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Abstract

In the present study, using the characterizations of measures of noncompactness
we prove a theorem on the existence and local asymptotic stability of solutions for
a quadratic functional integral equation via a fixed point theorem of Darbo. The
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1 Introduction

In this paper, we are going to prove a theorem on the existence and uniform global
attractivity of solutions for a quadratic functional integral equation. Our investigations
will be carried out in the Banach space of real functions which are defined, continuous
and bounded on the real half axis R,. The integral equation in question has rather
general form and contains as particular cases a lot of functional equations and nonlinear
integral equations of Volterra type. The main tool used in our considerations is the
technique of measures of noncompactness and the fixed point theorem of Darbo [1,
page 17].

The measure of noncompactness used in this paper allows us not only to obtain
the existence of solutions of the mentioned functional integral equation but also to
characterize the solutions in terms of uniform global asymptotic attractivity. This
assertion means that all possible solutions of the functional integral equation in question
are globally uniformly attractive in the sense of notion defined in the following section.

The assumptions imposed on the nonlinearities in our main existence theorem admit
several natural realizations which are illustrated by an example. The results obtained
in this paper generalize and extend several ones obtained earlier in a lot of papers
concerning asymptotic stability of solutions of some functional integral equations (cf.
[3,4,5,8]). Tt is worthwhile mentioning that the novelty of our approach consists mainly
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in the possibility of obtaining of the uniformly global attractivity of solutions for con-
sidered quadratic functional integral equations.

2 Notations, Definitions and Auxiliary facts

At the beginning of this section, we present some basic facts concerning the measures
of noncompactness [1,2] in Banach spaces.

Assume that (E, || - ||) is an infinite dimensional Banach space with zero element
6. Denote by B,(x) the closed ball centered at x and with radius r. Thus, B,(6) is the
closed ball centered at origin of radius r. If X is a subset of E then the symbols X,
ConvX stand for the closure and closed convex hull of X, respectively. Moreover, we
denote by Ppq(E) the family of all nonempty and bounded subsets of E and by P,.,(E)
its subfamily consisting of all relatively compact subsets of E.

The following definition of a measure of noncompactness appears in Banas and
Goebel [1].

Definition 2.1 A mapping p : Ppa(E) — Ry = [0,00) is said to be a measure of
noncompactness in E if it satisfies the following conditions:

1° The family kerp = {X € Pya(E) : p(X) = 0} is nonempty and ker p C Prep(F)
22 X CY = p(X) < p(Y)

30 1u(X) = p(X)

4° u(ConvX) = p(X)

52 p(AX + (1 = NY) < (X)) + (1 = XN)u(Y) for X € ]0,1]

6° If (X,) is a sequence of closed sets from Pyq(E) such that X, 11 C X, (n =1,2,...)

and if lim p(X,) =0, then the intersection set Xoo =(,—, X,, is nonempty.

The family ker p described in 1° is said to be the kernel of the measure of noncom-
pactness p. Observe that the intersection set X, from 6° is a member of the family
ker p. In fact, since pu(Xs) < u(X,) for any n, we infer that u(X) = 0. This yields
that X, € ker u. This simple observation will be essential in our further investigations.

Now we state a fixed point theorem of Darbo type which will be used in the sequel
(see Banas [2, page 17]).

Theorem 2.1 Let € be a nonempty, bounded, closed and convex subset of the Banach
space E and let F' : Q — Q be a continuous mapping. Assume that there exists a
constant k € [0,1) such that u(FX) < ku(X) for any nonempty subset X of Q. Then
F' has a fized point in the set €.
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Remark 2.1 Let us denote by Fiz(F) the set of all fixed points of the operator F'
which belong to Q. Tt can be shown [1] that the set Fix (F') belongs to the family
ker p.

