Null Controllability of Some Impulsive Evolution Equation in a Hilbert Space

R. BOUKHAMLA⁽¹⁾ & S. MAZOUZI⁽²⁾

(1) Centre Universitaire de Souk-Ahras, Souk-Ahras 41000, Algeria.

(2) Département de Mathématiques, Université d'Annaba, BP 12, ANNABA 23000, Algeria.

Abstract

We shall establish a necessary and sufficient condition under which we have the null controllability of some first order impulsive evolution equation in a Hilbert space.

MSC(2000): 34A37, 93B05, 93C15.

Keywords: Null-controllability, impulsive conditions, mild solutions, evolution equation.

1 Introduction

The problem of exact controllability of linear systems represented by infinite conservative systems has been extensively studied by several authors A. Haraux [8], R.Triggiani [16], Z.H. Guan, T.H. Qian, and X.Yu [7], see also the references [1, 2, 6, 10,15]. In the sequel, we shall be concerned with the problem of null controllability of some first order evolution equation subject to impulsive conditions and so we shall derive a necessary and sufficient condition under which null controllability occurs. Actually, we shall establish an equivalence between the null-controllability and some "observability" inequality in somehow more general framework than that proposed by A Haraux [8]. Regarding the literature on the impulsive differential equations we refer the reader to the works of D.D. Bainov and P.S. Simeonov [3, 4] and

the references [5, 9,11, 12, 13]. We are going to study the following problem

$$y'(t) + Ay(t) = Bu(t), \quad t \in (0, T) \setminus \{t_k\}_{k \in \sigma_1^m},$$

$$y(0) = y^0,$$

$$\Delta y(t_k) = I_k y(t_k) + D_k v_k, \quad k \in \sigma_1^m,$$

$$(1_k)$$

where the final time T is a positive number, y^0 is an initial condition in a Hilbert space H endowed with an inner product $\langle .,.\rangle_H$, $y(t):[0,T]\to H$ is a vector function, σ_1^m is a subset of $\mathbb N$ given by $\sigma_1^m=\{1,2,...,m\}$, and finally, $\{t_k\}_{k\in\sigma_1^m}$ is an increasing sequence of numbers in the open interval (0,T), and $\Delta y(t_k)$ denotes the jump of y(t) at $t=t_k$, i.e.,

$$\Delta y\left(t_{k}\right) = y\left(t_{k}^{+}\right) - y\left(t_{k}^{-}\right)$$

where $y(t_k^+)$ and $y(t_k^-)$ represent the right and left limits of y(t) at $t = t_k$ respectively. On the other hand, the operators $A, B, I_k, D_k : H \to H$ are given linear bounded operators. Moreover, we set the following assumptions:

(H1)
$$A^* = -A$$
,

(H2) $I_k^* = -I_k$, for every $k \in \sigma_1^m$, and for each $k \in \sigma_1^m$, the operator $\mathcal{I}_k = I_k + I$ is invertible,

(H3) $B^* = B \ge 0$ and there is $d_0 > 0$ such that

$$(Bu, u)_H \le d_0 \|u\|_H^2$$
, for all $u \in H$,

(H4) $D_k^* = D_k \ge 0$, for every $k \in \sigma_1^m$, and for each $k \in \sigma_1^m$ there is $d_k > 0$ such that

$$(D_k u, u)_H \le d_k \|u\|_H^2$$
, for all $u \in H$.

In the sequel we shall designate by h the function

$$h(t) = \left(u(t), \left\{v_k\right\}_{k \in \sigma_1^m}\right),\,$$

where $u\left(t\right)\in L^{2}\left(\left(0,T\right)\setminus\left\{ t_{k}\right\} _{k\in\sigma_{1}^{m}};H\right)$ and

$$\{v_k\}_{k \in \sigma_1^m} \in l^2\left(\sigma_1^m; H\right) \doteq \left\{\{v_k\}_{k \in \sigma_1^m}, v_k \in H\right\}.$$

We point out that the space $\mathcal{K}_m = L^2\left((0,T)\setminus\{t_k\}_{k\in\sigma_1^m};H\right)\times l^2\left(\sigma_1^m;H\right)$ is a Hilbert space with respect to the inner product

$$\left(h,\widetilde{h}\right)_{\mathcal{K}_{m}} = \int_{0}^{T} \left(u\left(t\right),\widetilde{u}\left(t\right)\right)_{H} dt + \sum_{k=1}^{m} \left(v_{k},\widetilde{v}_{k}\right)_{H},$$

defined for all $h = (u(t), \{v_k\}_{k=1}^m)$ and $\widetilde{h} = (\widetilde{u}(t), \{\widetilde{v}_k\}_{k=1}^m) \in \mathcal{K}_m$. We shall denote by \mathcal{B} the control operator given by

$$\mathcal{B} = \left(B, \left\{D_k\right\}_{k \in \sigma_1^m}\right) \in \mathcal{L}\left(L^2\left((0, T) \setminus \left\{t_k\right\}_{k \in \sigma_1^m}; H\right) \times l^2\left(\sigma_1^m; H\right)\right),$$

so that

$$\mathcal{B}h\left(t\right) = \left(Bu\left(t\right), \left\{D_{k}v_{k}\right\}_{k \in \sigma_{1}^{m}}\right).$$

We have for every $h = (u(t), \{v_k\}_{k=1}^m) \in \mathcal{K}_m$

$$(\mathcal{B}h, h)_{\mathcal{K}_{m}} = \int_{0}^{T} (Bu(t), u(t))_{H} dt + \sum_{k=1}^{m} (D_{k}v_{k}, v_{k})_{H}$$

$$= \int_{0}^{T} (u(t), Bu(t))_{H} dt + \sum_{k=1}^{m} (v_{k}, D_{k}v_{k})_{H}$$

$$= (h, \mathcal{B}h)_{\mathcal{K}_{m}},$$

which shows that $\mathcal{B}^* = \mathcal{B}$, that is, \mathcal{B} is self-adjoint. On the other hand, we have

$$(\mathcal{B}h, h)_{\mathcal{K}_{m}} = \int_{0}^{T} (Bu(t), u(t))_{H} dt + \sum_{k=1}^{m} (D_{k}v_{k}, v_{k})_{H}$$

$$\leq d_{0} \int_{0}^{T} \|u(t)\|_{H}^{2} dt + \sum_{k=1}^{m} d_{k} \|v_{k}\|_{H}^{2}$$

$$\leq \delta \|h\|_{\mathcal{K}_{m}}^{2},$$

where $\delta = \max\{d_0, d_1, ..., d_m\}$. Thus, the operator is \mathcal{B} bounded in \mathcal{K}_m . Next, we consider the *homogeneous system* associated with (1):

$$\varphi'(t) + A\varphi(t) = 0, \quad t \in (0,T) \setminus \{t_k\}_{k \in \sigma_1^m},$$

$$\varphi(0) = \varphi^0,$$

$$\Delta\varphi(t_k) = I_k \varphi(t_k), \quad k \in \sigma_1^m.$$

$$(2)$$

We point out that on each interval $[t_k, t_{k+1})$, for k = 0, ..., m, the solution φ is left continuous at each time t_k .

