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Abstract

In this paper we prove the existence of positive solutions for a class of second order semipositone
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1 Introduction

In this paper, we study the positive solutions for the following second-order semi-
positone singular boundary value problems (BVP):

{

− u′′ = λh(t)f(t, u) + λg(t, u), 0 < t < 1,

u(0) = u(1) = αu(η),
(1.1)

where λ > 0 is a parameter, η ∈ (0, 1), α ∈ (0, 1) is a constant, f, g may be singular
at t = 0, 1.

The second-order boundary value problem arises in the study of draining and
coating flows. Choi [1] obtained the following results in 1991.

Choi’s Theorem. Let f(t, u) = p(t)eu, h(t) ≡ 1, g(t, u) ≡ 0, α = 0 and assume
p ∈ C1(0, 1), p(t) > 0 in (0,1) and p(t) can be singular at t = 0, but is at most
O( 1

t2−δ ) as t → 0+ for some δ > 0.
Then there exists a λ∗ > 0 such that (1.1) has a positive solution for 0 < λ∗ < λ.

Wong [2] later obtained the similar results in 1993 when f(t, u) = p(t)q(u), α =
0, h(t) ≡ 1 where p(t) > 0 is singular at 0 and at most O( 1

tα ) as t → 0+ for some
α ∈ [0, 2); h is locally Lipschitz continuous, increasing. Ha and Lee [3] obtained
in 1997 the similar results. Recently Agarwal et al. [4] improved the above results
and obtained the results when 0 < f(t, u) ≤ Mηp(t), p(t) ∈ C([0, 1], [0,∞)), Mη

is a positive constant for each given η > 0 and satisfying
∫ 1

0
tp(t)dt < ∞. But
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in the existing literature, few people considered the BVP (1.1). Only a handful
of papers [8-10] have appeared when the nonlinearity term is allowed to change
sign; Moreover most of them treated with semipositone problems of the form α =
0, h(t) ≡ 1, f(t, u) + M ≥ 0 for some M > 0. It is value to point out that g may
not to be nonnegative in this paper. we obtain an interval of λ which ensures the
existence of at least one positive solution of BVP (1.1). Our results are new and
different from those of [1-6]. Particularly, we do not use the method of lower and
upper solutions which was essential for the technique used in [1-5] .

This paper is organized as follows. In Section 2, we present some lemmas
that will be used to prove our main results. In section 3, by using Krasnosel-
skii’s fixed point theorem in cones, we discuss the existence of positive solutions of
the BVP(1.1). In each theorem, an interval of eigenvalues is determined to ensure
the existence of positive solutions of the BVP(1.1)

2 Preliminaries and lemmas

Firstly, let us list the following assumptions that are used throughout the paper:

(A) h(t) ∈ C((0, 1), [0, +∞)), h(t) 6≡ 0, and

∫ 1

0

G(s, s)h(s)ds < +∞.

(B) f(t, u) ∈ C((0, 1) × [0, +∞), [0, +∞)), and there exists constants m1 ≥
m2 ≥ 1 such that for any t ∈ (0, 1), u ∈ [0, +∞),

cm2f(t, u) ≤ f(t, cu) ≤ cm1f(t, u), ∀ c ≥ 1.

(C) g(t, u) ∈ C((0, 1), (−∞, +∞)), further, for any t ∈ (0, 1) and u ∈ [0, +∞),
there exists a function q(t) ∈ L1((0, 1), (0, +∞)) such that |g(t, u)| ≤ q(t).

(D)

0 <

∫ 1

0

t(1 − t)[h(t)f(t, 1) + q(t)]dt < +∞.

Remark 2.1. By (B), for any c ∈ [0, 1], (t, x) ∈ (0, 1) × [0, +∞), we easily get

cm1f(t, u) ≤ f(t, cu) ≤ cm2f(t, u).

Remark 2.2. If f(t, x) satisfies (B), then for any t ∈ (0, 1), x ∈ [0, +∞), f(t, x) is
increasing on x ∈ [0, +∞), and for any [m, n] ⊂ (0, 1), we have

lim
x→+∞

min
t∈[m,n]

f(t, x)

x
= +∞.
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Proof. The increasing property of f(t, x) is obvious, and since that if we choose
x > 1, from (B), we have f(t, x) ≥ xm2f(t, 1), so

f(t, x)

x
≥ xm2−1f(t, 1), ∀t ∈ (0, 1),

the

lim
x→+∞

min
t∈[m,n]

f(t, x)

x
= +∞.

is obtained.

we consider the three-point BVP
{

u′′ + h(t) = 0, 0 < t < 1,

u(0) = u(1) = αu(η).
(2.1)

where η ∈ (0, 1).