Our further considerations will be placed in the Banach space BC(R,R) consisting
of all real functions = z(t) defined, continuous and bounded on R, . This space is
equipped with the standard supremum norm

]| = sup{la ()] : ¢ € Ry} . (2.1)

For our purposes we will use the ball measure of noncompactness in £ = BC(R,,R)

defined by
B(A) = inf{'r’ >0:AC UB(a:i,r) for z; € E} (2.2)

i=1
for all bounded subsets A of BC(Ry,R), where B(x;,r) = {x € X | ||z; — z|| < r}.

The ball measure of noncompactness is also called Hausdorff measure of noncom-
pactness since it has close connections with the Hausdorff metric in the Banach space
E. We use a handy formula for ball or Hausdorff measure of noncompactness in
BC(R4,R) discussed in Banas [2]. To derive this formula, let us fix a nonempty and
bounded subset X of the space BC'(R,,R) and a positive number 7". For z € X and
¢ > 0 denote by w?(z,€) the modulus of continuity of the function x on the interval
0,77, i.e.

wl(z,€) =sup{|z(t) —z(s)| : t,s €[0,T], |t —s| <€} .

Next, let us put
wl'(X,e) = sup{w’(z,¢): v € X},

wi (X) = limw(X, e) ,

e—0
wo(X) = %EEOWOT(X) :

It is known that .
B(A) = wo(4)

for any bounded subset A of BC(R,,R) (see Banas and Goebel [1] and the reference
given therein).

Now, for a fixed number ¢ € R, let us denote

and
[ X @) = sup{|z(t)] : =,y X}.
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Finally, let us consider the function p defined on the family BC'(R,,R) by the formula

H(X) = wo(X) +limsp | X(0)] (2.3
It can be shown as in Banas [2] that the function u is a measure of noncompactness in
the space BC'(R,,R). The kernel ker i of this measure consists nonempty and bounded
subsets X of BC(R,,R) such that the functions from X are locally equicontinuous on
R, and the thickness of the bundle formed by functions from X tends to zero at
infinity. This particular characteristic of ker u has been utilized in establishing the
local attractivity of the solutions for quadratic integral equation.

In order to introduce further concepts used in the paper let us assume that €2 is a
nonempty subset of the space BC'(R,,R). Moreover, let () be an operator defined on
2 with values in BC(R,,R).

Consider the operator equation of the form
z(t) = Qu(t), t € Ry . (2.4)

Definition 2.2 We say that solutions of the equation (2.3) are locally attractive if
there exists a ball B,(z) in the space BC(R,,R) such that for arbitrary solutions
x = z(t) and y = y(¢) of equation (2.3) belonging to B,(xy) N2 we have that

tlim (x(t) —y(t)=0. (2.5)

In the case when the limit (2.4) is uniform with respect to the set B(zy) N, i.e. when
for each € > 0 there exists 7' > 0 such that

[2(t) —y(t)| <€ (2.6)

for all =,y € B(x) NQ being solutions of (2.4) and for t > T, we will say that solutions
of equation (2.4) are uniformly locally attractive (or equivalently, that solutions of (2.4)
are asymptotically stable).

Definition 2.3 A line y = myt + moy, where m; and msy are real numbers, is called
a attractor for the solution z € BC(Ry,R) to the equation (2.1) if lim,_[z(t) —
(mat + mg)] = 0. In this case the solution z to the equation (2.1) is also called to be
asymptotic to the line y = myt + ms and the line is an asymptote for the solution x
on R,.

Now we introduce the following definition useful in the sequel.

Definition 2.4 The solutions of the equation (2.1) are said to be locally asymptot-
ically attractive if there exists a 79 € BC(Ry,R) and an r > 0 such that for any
two solutions z = x(t) and y = y(t) of the equation (2.1) belonging to B,(z) N Q2 the
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condition (2.3) is satisfied and there is a line which is a common attractor to them
on R,. In the case when condition (2.3) is satisfied uniformly with respect to the set
B,(20) N, that is, if for every & > 0 there exists T > 0 such that the inequality (2.4) is
satisfied for t > T and for all z,y € B, (o) N2 being the solutions of (2.1) having a line
as a common attractor, we will say that solutions of the equation (2.1) are uniformly

locally asymptotically attractive on R, .