Consider the corresponding homogeneous backward problem:

$$-\tilde{\varphi}'(t) + \mathbf{A}\tilde{\varphi}(t) = 0, \quad t \in (0,T) \setminus \{t_k\}_{k \in \sigma_1^m}, \tag{3}$$

$$\tilde{\varphi}(T) = \varphi^0,$$

$$\Delta \tilde{\varphi}(t_{m-(k-1)}) = -\tilde{I}_{m-(k-1)} \tilde{\varphi}(t_{m-(k-1)}^+), \ k \in \sigma_1^m, \tag{3}_k$$

where

$$\mathbf{A} = A^* = -A, \quad \tilde{I}_{m-(k-1)} = I_{m-(k-1)}^* = -I_{m-(k-1)}, \ k \in \sigma_1^m.$$

We observe that the problem (3) on the interval $[t_m, T]$ is equivalent to the classical backward problem

$$-\tilde{\varphi}'(t) + \mathbf{A}\tilde{\varphi}(t) = 0, t \in [t_m, T],$$

$$\tilde{\varphi}(T) = \varphi^0.$$

We introduce the following space: $\mathcal{PC}([0,T];H) = \{y,y:[0,T] \to H \text{ such that } y(t) \text{ is continuous at } t \neq t_k, \text{ and has discontinuities of first kind at } t = t_k, \text{ for every } k \in \sigma_1^m\}.$

Evidently, $\mathcal{PC}([0,T];H)$ is a Banach space with respect to the norm

$$||y||_{\mathcal{PC}} = \sup_{t \in (0,T)} ||y(t)||.$$

On the other hand, we define the subspaces \mathcal{PLC} , (respectively, \mathcal{PRC})= $\{y, y \in \mathcal{PC} \text{ such that } y(t) \text{ is left (respectively, right) continuous at } t = t_k, \text{ for every } k \in \sigma_1^m\}.$

Remark 1 1) The space \mathcal{PLC} , (respectively, \mathcal{PRC}) can be identified to a subspace of \mathcal{K}_m . That is, to each $y \in \mathcal{PLC}$, (respectively, $\tilde{y} \in \mathcal{PRC}$) is assigned the function h (respectively, \tilde{h}) defined by

$$h(t) = \left(y(t), \left\{y(t_k)\right\}_{k \in \sigma_1^m}\right),\,$$

and

$$\widetilde{\mathbf{h}}\left(t\right) = \left(\widetilde{y}\left(t\right), \left\{\widetilde{y}\left(t_{k}\right)\right\}_{k \in \sigma_{1}^{m}}\right).$$

The mapping $y \mapsto h(t)$ (respectively, $\tilde{y} \mapsto \tilde{h}$) is a linear injection.

2) Let $\widetilde{y} \in \mathcal{PRC}$, the function y can be written as:

$$\widetilde{y}(t) = \left\{ \begin{array}{ll} \widetilde{y}_{[0]}(t) & \textit{if} \quad t \in [t_0, t_1) \\ \widetilde{y}_{[k]}(t) & \textit{if} \quad t \in [t_k, t_{k+1}) \\ \widetilde{y}_{[m]}(t) & \textit{if} \quad t \in [t_m, T] \,. \end{array} \right.$$

Next, let $\tau_k = t_k - t_{k-1}$, we define the operator $\mathcal{T}: D(\mathcal{T}) = \mathcal{PRC} \subset \mathcal{K}_m \to \mathcal{K}_m$ by

$$(\mathcal{T}\widetilde{y})(t) = \begin{cases} \widetilde{y}_{[0]}((T-t)\frac{\tau_1}{\tau_{m+1}} + t_0) & \text{if} \quad t \in [t_m, T], \\ \widetilde{y}_{[k]}((t_{m-(k-1)} - t)\frac{\tau_{k+1}}{\tau_{m-(k-1)}} + t_k) & \text{if} \quad t \in [t_{m-k}, t_{m-(k-1)}), \quad k \in \sigma_1^{m-1}, \\ \widetilde{y}_{[m]}((t_1 - t)\frac{\tau_{m+1}}{\tau_1} + t_m) & \text{if} \quad t \in (0, t_1]. \end{cases}$$

$$(4)$$

We note that the range of \mathcal{T} is exactly \mathcal{PLC} . The function $(\mathcal{T}\widetilde{y})(t)$ can be written as follows:

$$(\mathcal{T}\widetilde{y})(t) = \begin{cases} y_{[0]}(t) & if \quad t \in [t_0, t_1], \\ y_{[k]}(t) & if \quad t \in (t_k, t_{k+1}], \quad k \in \sigma_1^{m-1}, \\ y_{[m]}(t) & if \quad t \in (t_m, T]. \end{cases}$$

Let X(t) be the resolvent solution of the operator system

$$X'(t) + AX(t) = 0, 0 = t_0 < t < t_{m+1} = T, t \neq t_k, k = 1, 2, ..., m,$$

 $X(0) = I,$
 $X(t_k + 0) - X(t_k - 0) = I_k X(t_k), k = 1, 2, ..., m,$

where $I: H \to H$ is the identity operator. We shall suppose that the operator $\mathcal{I}_k = I_k + I$ has a bounded inverse.

Definition 1 A function $y \in \mathcal{PC}([0,T];H)$ is a mild solution to the impulsive problem (1) if the impulsive conditions are satisfied and

$$y(t) = G(t, 0^{+})y^{0} + \int_{0}^{t} G(t, s)Bu(s) ds + \sum_{0 < t_{k} \le t} G(t, t_{k})(D_{k}v_{k}), \text{ for every } t \in (0, T),$$

where the evolution operator G(t,s) is given by

$$G(t,s) = X(t)X^{-1}(s).$$

It is not hard to check that the operator $G(t, t_k)$ satisfies the operator system

$$\begin{split} G'(t,t_k) + AG(t,t_k) &= 0, \ t \in [t_k,t_{k+1}) \,, \ k \in \sigma_0^m, \\ G(t_k,t_k) &= I, \\ G(t_{k+1}^-,t_k) - G(t_{k+1}^-,t_k) &= I_{k+1}G(t_{k+1}^-,t_k). \end{split}$$

It is well known that (1) has a unique solution y such that

$$y \in \mathcal{PLC}\left(\left[0,T\right];H\right) \cap C^{1}\left(\left[0,T\right] \setminus \left\{t_{k}\right\}_{k \in \sigma_{1}^{m}};H\right).$$

Now, we define the concept of mild solution for the backward impulsive system (3) associated with system (2).

Definition 2 We say that $\tilde{\varphi} \in \mathcal{PRC}([0,T];H)$ is a mild solution for the backward impulsive system (3) if $\mathcal{T}\tilde{\varphi}$ is a mild solution for the homogeneous impulsive system (2).

Let us introduce the notion of the null controllability of the initial state as follows:

Definition 3 We say that the initial state $y^0 \in H$ is null controllable at time T, if there is a control function $h \in \mathcal{K}_m$ for which the solution y of system (1) satisfies y(T) = 0.

2 Main Results

First we begin by the following lemma.