Lemma 2.1. Let α 6= 1, h ∈ L1[0, 1], then the there-point BVP
{

u′′ + h(t) = 0, 0 < t < 1,

u(0) = u(1) = αu(η).

has a unique solution

u(t) =

∫ 1

0

G(t, s)h(s)ds,

where G(t, s) = g(t, s) + α
1−αg(η, s), here

g(t, s) =

{

t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1.

Proof. From u′′ = −h(t) we have

u′(t) = −
∫ t

0

h(s)ds + B.

For t ∈ [0, 1], integrating from 0 to t we get

u(t) = −
∫ t

0

(

∫ x

0

h(s)ds
)

dx + Bt + A.

which means that

u(t) = −
∫ t

0

(t − s)h(s)ds + Bt + A.

So,
u(0) = A

u(1) = −
∫ 1

0

(1 − s)h(s)ds + B + A.

u(η) = −
∫ η

0

(η − s)h(s)ds + Bη + A.
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Combining this with u(0) = u(1) = αu(η) we conclude that

B =

∫ 1

0

(1 − s)h(s)ds,

A = − α

1 − α

∫ η

0

(η − s)h(s)ds +
αη

1 − α

∫ 1

0

(1 − s)h(s)ds

=
α

1 − α

∫ η

0

(1 − η)sh(s)ds +
α

1 − α

∫ 1

η

η(1 − s)h(s)ds.

=
α

1 − α

∫ 1

0

g(η, s)h(s)ds.

Therefore, the three-point BVP has a unique solution

u(t) = −
∫ t

0

(t − s)h(s)ds + t

∫ 1

0

(1 − s)h(s)ds +
α

1 − α

∫ 1

0

g(η, s)h(s)ds

=

∫ t

0

s(1 − t)h(s)ds +

∫ 1

t

t(1 − s)h(s)ds +
α

1 − α

∫ 1

0

g(η, s)h(s)ds

=

∫ 1

0

g(t, s)h(s)ds +
α

1 − α

∫ 1

0

g(η, s)h(s)ds

=

∫ 1

0

G(t, s)h(s)ds.

This completes the proof.�

Remark 2.3. (i) It is obvious that the Green’s function of BVP(2.1) G(t, s) is
continuous and G(t, s) ≥ 0 for any 0 ≤ t, s ≤ 1. Moreover we easily get G(t, s) ≤
G(s, s), and

G(s, s) = g(s, s) +
α

1 − α
g(η, s)

≤ s(1 − s) +
α

1 − α
s(1 − s)

≤ 1

1 − α
s(1 − s)

≤ 1

4(1 − α)
.

(ii) For any t0 ∈ (0, 1), the Green’s function G(t,s) of BVP(2.1) has the following
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property:

G(t, s)

G(t0, s)
=

g(t, s) + α
1−αg(η, s)

g(t0, s) + α
1−αg(η, s)

≥ g(t, s)

g(t0, s)

=



















































t

t0
, t0, t ≤ s,

t(1 − s)

s(1 − t0)
, t ≤ s ≤ t0,

1 − t

1 − t0
, s ≤ t, t0,

s(1 − t)

t0(1 − s)
, t0 ≤ s ≤ t,

≥ t(1 − t).

Let X = C[0, 1] be a real Banach space endowed with the norm ||x|| = maxt∈[0,1] |x(t)|.
Let P = {x ∈ C[0, 1] : x(t) ≥ 0} and K = {x ∈ P : x(t) ≥ t(1 − t)‖x‖}. Obviously,
P, K are cones in C[0, 1] and K ⊂ P .

Define the function, for y ∈ X,

[y(t)]∗ =

{

y(t), y(t) ≥ 0,

0, y(t) < 0,

and φ(t) = λ
∫ 1

0
G(t, s)q(s)ds, which is the solution of the BVP

{

x′′ + λq(t) = 0, 0 < t < 1,

x(0) = x(1) = αx(η).