Remark 2.2 Note that two solutions z and y of the equation (2.1) existing on R
are called asymptotically attractive if the condition (2.3) is satisfied and there is a line
as a common attractor on R, . Therefore, locally asymptotically attractive solutions
are asymptotically attractive, but the converse may not be true. Similarly, uniformly
locally asymptotically attractive solutions are asymptotically attractive, but the con-
verse may not be true. A asymptotically attractive solution for the operator equation
(2.1) existing on R, is also called asymptotically stable on R,.

Let us mention that the concept of attractivity of solutions was introduced in Hu
and Yan [9] and Banas and Rzepka [3] while the concept of asymptotic attractivity is
introduced in Dhage [7].

3 The Integral Equation and Stability Result

In this section we will investigate the following nonlinear quadratic functional integral
equation (in short QFIE)

B(t)

o) = alt) + [Ft.zl@®))] | [ ot szl ds (3.1)

0
forallte R,, whereq : R, - R, f : Ry xR—Randg : Ry xR,y xR —R.

By a solution of the QFIE (3.1) we mean a function z € C(R,,R) that satisfies the
equation (3.1), where C'(R,,R) is the space of continuous real-valued functions on R .

Observe that the above equation includes several classes of functional, integral and
functional integral equations considered in the literature (cf. [3, 5, 6, 7, 8, 9, 10] and
references therein). Let us also mention that the functional integral equation considered
in [3, 5] is a special case of the equation (3.1), where a(t) = 5(t) = ~(t) = t.

The equation (3.1) will be considered under the following assumptions:
(A1) The functions «, 3,7 : Ry — R, are continuous and limy_, a(t) = oo.

(Ag) The function f: Ry x R — R is continuous and there exist a bounded function
¢ : R, — R with bound L such that

[f(tx) = ft )] < )]z -yl
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for t € R, and for x,y € R.

(A3) The function F' : Ry — R, defined by F(t) = |f(¢,0)| is bounded on R with
Fy = sup;sg F(t).

(By) The function ¢ : R — R is continuous and lim,_,, ¢(t) = 0.

(By) The function g : Ry x Ry x R — R is continuous and there exist continuous
functions a,b: Ry — R, such that

|9(t, 5, 2)] < a(t)b(s)
for t,s € R.. Moreover, we assume that

B(t)

lim a(t) / b(s)ds =0 .

t—o0
0

Now we formulate the main result of this paper.

Theorem 3.1 Assume that the hypotheses (Ay) through (As) and (By) through (Bs)

hold. Furthermore, if LKy < 1, where Ks = sup,>, a(t) Oﬁ(t) b(s)ds, then the quadratic
functional integral equation (3.1) has at least one solution in the space BC(R.,R).
Moreover, solutions of the equation (3.1) are uniformly locally asymptotically stable on
R,.

Proof. Set £ = BC(R,,R). Consider the operator () defined on the Banach space F
by the formula
B(t)

Qalt) = a(t) + [1(t.ta®))] | [ ott.ssrt))ds (32)

0

for all t € R,. Observe that in view of our assumptions, for any function = € F, Qx
is a real-valued continuous function on R, . Since the function v : R, — R defined by

t—o0

B(t)
v(t) = lim a(t)/o b(s)ds (3.3)

is continuous and in view of hypothesis (B;), the number Ky = sup,v(t) exists.
Define a closed ball B,(f) in E centered at the origin @ of radius equal to r =

K+ K _

%, LK, < 1. Let x € B,.(0) be arbitrarily fixed. Then, by hypotheses (A;)-(As)
— LISy

and (B1)-(Bz) we obtain:

B(t)
Qe(t)] < la(t)| + 1f(t wa®)]( / l9(t, 5. 2(s)) ds )

EJQTDE, 2008 No. 10, p. 6



B(t)
< la@!+ [I£(t2(a(®) = £ 0)] + (2 0)]] (alt) / b(s) ds)
< la@®)] + [(@)]z(a(®)] + F©)] v(t)
< la(®)] + [Llz(a(t))] + Fo] Ky
S K1 -+ LKQ”SUH + F(]KQ
K+ FRyK,
 1-LK,
for all t € R,. Taking the supremum over ¢, we obtain the estimate :
Ky + FyK,
oz < S0 (3.4

for all x € B,(0). As a result, Q defines a mapping Q : B,.(6) — B,(6).