Lemma 1 Assume that $\xi(t)$, $\zeta(t) \in L^1([0,T];H)$ and $\{\xi_k\}_{k=1}^m$, $\{\zeta_k\}_{k=1}^m \in l^1(\sigma_1^m, H)$. Then, for every vector functions

$$\gamma\left(t\right) \in \mathcal{PLC}\left(\left[0,T\right];H\right) \cap C^{1}\left(\left[0,T\right] \setminus \left\{t_{k}\right\}_{k \in \sigma_{1}^{m}};H\right)$$

and

$$\eta\left(t\right)\in\mathcal{PRC}\left(\left[0,T\right];H\right)\cap C^{1}\left(\left[0,T\right]\setminus\left\{ t_{k}\right\} _{k\in\sigma_{1}^{m}};H\right)$$

satisfying the problem

$$\begin{split} \frac{d}{dt} \langle \gamma \left(t \right), \eta \left(t \right) \rangle &= \langle \xi \left(t \right), \zeta \left(t \right) \rangle, \quad t \neq t_k, \ for \ k \in \sigma_1^m, \\ \Delta \langle \gamma \left(t_k \right), \eta \left(t_k \right) \rangle &= \langle \Delta \gamma \left(t_k \right), \eta \left(t_k \right) \rangle + \langle \gamma \left(t_k \right), \Delta \eta \left(t_k \right) \rangle = \langle \xi_k, \zeta_k \rangle, \ k \in \sigma_1^m, \end{split}$$

we have the following identity

$$\langle \gamma(t), \eta(t) \rangle \Big|_{0}^{T} = \langle \gamma(T), \eta(T) \rangle - \langle \gamma(0), \eta(0) \rangle$$

$$= \int_{0}^{T} \langle \xi(t), \zeta(t) \rangle dt + \sum_{k=1}^{m} \langle \xi_{k}, \zeta_{k} \rangle.$$
(5)

Proof. It is straightforward.

We also need the following Lemmas.

Lemma 2 [14] If $\mathcal{B} \in \mathcal{L}(\mathcal{K}_m)$ is self-adjoint and nonnegative, then

$$\left\|\mathcal{B}h\right\| \leq \left\|\mathcal{B}\right\|^{1/2} \left(\mathcal{B}h,h\right)_{\mathcal{K}_m}^{1/2}, \ h \in \mathcal{K}_m.$$

Lemma 3 If $\tau_{k+1} = \tau_{m-(k-1)}$, $k \in \sigma_0^{m-1}$, then for the mild solution $\widetilde{\varphi}$ of (3), the identity holds:

$$\int_{0}^{T} |B\widetilde{\varphi}|_{H}^{2} dt + \sum_{k=1}^{m} |D_{k}\widetilde{\varphi}(t_{k}^{+})|_{H}^{2} = \int_{0}^{T} |B\varphi|_{H}^{2} dt + \sum_{k=1}^{m} |D_{k}\varphi(t_{m-(k-1)})|_{H}^{2}.$$
(6)

Proof. For each $k \in \sigma_0^m$, using the change of variable $t \to (t_{m-(k-1)} - t) \frac{\tau_{k+1}}{\tau_{m-(k-1)}} + t_k$ we have

$$\begin{split} &\int_{t_{m-k}}^{t_{m-(k-1)}} (B\varphi_{[m-k]}(t), B\varphi_{[m-k]}(t)) dt \\ &= \int_{t_{m-k}}^{t_{m-(k-1)}} (B\widetilde{\varphi}_{[k]}((t_{m-(k-1)} - t) \frac{\tau_{k+1}}{\tau_{m-(k-1)}} + t_k), B\widetilde{\varphi}_{[k]}((t_{m-(k-1)} - t) \frac{\tau_{k+1}}{\tau_{m-(k-1)}} + t_k)) dt \\ &= \frac{-\tau_{m-(k-1)}}{\tau_{k+1}} \int_{t_{k+1}}^{t_k} (B\widetilde{\varphi}_{[k]}(s), B\widetilde{\varphi}_{[k]}(s)) ds \\ &= \int_{t_k}^{t_{k+1}} (B\widetilde{\varphi}_{[k]}(s), B\widetilde{\varphi}_{[k]}(s)) ds. \end{split}$$

Summing up with respect to k, we get

$$\sum_{k=0}^{m} \int_{t_{m-k}}^{t_{m-(k-1)}} (B\varphi_{[m-k]}((t)), B\varphi_{[m-k]}(t)) dt = \sum_{k=0}^{m} \int_{t_{k}}^{t_{k+1}} (B\widetilde{\varphi}_{[k]}(t), B\widetilde{\varphi}_{[k]}(t)) dt.$$

EJQTDE, 2007 No. 19, p. 7

Thus, we obtain

$$\int_0^T |B\widetilde{\varphi}|_H^2 dt = \int_0^T |B\varphi|_H^2 dt.$$

On the other hand, by virtue of the definition of the function $\widetilde{\varphi}$ we get

$$\varphi\left(t_{m-k}\right) = \widetilde{\varphi}\left(t_{k+1}\right), \quad k \in \sigma_0^{m-1}.$$

Also, we have

$$\varphi\left(t_{m-(k-1)}\right) = \widetilde{\varphi}\left(t_k\right), \quad k \in \sigma_1^m,$$

and

$$\widetilde{\varphi}(t_{m-k}) = \varphi(t_{k+1}), \quad k \in \sigma_0^{m-1}.$$

This implies that

$$\sum_{k=1}^{m} |D_{k}\widetilde{\varphi}(t_{k})|_{H}^{2} = \sum_{k=0}^{m-1} \langle D_{m-k}\widetilde{\varphi}(t_{m-k}), D_{m-k}\widetilde{\varphi}(t_{m-k}) \rangle_{H}$$

$$= \sum_{k=0}^{m-1} \langle D_{m-k}\varphi(t_{k+1}), D_{m-k}\varphi(t_{k+1}) \rangle_{H}$$

$$= \sum_{l=1}^{m} \langle D_{l}\varphi(t_{m-(l-1)}), D_{l}\varphi(t_{m-(l-1)}) \rangle_{H}$$

$$= \sum_{k=1}^{m} \langle D_{k}\varphi(t_{m-(k-1)}), D_{k}\varphi(t_{m-(k-1)}) \rangle_{H}$$

$$= \sum_{k=1}^{m} |D_{k}\varphi(t_{m-(k-1)})|_{H}^{2},$$

which gives (6).

Corollary 1 If $\tau_{k+1} = \tau_{m-(k-1)}$, for $k \in \sigma_0^{m-1}$, and B, D_k are nonnegative in H, then the following holds:

$$\int_{0}^{T} \langle B\widetilde{\varphi}(t), \widetilde{\varphi}(t) \rangle dt + \sum_{k=1}^{k=m} \langle D_{k}\widetilde{\varphi}(t_{k}), \widetilde{\varphi}(t_{k}) \rangle$$

$$= \int_{0}^{T} \langle B\varphi(t), \varphi(t) \rangle dt + \sum_{k=1}^{k=m} \langle D_{k}\varphi(t_{m-(k-1)}), \varphi(t_{m-(k-1)}) \rangle.$$

EJQTDE, 2007 No. 19, p. 8

Proof. This follows immediately from Lemma 3 if we substitute B by $B^{\frac{1}{2}}$, and D_k by $D_k^{\frac{1}{2}}$.