We firstly consider the boundary value problem

{

− x′′ = λ[h(t)f(t, [x(t) − φ(t)]∗) + g(t, [x(t) − φ(t)]∗) + q(t)], 0 < t < 1,

x(0) = x(1) = αx(η),

(2.2)
We will show there exists a solutions x1 for the BVP (2.2) with x1(t) ≥ φ(t), t ∈

[0, 1]. If this is true, then u(t) = x1(t)− φ(t) is a nonnegative solutions (positive on
(0,1)) of the BVP (2.2). In fact, since for any t ∈ (0, 1),

−u′′ − φ′′ = λ[h(t)f(t, u) + g(t, u) + q(t)],

we have

−u′′ = λh(t)f(t, u) + λg(t, u).

So we can only study the BVP(2.2). For any fixed x ∈ P, choose 0 < a < 1 such
that a‖x‖ < 1, then a[x(t)− φ(t)]∗ ≤ ax(t) ≤ a‖x‖ < 1, so by (B) and Remark 2.1,
we have

f(t, [x(t) − φ(t)]∗) ≤ (
1

a
)m1f(t, a[x(t) − φ(t)]) ≤ a(m2−m1)‖x‖m2f(t, 1).
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Therefore, for any t ∈ [0, 1], we have

|Tx(t)| ≤ λ

∫ 1

0

G(t, s)[|h(s)f(s, [x(s) − φ(s)]∗)| + |g(s, [x(s) − φ(s)]∗)| + q(s)]ds

≤ λ

∫ 1

0

G(s, s)[a(m2−m1)‖x‖m2h(s)f(s, 1) + 2q(s)]ds

≤ λ

1 − α
(a(m2−m1)‖x‖m2 + 2)

∫ 1

0

s(1 − s)[h(s)f(s, 1) + q(s)]ds

≤ +∞.

Define an operator T : P → P by

Tx(t) = λ

∫ 1

0

G(t, s)[|h(s)f(s, [x(s)−φ(s)]∗)|+ |g(s, [x(s)−φ(s)]∗)|+q(s)]ds, x ∈ P.

Lemma 2.2.[12] Suppose that E is a Banach space, Tn : E → E (n = 1, 2, · · · ) are
completely continuous operators, T : E → E, and

lim
n→∞

max
‖u‖<r

‖Tnu − Tu‖ = 0, ∀ r > 0,

then T is a completely continuous operator.

Lemma 2.3. Assume that (A), (B) hold, then T (K) ⊂ K and T : K → K is
completely continuous .

Proof. For any x ∈ K, let y(t) = Tx(t). By definition of the operator T , we have
x(0) = x(1) and x′′ ≤ 0, so there exists a t0 ∈ (0, 1], such that ‖y‖ = y(t0). By
Remark 2.3 (ii), we have

y(t) = λ

∫ 1

0

G(t, s)[h(s)f(s, [x(s) − φ(s)]∗) + g(s, [x(s) − φ(s)]∗) + q(s)]ds

= λ

∫ 1

0

G(t, s)

G(t0, s)
G(t0, s)[h(s)f(s, [x(s) − φ(s)]∗) + g(s, [x(s) − φ(s)]∗) + q(s)]ds

≥ t(1 − t)y(t0) = t(1 − t)‖y‖, t ∈ [0, 1].

So y ∈ K, that is T (K) ⊂ K.

Define the function hn for n ≥ 2, by

hn(t) =



























inf{h(t), h(
1

n
)}, 0 < t ≤ 1

n
,

h(t),
1

n
≤ t ≤ 1 − 1

n
,

inf{h(t), h(1 − 1

n
)}, 1 − 1

n
≤ t ≤ 1.
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Then hn : [0, 1] → [0, +∞) is continuous and hn ≤ h(t), t ∈ (0, 1). Following, for
n ≥ 2, let

Tnx(t) = λ

∫ 1

0

G(t, s)[hn(s)f(s, [x(s)−φ(s)]∗)+g(s, [x(s)−φ(s)]∗)+q(s)]ds, x ∈ P.