Now we show that the operator () is continuous on the ball B.(6). To do this, let us
fix arbitrarily € > 0 and take x,y € B,.(0) such that ||z — y|| < e. Then by hypotheses
(A1)-(Ay) and (B1)-(Bg) we get:

|Qu(t) — Qy(1)]

=

() B(t)

ot 21(9))) ds = (t.ylale)) [ glt,s.ul(5)) ds

—

< |f(t.aa(t)

o ©

(t)

ot 1(9)) ds = f(t.y(a(t)) [glt.s.2(2()))ds

—

< |7t ata)

o
=

(t) B(t)

gt s,2((s))) ds = f(t, y(a(t))) /g(t, $,y(7(s))) dS‘

0

| yam))

o —

B(t)

< |£(t, x(af |\/ (L5 2(
+ (e yle®) — FE0)+ 0]
B(t)
([ lattsatae))+latts () ds)

B(t)
< (1) [le(a(®) — ya®)] (aw) / b(s) ds)

"—2 |+F0 a / )

< Lz = yllv(t) + 2L{ly[lv(?)
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< LKse+ 2Lrv(t).

Hence, in virtue of hypothesis (Bs), we infer that there exists a 7' > 0 such that
v(t) < 57 for t > T. Thus, for ¢ > T from the estimate (3.3) we derive that

|Qu(t) — Qy(t)] < (LK; + 1)e . (3.5)

Further, let us assume that ¢ € [0, 7]. Then, evaluating similarly as above we get:

Qu(t) = Qu(t)] < £(t2(0 (1)) - |\/§ g(t, 5,2(1(5))) ds|
+Uf@ym@»»—ﬂtmu(A lg(t. 5, 2(+(5))) = g(t. 5,y(+(s)) ] ds)

B(t)
SOl ([ ot 5.0 - ot sy 6N s)
< L s(a(0) - y(a(0)

+uw+fw(lTﬂmaaxwwww—muayW@»MdQ
< LKye+ Brwl(g,e), (3.6)

where we have denoted
Br =sup{B(t): t€[0,T]},

and

w/! (g, €) = sup{|g(t, s, x) — g(t, s,y)| :
t,s €10, T],s €10,0r], x,y € [-r,7], [t —y| <€} . (3.7)

Obviously, in view of continuity of , we have that fr < oo. Moreover, from the
uniform continuity of the function g(¢, s, z) on the set [0, T] x [0, Gr] x [—r, 7] we derive
that wl(g,e) — 0 as ¢ — 0. Now, linking the inequalities (3.5), (3.6) and the above
established facts we conclude that the operator Q maps continuously the ball B,.(6)
into itself.

Further on, let us take a nonempty subset X of the ball B,.(#). Next, fix arbitrarily
T > 0and e > 0. Let us choose x € X and ty,t5 € [0, T] with [to—t;| < e. Without loss
of generality we may assume that t; < t5. Then, taking into account our assumptions,
we get:

|Qz(t1) — Qu(ta)| < [q(t1) — q(t2)]
B(t1)

+fuhﬂam»y/ o(tr, 5, 2(1(s))) ds

0
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B(t2)

_f(tQ,x(a(tQ)))/ glt2,5,(3(5))) ds|

0
< lq(t1) — q(t2)]
B(t1)

st [ ottsatis) ds

0
B(t1)

_f(tQ,x(a(tQ)))/ gt1,5,2((5))) ds|

0

B(t1)
[ reatat) [ st sat ) s

B(t2)