Now, we state and establish the following Theorem.

Theorem 1 Let $y^0 \in H$ be a given initial state for the system (1), then y^0 is null controllable at time T if and only if there is a positive constant C such that

$$\left| \langle y^0, \tilde{\varphi}^0 \rangle_H \right| \le C \left\{ \int_0^T \left| B\varphi \right|_H^2 dt + \sum_{k=1}^m \left| D_k \varphi \left(t_{m-(k-1)} \right) \right|_H^2 \right\}^{1/2}, \ \forall \tilde{\varphi}^0 \in H,$$

where $\varphi \in \mathcal{PLC}([0,T];H)$ is the unique mild solution to (2) with $\varphi(T) = \tilde{\varphi}^0$.

Proof. It suffices to prove this Theorem for the special case $\tau_{k+1} = \tau_{m-(k-1)}$, for $k \in \sigma_0^{m-1}$, because the norm $\||.|\| \doteqdot \left\{ \sum_{k=0}^m \frac{\tau_{m-(k-1)}}{\tau_{k+1}} \int_{t_k}^{t_{k+1}} |.|_H^2 dt \right\}^{1/2}$ is equivalent to the usual norm of $L^2([0,T];H)$.

We shall proceed in several steps.

Step 1: Let y and $\widetilde{\varphi}$ be strong solutions to (1) and (3), respectively. Then, for $t \neq t_k$, $k \in \sigma_1^m$, we have

$$\frac{d}{dt}\langle y(t), \widetilde{\varphi}(t) \rangle = \langle y(t), \widetilde{\varphi}'(t) \rangle + \langle y'(t), \widetilde{\varphi}(t) \rangle
= \langle y(t), -A\widetilde{\varphi}(t) \rangle + \langle -Ay(t) + Bu(t), \widetilde{\varphi}(t) \rangle
= \langle y(t), -A\widetilde{\varphi}(t) \rangle + \langle -Ay(t), \widetilde{\varphi}(t) \rangle + \langle Bu(t), \widetilde{\varphi}(t) \rangle
= \langle Bu(t), \widetilde{\varphi}(t) \rangle.$$
(8)

Multiplying equation (3_k) in (3) from the left by $y\left(t_{m-(k-1)}\right)$ the solution of (1), and multiplying equation (1_k) in (1) from the right by $\widetilde{\varphi}(t_k)$ the solution of (3), and finally adding memberwise we get

$$\Delta \langle y(t), \widetilde{\varphi}(t) \rangle_{|t=t_k} = \langle y(t_k), \Delta \widetilde{\varphi}(t_k) \rangle + \langle \Delta y(t_k), \widetilde{\varphi}(t_k) \rangle
= \langle y(t_k), I_k \widetilde{\varphi}(t_k) \rangle + \langle I_k y(t_k) + D_k v_k, \widetilde{\varphi}(t_k) \rangle
= \langle y(t_k), I_k \widetilde{\varphi}(t_k) \rangle + \langle I_k y(t_k), \widetilde{\varphi}(t_k) \rangle + \langle D_k v_k, \widetilde{\varphi}(t_k) \rangle
= \langle D_k v_k, \widetilde{\varphi}(t_k) \rangle.$$
(9)

Setting $\gamma(t) = y(t)$, $\eta(t) = \widetilde{\varphi}(t)$, $\xi(t) = Bu(t)$, $\zeta(t) = \widetilde{\varphi}(t)$, $\xi_k = D_k v_k$, $\zeta_k = \widetilde{\varphi}(t_k)$, then equations (5), (8) and (9) give

$$\langle y(T), \widetilde{\varphi}(T) \rangle - \langle y(0), \widetilde{\varphi}(0) \rangle = \int_0^T \langle Bu(t), \widetilde{\varphi}(t) \rangle dt + \sum_{k=1}^{k=m} \langle D_k v_k, \widetilde{\varphi}(t_k) \rangle. \quad (10)$$

Since \mathcal{B} is bounded, self-adjoint and $\mathcal{B} \geq 0$, then by density the latter identity is still valid for mild solutions y of (1). Identity (10) can be written as follows

$$\langle y(T), \widetilde{\varphi}(T) \rangle - \langle y(0), \widetilde{\varphi}(0) \rangle = \int_0^T \langle u(t), B\widetilde{\varphi}(t) \rangle dt + \sum_{k=1}^{k=m} \langle v_k, D_k \widetilde{\varphi}(t_k) \rangle. \quad (11)$$

Next, if there is a certain $h(t) \in \mathcal{K}_m$ such that the mild solution of (1) with $y(0) = y^0$ satisfies y(T) = 0, then

$$-\langle y(0), \widetilde{\varphi}(0)\rangle = \int_0^T \langle u(t), B\widetilde{\varphi}(t)\rangle dt + \sum_{k=1}^{k=m} \langle v_k, D_k \widetilde{\varphi}(t_k)\rangle,$$

and so by Cauchy-Schwarz Inequality we obtain

$$|\langle y(0), \widetilde{\varphi}(0) \rangle_{H}| \leq \left\{ \int_{0}^{T} \|u(t)\|_{H}^{2} dt + \sum_{k=1}^{k=m} \|v_{k}\|_{H}^{2} \right\}^{1/2}$$

$$\times \left\{ \int_{0}^{T} \|B\widetilde{\varphi}(t)\|_{H}^{2} dt + \sum_{k=1}^{k=m} \|D_{k}\widetilde{\varphi}((t_{k}))\|_{H}^{2} \right\}^{1/2}.$$

$$(12)$$

Using Lemma 3, and equation (12) we have

$$|\langle y(0), \widetilde{\varphi}(0) \rangle_{H}| \leq \left\{ \int_{0}^{T} \|u(t)\|_{H}^{2} dt + \sum_{k=1}^{k=m} \|v_{k}\|_{H}^{2} \right\}^{1/2} \times \left\{ \int_{0}^{T} \|B\varphi(t)\|_{H}^{2} dt + \sum_{k=1}^{k=m} \|D_{k}\varphi(t_{m-(k-1)})\|_{H}^{2} \right\}^{1/2}.$$

Setting

$$C = \|h(t)\|_{\mathcal{K}_m} = \left\{ \int_0^T \|u(t)\|_H^2 dt + \sum_{k=1}^{k=m} \|v_k\|_H^2 \right\}^{1/2}$$

we find that

$$|(\langle y(0), \widetilde{\varphi}(0) \rangle_H)| \leq C \left\{ \int_0^T \|B\varphi(t)\|_H^2 dt + \sum_{k=1}^{k=m} \|D_k \varphi(t_{m-(k-1)})\|_H^2 \right\}^{1/2}.$$

This shows the necessary condition of the Theorem.

Step 2: To prove the sufficiency we need the following result when $\mathcal{B} \ge \alpha > 0$.