By the same method as in the beginning, we get Tn(K) ⊂ K. Obviously, Tn is
also completely continuous on K for any n ≥ 2 by an application of Ascoli Arzela
theorem (see [11]). Define Dr = {x ∈ K : ||x|| ≤ r}. Noticing [x(t)−φ(t)]∗ ≤ x(t) ≤
‖x‖ ≤ r < r + 1. Then, for any t ∈ [0, 1], for each fixed r > 0 and x ∈ Dr,

‖Tnx(t) − Tx(t)‖ ≤ λ lim
n→∞

max
0≤t≤1

∫ 1

0

G(t, s)[h(s) − hn(s)]f(s, [x(s) − φ(s)]∗)ds

≤ λ lim
n→∞

max
0≤t≤1

∫ 1

0

G(t, s)[h(s) − hn(s)]f(s, r + 1)ds

≤ λ(r + 1)m1 max
0≤t≤1

f(t, 1) lim
n→∞

∫ 1

0

G(s, s)[h(s) − hn(s)]ds

≤ λ(r + 1)m1 max
0≤t≤1

f(t, 1) lim
n→∞

∫

e(n)

G(s, s)h(s)ds

→ 0(n → ∞),

where e(n) = [0, 1/n] ∪ [(n − 1)/n, 1]. By Lemma 2.2, Tn converges uniformly to T
as n → ∞, and therefore T is completely continuous. This completes the proof.�

Lemma 2.4.[7,13] Let X be a Banach space, and let K ⊂ X be a cone in X. Assume
that Ω1, Ω2 are open bounded subsets of K with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. If T : K → K
be a completely continuous operator such that either

(1) ‖Tx‖ ≤ ||x||, x ∈ ∂Ω1, and ‖Tx‖ ≥ ||x||, x ∈ ∂Ω2, or

(2) ‖Tx‖ ≥ ||x||, x ∈ ∂Ω1, and ‖Tx‖ ≤ ||x||, x ∈ ∂Ω2.

then T has a fixed point in Ω2 \ Ω1.

3 Main results

In this section, we present and prove our main results.

Theorem 3.1. Suppose that (A)-(D) hold. Then there exists a constant λ∗ > 0
such that, for any 0 < λ < λ∗, the BVP (1.1) has at least one C[0, 1] ∩ C2[0, 1]
positive solution.

Proof. By Lemma 2.3, we know T is a completely continuous operator. Let

Ω1 = {x ∈ C[0, 1] : ‖x‖ < 1
1−αr} where r =

∫ 1

0 q(s)ds. Choose

λ∗ = min
{

1, r
[

[(
1

1 − α
r + 1)m1 + 2]

∫ 1

0

s(1 − s)[h(s)f(s, 1) + q(s)]ds
]−1}

.
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Then for any x ∈ K ∩ ∂Ω1, we have

‖Tx‖ ≤ λ

∫ 1

0

G(t, s)[h(s)f(s, [x(s) − φ(s)]∗) + g(s, [x(s) − φ(s)]∗) + q(s)]ds

≤ λ

∫ 1

0

G(s, s)[h(s)f(s, [x(s) − φ(s)]∗) + 2q(s)]ds

≤ λ
1

1 − α

∫ 1

0

s(1 − s)[h(s)f(s, (
1

1 − α
r + 1)) + 2q(s)]ds

≤ λ
1

1 − α
[(

1

1 − α
r + 1)m1 + 2]

∫ 1

0

s(1 − s)[h(s)f(s, 1) + q(s)]ds

≤ 1

1 − α
r = ‖x‖.

Thus

‖Tx‖ ≤ ‖x‖, x ∈ K ∩ ∂Ω1.

On the other hand, choose [m, n] ⊂ (0, 1) and a constant L > 0 such that

λL
1

1−α + 1
min

m≤t≤n
[h(t)t(1 − t)] min

m≤t≤n

∫ n

m

G(t, s)ds ≥ 1.

By Remark 2.2, for any t ∈ [m, n], there exists a constant D > 0 such that

f(t, x)

x
> L, x > D.

Choose

R = max
{

λ(
1

1 − α
+ 1)r,

1

1 − α
r + 1,

( 1
1−α + 1)D

min
m≤t≤n

[t(1 − t)]

}

and let Ω2 = {x ∈ C[0, 1] : ‖x‖ < R}, then for any x ∈ K ∩ ∂Ω2, we have

x(t) − φ(t) = x(t) − λ

∫ 1

0

G(t, s)q(s)ds

≥ x(t) − λ

1 − α
[t(1 − t)]

∫ 1

0

q(s)ds

≥
[

1 − λr

(1 − α)R

]

x(t)

≥ 1
1

1−α + 1
x(t) ≥ 0, t ∈ [0, 1].