—ﬂmﬂﬂ@»l 9(ta, 5, 2(1(s))) ds
< lq(t1) — q(t2)]

ﬂ(tl)
+}ft1xoz(t1 — fte, z(a(ts)) }/ g(t1,s,x(v(s)))| ds

(t1) B(t2
+}ft2xozt2 “/ g(ty, s, z(y / g(ta, s, z(y s‘
0

< la(t) = alta)] + | £ (81, o(a(tr) = ft2, o(altr)] v(tr)
+[f(t2, 2(a(tr)) = f(t2, 2(a (tz)))} v(t)

B(t1) (t2)
LR [ otsato)ds = [ s at(s) ds
0

< lq(t:) — q(t2)]
+ K | [t (o)) — flta, 2(e(th)))| + L K |z(a(ty) — z(a(ty))]

B(t1) Bt2)
R [ atsate)ds— [ atsatenal  6s)

Again,

B(t1) B(t2
‘/ g(t1, s, z(v(s) ds—/ g(ta, s, z(y s‘
0

)/ﬁ(tl (t1,s,2(v(s))) ds — /ﬁ(tl)g(tz s :L’(fy(s)))dg)
+ ‘/ g(ta, s, x(v(s))) ds — /OB(tQ)g(tQ,s,x(fy(s)))ds‘
fﬁmM@sawm>g@sﬂwmwh

+’/ g(ta, s, x(y \ds’
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Br
< /0 l9(ty, s, 2(7(s))) = g(ta, s, 2(7(s)))| ds + o(tr) — v(ta)] (3.9)
Now combining (3.8) and (3.9) we obtain,

|Qu(t2)—Qu(th)] < la(tr) — q(t2)| + Ko | f(tr, 2(a(tr))) — f(t2, 2(a(t)))]

+ L Ks|z(a(ty)) — x(a(tz)| v(t)

Br
+(LT+F0)/O |9(t1, 5,2(7(5))) — g(tz, s, 2(7(s)))| ds
+ (Lr 4 Fo)|v(t1) — v(t2)]

< wT(q, €) + LK, wT(a:, wT(a, €)) + Ko er(f, €)

Br
+ (Lr + Fy) / wTT(g, €)ds+ (Lr + Fp) wT(v, €) (3.10)
0
where we have denoted
WT(q,6) = sup{la(ta) — ()] t,t2 € 0.7, |ta—t1] <.} |

wT(a,e) = supq{|a(ts) — a(t1)| : t1,t2 € [0,T], |ta —t1] <€},

w(v,€) = sup{|v(ta) —v(t1)] : ti,ta €[0,T), |ta —t1| <€},
wl'(f,€) = sup{|f(ta, x) — f(t1,2)] : t1,ta € [0,T], |ta —t1| <€, x € [-r,7]},
wl'(f,€) = sup{|f(ta, x) — f(t1,2)] : t1,ta € [0,T], |ta —t1| <€, x € [-r, 7]},

W?(gae) = Sup{|g(t2aSal‘)_g(tlasaxﬂ : tlatQ € [OaT]a |t2_t1| < €, S € [OaﬁT]a LS [—’I", T]} :
From the above estimate we derive the following one
ST(QUX),0) < W (0,€) + LI W (X, (0, 6)) + Ko (£
Br
T+ (Lr+ Fy) / WI(g ) ds + (Lr + Fo)o®(n.e)  (3.11)
0

Observe that w!(f,e) — 0 and w!(g,e) — 0 as € — 0, which is a simple consequence
of the uniform continuity of the functions f and g on the sets [0,7] x [—r,7] and
[0,T] x [0, Br| x [—r,r], respectively. Moreover, from the uniform continuity of ¢, o, v

on [0,7], it follows that w?(g,¢) — 0, wT(a,€) — 0, wl(v,e) — 0 as ¢ — 0. Thus,
linking the established facts with the estimate (3.10) we get

wl (Q(X)) < L Kywl (X) .
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Consequently, we obtain

wo(Q(X)) < L Kywo(X) . (3.12)