Claim 1 Assume that there is $\alpha > 0$ such that

$$\left\{ \int_{0}^{T} \|Bu(t)\|_{H}^{2} dt + \sum_{k=1}^{k=m} \|D_{k}v_{k}\|_{H}^{2} \right\} \ge \alpha \left\{ \int_{0}^{T} \|u(t)\|_{H}^{2} dt + \sum_{k=1}^{k=m} \|v_{k}\|_{H}^{2} \right\}$$

then, for every $y^0 \in H$ there is $\varphi^0 \in H$ such that the mild solution of (1) with

$$h(t) = (\widetilde{\varphi}(t), \widetilde{\varphi}(t_1), ..., \widetilde{\varphi}(t_k)..., \widetilde{\varphi}(t_m)) \in \mathcal{K}_m \text{ and } y(0) = y^0$$
satisfies $y(T) = 0$.

To prove this Claim, we consider for every $z \in H$ the solution φ of (2) satisfying $\varphi(T) = z$ and the unique mild solution y to the problem

$$y'(t) + Ay(t) = B\widetilde{\varphi}(t), t \in (0, T) \setminus \{t_k\}_{k \in \sigma_1^m},$$

$$\Delta y(t_k) = I_k y(t_k) + D_k \widetilde{\varphi}(t_k),$$

$$y(T) = 0.$$

Next, we introduce a bounded linear operator $\Lambda: H \to H$ defined by

$$\Lambda z = -y(0).$$

According to formula (11) and the Corollary 1 we have

$$\begin{aligned} |\langle \Lambda z, z \rangle| &= |-\langle y(0), \widetilde{\varphi}(0) \rangle| = \left| \int_0^T \langle B \widetilde{\varphi}(t), \widetilde{\varphi}(t) \rangle dt + \sum_{k=1}^{k=m} \langle D_k \widetilde{\varphi}(t_k), \widetilde{\varphi}(t_k) \rangle \right| \\ &= \left| \int_0^T \langle B \varphi(t), \varphi(t) \rangle dt + \sum_{k=1}^{k=m} \langle D_k \varphi(t_{m-(k-1)}), \varphi(t_{m-(k-1)}) \rangle \right| \\ &\leq \varsigma \left\{ \int_0^T \|\varphi(t)\|^2 dt + \sum_{k=1}^{k=m} \|\varphi(t_k)\|^2 \right\}, \end{aligned}$$

where

$$\varsigma = \sup_{k \in \sigma_0^m} \left\{ d_k \right\} < \infty.$$

We have

$$\int_0^T \|\varphi(t)\|^2 dt = \int_0^{t_1} \|\varphi(t)\|^2 dt + \int_{t_1}^{t_2} \|\varphi(t)\|^2 dt + \dots + \int_{t_m}^T \|\varphi(t)\|^2 dt.$$

Since there is no impulse in the interval $[t_k, t_{k+1}]$ we have

$$\|\varphi(t)\| = \|\varphi(t_k^+)\|, \text{ for every } t \in [t_k, t_{k+1}), k \in \sigma_0^m,$$

 $\|\varphi(t_{k+1}^-)\| = \|\varphi(t_{k-1}^+)\|, k \in \sigma_0^m.$ (13)

Therefore, there are $\tau_{k+1} = t_{k+1} - t_k > 0$, $k \in \sigma_0^m$ such that

$$\int_{t_k}^{t_{k+1}} \|\varphi(t)\|^2 dt \le \rho_k \|\varphi(t_k^+)\|^2 = \tau_{k+1} \|I_k \varphi(t_k^-) + \varphi(t_k^-)\|^2, \quad k \in \sigma_1^m. \quad (14)$$

On the other hand, the continuity of I_k implies that

$$\|\varphi(t_k^+)\|^2 = \|(I_k + I)\varphi(t_k^-)\|^2 \le (1 + L(I_k))^2 \|\varphi(t_k^-)\|^2, \quad k \in \sigma_1^m.$$
 (15)

It follows from (14) and (15) that

$$\int_{t_{k}}^{t_{k+1}} \|\varphi(t)\|^{2} dt \le \tau_{k+1} (1 + L(I_{k}))^{2} \|\varphi(t_{k}^{-})\|^{2}, \quad k \in \sigma_{1}^{m}.$$
 (16)

Since m is finite, and due to (13),(16), then there is a constant $0 < \mu < \infty$ such that $\langle \Lambda z, z \rangle \leq \mu \|z\|^2$, and thus, Λ is bounded.

Now, as \mathcal{B} is nonnegative in \mathcal{K}_m , we have

$$\|\mathcal{B}\xi(t)\| \ge \alpha \left\{ (\xi(t), \xi(t))_{\mathcal{K}_m} \right\}^{1/2}$$

for all $\xi \in \mathcal{K}_m$; thus, by virtue of Lemma 2, we have

$$\left\{ \int_{0}^{T} (Bu(t), u(t))_{H} dt + \sum_{k=1}^{k=m} (D_{k}v_{k}, v_{k})_{H} \right\} \\
\geq \alpha \|\mathcal{B}\| \left\{ \int_{0}^{T} \|u(t)\|_{H}^{2} dt + \sum_{k=1}^{k=m} \|v_{k}\|_{H}^{2} \right\}.$$
(17)

It follows from (11), (17) and Corollary 1 that

$$\langle \Lambda z, z \rangle = -\langle y(0), \widetilde{\varphi}(0) \rangle$$

$$= \int_{0}^{T} \langle B\varphi(t), \varphi(t) \rangle dt + \sum_{k=1}^{k=m} \langle D_{k}\varphi(t_{m-(k-1)}), \varphi(t_{m-(k-1)}) \rangle$$

$$\geq \alpha \|\mathcal{B}\| \left\{ \int_{0}^{T} \|\varphi(t)\|^{2} dt + \sum_{k=1}^{k=m} \|\varphi(t_{k})\|^{2} \right\}$$

$$\geq \alpha \|\mathcal{B}\| \int_{0}^{t_{1}} \|\varphi(t)\|^{2} dt = \|\mathcal{B}\| \alpha t_{1} \|z\|^{2} = \theta \|z\|^{2},$$

because there is no impulse before time t_1 . Therefore, Λ is coercive on H. To show that there is a bijection from H onto H, it suffices to prove that $\Lambda + I$ is a bijection from H onto H. Clearly, $\Lambda + I$ is injective since

$$\langle \Lambda z + z, z \rangle = \langle \Lambda z, z \rangle + \langle z, z \rangle \ge (\theta + 1) \|z\|^2.$$

On the other hand, let $y^0 \in H$, as the form $a(f,g) + \langle f,g \rangle = \langle \Lambda f,g \rangle + \langle f,g \rangle$ is symmetric and coercive, then, by virtue of Lax-Milgram Theorem, there is an element $f \in H$ such that

$$a(f,g) + \langle f,g \rangle = \langle y^0,g \rangle$$
, for all $g \in H$.

This implies that $\Lambda(H) = H$. Thus, for every $y^0 \in H$, there is a unique $z \in H$ such that $\Lambda(z) = -y^0$, which completes the proof of Claim 1.