Then

min
m≤t≤n

x(t) ≥ min
m≤t≤n

1
1

1−α + 1
x(t) ≥ min

m≤t≤n

‖x‖
1

1−α + 1
[t(1 − t)]

=
R

1
1−α + 1

min
m≤t≤n

[t(1 − t)] ≥ D.
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Therefore

min
m≤t≤n

Tx(t) = min
m≤t≤n

λ

∫ 1

0

G(t, s)[h(s)f(s, [x(s) − φ(s)]∗) + g(s, [x(s) − φ(s)]∗) + q(s)]ds

≥ min
m≤t≤n

λ

∫ 1

0

G(t, s)h(s)f(s, [x(s) − φ(s)]∗)ds

≥ min
m≤t≤n

λ

∫ n

m

G(t, s)h(s)L[x(s) − φ(s)]ds

≥ λL
1

1−α + 1
min

m≤t≤n

∫ n

m

G(t, s)h(s)x(s)ds

≥ λL
1

1−α + 1
min

m≤t≤n

∫ n

m

G(t, s)h(s)[s(1 − s)]‖x‖ds

≥ λL
1

1−α + 1
min

m≤t≤n
[h(t)t(1 − t)] min

m≤t≤n

∫ n

m

G(t, s)ds‖x‖

≥ ‖x‖.

So
‖Tx‖ ≥ ‖x‖, x ∈ K ∩ ∂Ω2.

By Lemma 2.4, T has a fixed point x with 1
1−αr < ‖x‖ < R such that

{

− x′′(t) = λ[h(t)f(t, [x(t) − φ(t)]∗) + g(t, [x(t) − φ(t)]∗) + q(t)], 0 < t < 1,

u(0) = u(1) = αu(η),

Since ‖x‖ > 1
1−αr,

x(t) − φ(t) ≥ ‖x‖t(1 − t) − λ

∫ 1

0

G(t, s)q(s)ds

≥ ‖x‖t(1 − t) − λ

1 − α
[t(1 − t)]

∫ 1

0

q(s)ds

≥ (1 − λ)r[t(1 − t)]

1 − α

≥ 0, t ∈ [0, 1].

Let u(t) = x(t) − φ(t), then u(t) is a C[0, 1] ∩ C2[0, 1] positive solution of the
BVP(1.1). We complete the proof.�

In the end of this paper, we point out Theorem 3.2 which easily to be showed
by the same method as in the proof of Theorem 3.1:

Theorem 3.2. Suppose that (A), (D) hold, and
(B∗) f(t, u) ∈ C((0, 1)× [0, +∞), [0, +∞)), and there exists constants 0 < m3 ≤

m4 < 1 such that for any t ∈ [0, 1], x ∈ [0, +∞),

cm4f(t, u) ≤ f(t, cu) ≤ cm3f(t, u), ∀ c ∈ [0, 1].

(C∗) g(t, u) ∈ C((0, 1), (−∞, +∞)), further, for any t ∈ (0, 1) and u ∈ [0, +∞),
there exists a function q(t) ∈ C([0, 1], (0, +∞)) such that |g(t, u)| ≤ q(t).
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Then there exists a constant λ∗ > 0 such that, for any λ > λ∗, the BVP(1.1)
has at least one C[0, 1] ∩ C2[0, 1] positive solution.

Example. Consider the following second-order semipositone singular boundary
value problems (BVP):















− u′′ = λ
[ u3/2

3t(1 − t)
+

1√
t
arctanu

]

, 0 < t < 1,

u(0) = u(1) =
1

2
u(

1

2
),

Where α = 1
2 , η = 1

2 , h(t) = 1, f(t, u) = u3/2

3t(1−t) , g(t, u) = 1√
t
arctanu. Then

f(t, cu) =
(cu)3/2

3t(1 − t)
= c3/2 u3/2

3t(1 − t)
= c3/2f(t, u),

|g(t, u)| = | 1√
t
arctanu| ≤ π

2
√

t
= q(t),

∫ 1

0

G(s, s)h(s)ds =

∫ 1/2

0

[s(1 − s) +
1

2
s]ds +

∫ 1

1/2

[s(1 − s) +
1

2
(1 − s)]ds =

7

24
,

∫ 1

0

t(1 − t)[h(t)f(t, 1) + q(t)]dt =

∫ 1

0

t(1 − t)
( 1

3t(1 − t)
+

π

2
√

t

)

dt =
5 + 2π

15
.

So (A)-(D) are satisfied. Therefore, by theorem 3.1, for any 0 < λ < λ∗ =
15π

(5+2π)[2+(1+2π)3/2]
, the BVP (1.1) has at least one C[0, 1]∩C2[0, 1] positive solution.
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