Similarly, for any z € X, one has

Bt
Qz(t)| < la(®)] + [f(t, 2(a(t)))] (/0 Ig(t,s,x(v(S)))lsz)

A(t)
< lg@®)]+ [If ¢ z(a(®) — £(£,0)[ + £t 0)]] <a(t)/0 b(s) d8>

lg(t)] + [£(t)]z(u(t)] + Fo]o(t)
lq

<
< [q(0)| + LKa|x(a(t))| + Fou(t)

for all t € R,. Therefore, from the above inequality, it follows that
QXD < lq(t)] + L[| X (a(t))]| + Fou(t)
for all t € R,. Taking the supremum over ¢,

limsup ||QX (¢)|| < limsup |q(t)| + LK> limsup || X (a(t))|| + Fo lim sup v(¢)
t—00

t—o0 t—o00 t—o00

< LK, limsup || X (a(t))]|
t—o0

< LK, limsup || X (¢)]].

t—oo

Hence,

QX)) = wo(QX) + limsup |QX (¢)]]

t—o00

< LKswo(X) + LK limsup || X (1) ||

t—o0

< LI [wo(X) + limsup | X (1)]]]

t—o0

< LK p(X)

where, LK, < 1.This shows that @ is a set-contraction on B,(0) with the contraction
constant k = LK.

Now, we apply Theorem 2.1 to the operator equation Qz = x and deduce that
the operator @ has a fixed point x in the ball B,(#). Obviously x is a solution of
the functional integral equation (3.1). Moreover, taking into account that the image
of the space X under the operator () is contained in the ball B,(f) we infer that the
set Fix(Q) of all fixed points of @ is contained in B,(6). Obviously, the set Fiz(Q)
contains all solutions of the equation (3.1). On the other hand, from Remark 2.3 we
conclude that the set Fiz(Q) belongs to the family ker p. Now, taking into account the
description of sets belonging to ker u (given in Section 2) we deduce that all solutions of
the equation (3.1) are uniformly locally asymptotically stable on R and the common
attractor is the line x(t) = 0. This completes the proof. [
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4 An Example

Consider the nonlinear QFIE of the form

x(t) = 1 + [% sin :U(Qt)] (/OW L(S%‘ ds) (4.1)

1+ |z(s?)

for all t € R,. Comparing QFIE (4.1) with (3.1), we obtain

a(t) =2t Bt) =t/2, A(t) =" and q(t) = ;—

for allt € R, ; and

ety

1
t,z) = =si d t = —
f(t,x) 5 Sinz  an g(t,s,x) T

for all t,s € R, and x € R. We shall show that all the above functions satisfy the
conditions of Theorem 3.1.

Clearly, the functions «,  and ~ are continuous and map the half real line R into
itself with tliglo at) = tliglo 2t = 0o. Next, ¢ is continuous and

t
limg(t) =0 and K;=su t)| = su =
lim () v =sup lg(t)] = sup =

Further on, the function f is continuous on Ry x R and satisfies (Ag) with L = 1/2.
T see this, let x,y € R. Then

1 . i 1
£(t,2) = F(ty)] < 5lsinz —sing| < Sfo—yf

for all t € R,.
Finally, the function g is continuous on R, x R, x R and

re !

1+ |z

<e'=a(t)b(s)

olt.s. )| = |

for all t,s € R, and x € R. Moreover,

B(t) t/2 t/2
lim a(t)/ b(s)ds = lim et/ ds =0 and K3 = sup et/ ds < 1.
0 0 0

t—o00 t—o00 t>0

As LK, = % < 1, we apply Theorem 3.1 to yield that the QFIE (3.1) has a solution
and all solutions are uniformly locally asymptotically stable on R, .
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