Step 3: Assume that $B, D_k \geq 0$, then $\mathcal{B} \geq 0$,

$$\widetilde{B}^2 = B, \widetilde{D}_k^2 = D_k.$$

We define for $\varepsilon > 0$,

$$\beta^{\varepsilon} \doteq \widetilde{B}^2 + \varepsilon I,$$
$$\delta_k^{\varepsilon} \doteq \widetilde{D}_k^2 + \varepsilon I,$$

and

$$\mathcal{B}^{\varepsilon} \doteq (\beta^{\varepsilon}; \delta_{1}^{\varepsilon}, ..., \delta_{m}^{\varepsilon}) = (\widetilde{B}^{2} + \varepsilon I; \widetilde{D}_{1}^{2} + \varepsilon I, ..., \widetilde{D}_{m}^{2} + \varepsilon I).$$

According to Claim 1, there is $\tilde{\varphi}^{0,\varepsilon} \in H$ such that the mild solution y_{ε} of (1) with $y_{\varepsilon}(0) = y^0$ satisfies $y_{\varepsilon}(T) = 0$; where $\mathcal{B}(h)$ has been replaced by

$$\mathcal{B}^{\varepsilon}(\widetilde{\varphi}(t),\widetilde{\varphi}(t_1),..,\widetilde{\varphi}(t_k)..,\widetilde{\varphi}(t_m)) \in \mathcal{K}_m.$$

We obtain from (11) and Corollary 1

$$-\langle y(0), \widetilde{\varphi}_{\varepsilon}(0) \rangle = \int_{0}^{T} \langle \beta_{\varepsilon}^{\varepsilon} \widetilde{\varphi}(t), \widetilde{\varphi}_{\varepsilon}(t) \rangle dt + \sum_{k=1}^{k=m} \langle \delta_{k}^{\varepsilon} \widetilde{\varphi}_{\varepsilon}(t_{k}), \widetilde{\varphi}_{\varepsilon}(t_{k}) \rangle, \tag{18}$$

and (7) gives

$$-\langle y(0), \widetilde{\varphi}_{\varepsilon}(0) \rangle \leq C \left\{ \int_{0}^{T} \langle \widetilde{B}^{2} \varphi_{\varepsilon}(t), \varphi_{\varepsilon}(t) \rangle dt + \sum_{k=1}^{k=m} \langle \widetilde{D}_{k}^{2} \varphi_{\varepsilon}(t_{m-(k-1)}), \varphi_{\varepsilon}(t_{m-(k-1)}) \rangle \right\}^{1/2}.$$

$$(19)$$

Whence,

$$-\langle y(0), \widetilde{\varphi}_{\varepsilon}(0) \rangle \leq C \left\{ \int_{0}^{T} \langle \beta^{\varepsilon} \varphi_{\varepsilon}(t), \varphi_{\varepsilon}(t) \rangle dt + \sum_{k=1}^{k=m} \langle \delta_{k}^{\varepsilon} \varphi_{\varepsilon}(t_{m-(k-1)}), \varphi_{\varepsilon}(t_{m-(k-1)}) \rangle \right\}^{1/2}.$$
(20)

It follows at once from (18), (19) and (20) that

$$\varepsilon \left\{ \int_{0}^{T} \|\varphi_{\varepsilon}(t)\|^{2} dt + \sum_{k=1}^{k=m} \|\varphi_{\varepsilon}(t_{k})\|^{2} \right\}
+ \int_{0}^{T} \langle \widetilde{B}\varphi_{\varepsilon}(t), \widetilde{B}\varphi_{\varepsilon}(t) \rangle dt + \sum_{k=1}^{k=m} \langle \widetilde{D}_{k}\varphi_{\varepsilon}(t_{m-(k-1)}), \widetilde{D}_{k}\varphi_{\varepsilon}(t_{m-(k-1)}) \rangle
= \int_{0}^{T} (\beta^{\varepsilon}\varphi_{\varepsilon}(t), \varphi_{\varepsilon}(t)) dt + \sum_{k=1}^{k=m} \langle \delta_{k}^{\varepsilon}\varphi_{\varepsilon}(t_{m-(k-1)}), \varphi_{\varepsilon}(t_{m-(k-1)})) \leq C^{2}.$$
(21)

Step 4: According to the estimate (20) the family

$$b_{\varepsilon} = \mathcal{B}^{\varepsilon}(\widetilde{\varphi}_{\varepsilon}(t); \widetilde{\varphi}_{\varepsilon}(t_{1})..., \widetilde{\varphi}_{\varepsilon}(t_{m}))$$

$$= (\widetilde{B}_{\varepsilon}^{2}\widetilde{\varphi}(t); \widetilde{D}_{1}^{2}\widetilde{\varphi}_{\varepsilon}(t_{1})..., \widetilde{D}_{m}\widetilde{\varphi}_{\varepsilon}(t_{m})) + \varepsilon(\widetilde{\varphi}_{\varepsilon}(t); \widetilde{\varphi}_{\varepsilon}(t_{1})..., \widetilde{\varphi}_{\varepsilon}(t_{m}))$$

is contained in a bounded subset \mathcal{K}_m .

Thus, both of the families

$$\sqrt{\varepsilon}(\widetilde{\varphi}_{\varepsilon}(t); \widetilde{\varphi}_{\varepsilon}(t_1)..., \widetilde{\varphi}_{\varepsilon}(t_m))$$
 and $(B\widetilde{\varphi}_{\varepsilon}(t); D_1\widetilde{\varphi}_{\varepsilon}(t_1)..., D_m\widetilde{\varphi}_{\varepsilon}(t_m))$

are bounded in \mathcal{K}_m . Therefore, we may extract a subfamily, say

$$(B\widetilde{\varphi}_{\varepsilon}(t); D_1\widetilde{\varphi}_{\varepsilon}(t_1)..., D_m\widetilde{\varphi}_{\varepsilon}(t_m)) \rightharpoonup h$$
, weakly in \mathcal{K}_m .

Then clearly

$$(\widetilde{B}^2\widetilde{\varphi}_{\varepsilon}(t);\widetilde{D}_1^2\widetilde{\varphi}_{\varepsilon}(t_1)...,\widetilde{D}_m^2\widetilde{\varphi}_{\varepsilon}(t_m))+\varepsilon(\widetilde{\varphi}_{\varepsilon}(t);\widetilde{\varphi}_{\varepsilon}(t_1)...,\widetilde{\varphi}_{\varepsilon}(t_m)) \rightharpoonup \mathcal{B}h$$
, weakly in \mathcal{K}_m .

Step 5: Taking the limit as $\varepsilon \to 0$, we see that the solution y of (1) with initial condition $y(0) = y^0$, h being as in **step 4** satisfies y(T) = 0. This completes the proof of Theorem 1.

As an immediate application of the foregoing Theorem we give the following example.

