay(ty) = Ly(ty) — 3 DFX (t)), k€ of (24)
y(0) = ¢,

satisfies
y(T) = 0.

Proof.
Write system (24) into the form

Y () + Ay(t) = —ABA(X0Y), 1€ (0,7)\ {ti}reop

y(ty) = Tey(te) — DX (te)Y), k€ o

y(0) = .
Therefore, this impulsive problem has a solution which can be represented
explicitly as follows

y(t) = X(t)er/OtG(t, s) {—%132 }ds+ Z (t,tx) [——DQX( )w} ,

0<tp <t

where the evolution operator G(t,s) is given by

G(t,s) = X(t) X (s).
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On the other hand, the system (24) yields
r 1
y(T) = X(T) +/ G(T, s) {—XBZ(X(S)w} ds
0
+ ) G(T.t) {—%DﬁX(tk)z/;}

0<tx <T

— X(T) [z/mL/OTXl(T)G(T, 5) {—%B%X(sﬁb}ds

_i > XTHD)G(T 1) {D2X<tk)w}]

0<t,<T

= X(T) [w + /OT X1(s) {-%B%X(s)w} ds

_i > X(t) {D;%X(tk)w}]

_ X<T0><>tpT— )| =0

This shows that the initial state ¢/ is null-controllable at time 7" with control

1 1
which completes the proof of the Proposition. O

References

[1] N.U. Ahmed, Optimal impulse control for impulsive systems in Banach
spaces. J. Math. Anal. Appl. Vol. 1 (No.1)(2000), 37-52.

[2] M.U. Akhmetov, A. Zafer, The controllability of boundary-value prob-
lems for quasilinear impulsive systems, Nonlinear Analysis 34 (1998)
1055-1065.

[3] D.D. Bainov and P.S. Simeonov, Systems with impulse effect, theory and
applications, Ellis Hardwood series in Mathematics and its Applications,
Ellis Hardwood, Chichester, 1989.

EJQTDE, 2007 No. 19, p. 19



4]

[5]

(6]

17l

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

D.D. Bainov - P.S. Simeonov, Impulsive differential equations: Asymp-
totic properties of the solutions, World Scientific, Series on Advances in
Math. for Applied Sciences, 28 (1995).

L. Berezansky and E. Braverman, Boundedness and stability of impul-
sively perturbed systems in a Banach space. Preprint functan/9312001.

R.K. George, A.K. Nandakumaran and A. Arapostathis, A note on con-
trollability of impulsive systems. J. Math. Anal. Appl. 241, 276-283,
2000.

Z.H. Guan, T.H. Qian, and X. Yu, Controllability and observability of
linear time-varying impulsive systems. IEEE Circuits Syst. I, vol. 49, pp.
1198-1208, 2002.

A. Haraux, An alternative functional approach to exact controllability of
conservative systems, Portugaliae mathematica 61, 4 (2004), 399-437.

V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of impul-
siwe differential equations. World Scientific series in Modern Mathemat-
ics, Vol. 6, Singapore, 1989.

S. Leela, F.A. McRae, and S. Sivasundaram, Controllability of impulsive
differential equations, J. Math. Anal. Appl. 177, 1993 , 24-30.

X. Liu, Nonlinear boundary value problems for first order impulsive in-
tegrodifferential equations, Appl. Anal. 36(1990), 119-130.

J.H. Liu, Nonlinear impulsive evolution equations, Dynamics Contin.
Discr. Impulsive Syst., 6 (1999), 77-85.

A.M. Samoilenko and N.A. Perestyuk, Impulsive differential equations,
World Scientific, Singapore, 1995.

R.E. Showalter, Hilbert space methods for partial differential equations,
Electronic Journal of Differential Equations, Monograph 01, 1994.

M. Slemrod, Feedback stabilization of a linear control system in Hilbert
space with an a priori bounded control, Math. Control Signals Systems,
Vol. 2, 265-285, 1989.

EJQTDE, 2007 No. 19, p. 20



[16] R. Triggiani, Controllability and observability in Banach space with
bounded operators, SIAM J. Control Optimiz. 13(1) (1975), 462-490.

(Received October 17, 2006)

EJQTDE, 2007 No. 19, p. 21