Example. One dimensional impulsive Schrödinger equation : We consider the problem

$$\frac{\partial y(t,x)}{\partial t} + i \frac{\partial^2 y}{\partial x^2}(t,x) = \chi_{\omega_0} u(t,x), \quad t \in (0,T) \setminus \{t_k\}_{k \in \sigma_1^m}, x \in \Omega = (0,2\pi),
y(t,0) = y(t,2\pi) = 0,
y(0,x) = y^0,
\Delta y(t_k,x) = i\alpha_k y(t_k,x) + \chi_{\omega_k} v_k(x), \quad k \in \sigma_1^m,$$
(22)

where

$$t_{k+1} - t_k > 2\pi$$
, $\omega_k = (a_1^k, a_2^k) \subset \Omega, k \in \sigma_0^m$, $\{\alpha_k\}_{k \in \sigma_0^m} \subset \mathbb{R}^+$.

Let

$$H=L^2(\Omega,\mathbb{C}), Aw(x)=i\tfrac{\partial^2 w}{\partial x^2}(x), \quad D(A)=\left\{w\in H, \tfrac{\partial^2 w}{\partial x^2}\in H, w(0)=w(\pi)=0\right\},$$

and $I_k w(x) = i\alpha_k w(x)$ and the control operator is given by $B = \chi_{\omega_0}$, $D_k = \chi_{\omega_k}$, then the system (22) becomes an abstract formulation of (1). As a consequence of Theorem 1, the initial state $y^0 \in L^2(\Omega, \mathbb{C}) = H$ of the solution of (22) is null-controllable at t = T, if and only if, there is C > 0 such that

$$\left| \int_{\Omega} y^{0}(x) \widetilde{\varphi}^{0}(x) dx \right|$$

$$\leq C \left\{ \int_{0}^{T} \int_{\omega_{0}} |\varphi|^{2} (t, x) dx dt + \sum_{k=1}^{m} \int_{\omega_{k}} |\varphi|^{2} (t_{m-(k-1)}, x) \right\}^{\frac{1}{2}}, \ \forall \widetilde{\varphi}^{0} \in L^{2}(\Omega, \mathbb{C}),$$

where $\widetilde{\varphi}^0(x) = \varphi(T, x)$ and φ is the mild solution of

$$\frac{\partial \varphi(t,x)}{\partial t} + i \frac{\partial^2 \varphi(t,x)}{\partial x^2} = 0, \quad t \in (0,T) \setminus \{t_k\}_{k \in \sigma_1^m}, \quad x \in \Omega,$$

$$\varphi(t,0) = \varphi(t,2\pi) = 0,$$

$$\varphi(0,x) = \varphi^0(x), \quad x \in \Omega,$$

$$\Delta \varphi(t_k,x) = i\alpha_k \varphi(t_k,x), \quad x \in \Omega, \quad k \in \sigma_1^m.$$

Here φ is given by

$$\varphi(t) = \begin{cases} \varphi_{[0]}(t) &, \text{ if } t \in [t_0, t_1) \\ \varphi_{[k]}(t) &, \text{ if } t \in [t_k, t_{k+1)} \\ \varphi_{[m]}(t) &, \text{ if } t \in [t_m, T] \end{cases},$$

where $\varphi_{[k]}(t)$ is a solution of the classical Schrödinger equation

$$\frac{\partial \varphi_{[k]}(t,x)}{\partial t} + i \frac{\partial^2 \varphi_{[k]}}{\partial x^2}(t,x) = \chi_{\omega_0} u(t,x), \quad t \in (t_0, t_1), \quad x \in \Omega = (0, 2\pi),
\varphi_{[k]}(t,0) = \varphi_{[k]}(t, 2\pi) = 0,
\varphi_{[0]}(t_0,x) = \varphi^0(x), \quad x \in \Omega,$$

and

$$\frac{\partial \varphi_{[k]}(t,x)}{\partial t} + i \frac{\partial^2 \varphi_{[k]}}{\partial x^2}(t,x) = \chi_{\omega_0} u(t,x), \quad t \in (t_k, t_{k+1}), x \in \Omega = (0, 2\pi),
\varphi_{[k]}(t,0) = \varphi_{[k]}(t, 2\pi) = 0,
\varphi_{[k]}(t_k,x) = (1 + i\alpha_k)\varphi_{[k-1]}(t_k,x), x \in \Omega, k \in \sigma_1^m.$$

Then a standard application of a variant of Ingham's Inequality [8] shows that

$$\int_{t_k}^{t_{k+1}} \int_{w_0} \left| \varphi_{[k]} \right| (t, x) dt dx \ge c(\tau_k, w_0) \int_{\Omega} \left| \varphi_{[k]} \right| (t_k^+, x) dx,$$

for some positive constants $c(\tau_k, w_0) > 0$. Summing up we get

$$\sum_{k=0}^{m} \int_{t_{k}}^{t_{k+1}} \int_{w_{0}} |\varphi_{[k]}| (t, x) dt dx = \int_{0}^{T} \int_{\omega_{0}} |\varphi|^{2} (t, x) dx dt$$

$$\geq c_{1} \sum_{k=1}^{m} \int_{\Omega} |\varphi_{[k]}| (t_{k}^{+}, x) dx,$$

where $c_1 = \min_{k \in \sigma_0^m} c(\tau_k, w_0) > 0.$

On the other hand, there is a positive constant $c_2 > 0$ such that

$$\sum_{k=1}^{m} \int_{\omega_k} |\varphi|^2 (t_{m-(k-1)}, x) \ge c_2 \sum_{k=1}^{m} \int_{\Omega} |\varphi_{[k]}|^2 (t_k^+, x) dx.$$

It follows that

$$\int_{0}^{T} \int_{\omega_{0}} |\varphi|^{2} (t, x) dx dt
+ \sum_{k=1}^{m} \int_{\omega_{k}} |\varphi|^{2} (t_{m-(k-1)}, x)
\geq (c_{1} + c_{2}) \sum_{k=1}^{m} \int_{\Omega} |\varphi_{[k]}|^{2} (t_{k}^{+}, x) dx
\geq (c_{1} + c_{2}) \int_{\Omega} |\varphi_{[m]}|^{2} (t_{m}^{+}, x) dx
= (c_{1} + c_{2}) \int_{\Omega} |\varphi|^{2} (T, x) dx.$$

Now, since $\widetilde{\varphi}^0(x) = \widetilde{\varphi}(0,x) = \varphi(T,x)$, then,

$$\int_{0}^{T} \int_{\omega_{0}} |\varphi|^{2} (t, x) dx dt + \sum_{k=1}^{m} \int_{\omega_{k}} |\varphi|^{2} (t_{m-(k-1)}, x) \ge m(c_{1} + c_{2}) \int_{\Omega} |\widetilde{\varphi}^{0}|^{2} (x) dx,$$

from which we get

$$\int_{\Omega} \left| \widetilde{\varphi}^{0} \right|^{2}(x) dx \leq \frac{1}{m(c_{1} + c_{2})} \left(\int_{0}^{T} \int_{\omega_{0}} |\varphi|^{2}(t, x) dx dt + \sum_{k=1}^{m} \int_{\omega_{k}} |\varphi|^{2}(t_{m-(k-1)}, x) \right).$$

We conclude by Cauchy-Schwarz inequality that

$$\left| \int_{\Omega} y^{0}(x) \widetilde{\varphi}^{0}(x) dx \right| \leq \left\{ \int_{\Omega} |y^{0}|^{2} (x) dx \int_{\Omega} |\widetilde{\varphi}^{0}|^{2} (x) dx \right\}^{1/2}$$

$$\leq \left\{ \frac{\int_{\Omega} |y^{0}|^{2} (x) dx}{m(c_{1} + c_{2})} \right\}^{1/2} \left(\int_{0}^{T} \int_{\omega_{0}} |\varphi|^{2} (t, x) dx dt + \sum_{k=1}^{m} \int_{\omega_{k}} |\varphi|^{2} (t_{m-(k-1)}, x) dx \right)^{1/2},$$

which establishes the necessary and sufficient condition of null controllability stated in Theorem 1.

We conclude our paper by a special case when our initial state is an eigensolution of the following linear operator $\Gamma: H \to H$ defined by

$$\Gamma(\psi) = \int_0^T X^{-1}(s)B^2X(s)\psi ds + \sum_{k=1}^{k=m} X^{-1}(t_k)D_k^2X(t_k)\psi.$$

We have the following result of null-controllability.

Proposition 1 Let $\lambda > 0$ be an eigenvalue of Γ with eigenvector $\psi \in H$. Then, the solution y to the problem

$$\begin{cases} y'(t) + Ay(t) = -\frac{1}{\lambda}B^{2}(X(t)\psi), & t \in (0,T) \setminus \{t_{k}\}_{k \in \sigma_{1}^{m}}, \\ \Delta y(t_{k}) = I_{k}y(t_{k}) - \frac{1}{\lambda}D_{k}^{2}(X(t_{k})\psi), & k \in \sigma_{1}^{m} \\ y(0) = \psi, \end{cases}$$
(24)

satisfies

$$y(T) = 0.$$

Proof.

Write system (24) into the form

$$\begin{cases} y^{'}(t) + Ay(t) = -\frac{1}{\lambda}B^{2}(X(t)\psi), & t \in (0,T) \setminus \{t_{k}\}_{k \in \sigma_{1}^{m}}, \\ y(t_{k}^{+}) = \mathcal{I}_{k}y(t_{k}) - \frac{1}{\lambda}D_{k}^{2}(X(t_{k})\psi), & k \in \sigma_{1}^{m} \\ y(0) = \psi. \end{cases}$$

Therefore, this impulsive problem has a solution which can be represented explicitly as follows

$$y(t) = X(t)\psi + \int_0^t G(t,s) \left[-\frac{1}{\lambda} B^2(X(s)\psi) \right] ds + \sum_{0 \le t_k \le t} G(t,t_k) \left[-\frac{1}{\lambda} D_k^2 X(t_k)\psi \right],$$

where the evolution operator G(t,s) is given by

$$G(t,s) = X(t)X^{-1}(s).$$

On the other hand, the system (24) yields

$$y(T) = X(T)\psi + \int_{0}^{T} G(T,s) \left\{ -\frac{1}{\lambda} B^{2}(X(s)\psi) \right\} ds$$

$$+ \sum_{0 < t_{k} \le T} G(T,t_{k}) \left\{ -\frac{1}{\lambda} D_{k}^{2} X(t_{k})\psi \right\}$$

$$= X(T) \left[\psi + \int_{0}^{T} X^{-1}(T) G(T,s) \left\{ -\frac{1}{\lambda} B^{2}(X(s)\psi) \right\} ds$$

$$- \frac{1}{\lambda} \sum_{0 < t_{k} \le T} X^{-1}(T) G(T,t_{k}) \left\{ D_{k}^{2} X(t_{k})\psi \right\} \right]$$

$$= X(T) \left[\psi + \int_{0}^{T} X^{-1}(s) \left\{ -\frac{1}{\lambda} B^{2}(X(s)\psi) \right\} ds$$

$$- \frac{1}{\lambda} \sum_{0 < t_{k} \le T} X^{-1}(t_{k}) \left\{ D_{k}^{2} X(t_{k})\psi \right\} \right]$$

$$= X(T) \left[\psi - \frac{1}{\lambda} \Gamma(\psi) \right] = 0.$$

This shows that the initial state ψ is null-controllable at time T with control

$$h\left(t\right) = \left(u\left(t\right), \left\{v_{k}\right\}_{k \in \sigma_{1}^{m}}\right) = \left(-\frac{1}{\lambda}X\left(t\right)\psi, \left\{-\frac{1}{\lambda}X(t_{k})\psi\right\}_{k \in \sigma_{1}^{m}}\right),$$

which completes the proof of the Proposition.

References

- [1] N.U. Ahmed, Optimal impulse control for impulsive systems in Banach spaces. J. Math. Anal. Appl. Vol. 1 (No.1)(2000), 37-52.
- [2] M.U. Akhmetov, A. Zafer, The controllability of boundary-value problems for quasilinear impulsive systems, Nonlinear Analysis 34 (1998) 1055-1065.
- [3] D.D. Bainov and P.S. Simeonov, Systems with impulse effect, theory and applications, Ellis Hardwood series in Mathematics and its Applications, Ellis Hardwood, Chichester, 1989.

- [4] D.D. Bainov P.S. Simeonov, *Impulsive differential equations: Asymptotic properties of the solutions*, World Scientific, Series on Advances in Math. for Applied Sciences, 28 (1995).
- [5] L. Berezansky and E. Braverman, Boundedness and stability of impulsively perturbed systems in a Banach space. Preprint functan/9312001.
- [6] R.K. George, A.K. Nandakumaran and A. Arapostathis, A note on controllability of impulsive systems. J. Math. Anal. Appl. 241, 276-283, 2000.
- [7] Z.H. Guan, T.H. Qian, and X. Yu, Controllability and observability of linear time-varying impulsive systems. IEEE Circuits Syst. I, vol. 49, pp. 1198-1208, 2002.
- [8] A. Haraux, An alternative functional approach to exact controllability of conservative systems, Portugaliae mathematica 61, 4 (2004), 399-437.
- [9] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, *Theory of impulsive differential equations*. World Scientific series in Modern Mathematics, Vol. 6, Singapore, 1989.
- [10] S. Leela, F.A. McRae, and S. Sivasundaram, Controllability of impulsive differential equations, J. Math. Anal. Appl. 177, 1993, 24-30.
- [11] X. Liu, Nonlinear boundary value problems for first order impulsive integrodifferential equations, Appl. Anal. 36(1990), 119-130.
- [12] J.H. Liu, Nonlinear impulsive evolution equations, Dynamics Contin. Discr. Impulsive Syst., 6 (1999), 77-85.
- [13] A.M. Samoilenko and N.A. Perestyuk, *Impulsive differential equations*, World Scientific, Singapore, 1995.
- [14] R.E. Showalter, Hilbert space methods for partial differential equations, Electronic Journal of Differential Equations, Monograph 01, 1994.
- [15] M. Slemrod, Feedback stabilization of a linear control system in Hilbert space with an a priori bounded control, Math. Control Signals Systems, Vol. 2, 265-285, 1989.

[16] R. Triggiani, Controllability and observability in Banach space with bounded operators, SIAM J. Control Optimiz. 13(1) (1975), 462-490.

(Received October 17, 2006)