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OSCILLATION CRITERIA OF SECOND ORDER NEUTRAL DELAY
DYNAMIC EQUATIONS WITH DISTRIBUTED DEVIATING
ARGUMENTS

E. THANDAPANI! AND V. PIRAMANANTHAM?

ABSTRACT. In this paper we establish some oscillation theorems for second order neu-
tral dynamic equations with distributed deviating arguments. We use the Riccati trans-
formation technique to obtain sufficient conditions for the oscillation of all solutions.

Further, some examples are provided to illustrate the results.

1. INTRODUCTION

In this paper we are concerned with the oscillatory behavior of solutions of second
order neutral type dynamic equations with distributed deviating arguments of the form

(r(t)(x(t) + p(t)a(t — 7)%)" +/ q(t, &) f(x(g(t,£))A¢ =0,  teT (1.1)

a

subject to the conditions:

(Ay) r(t),p(t) are positive real valued rd-continuous functions on time scales with
0<p(t) <1;

(Ag) f € C(R,R) such that uf(u) > 0 for u # 0, and f(—u) = —f(u);

(A3) g(t,&) € Cog(T x [a,b]r, T), g(t,&) < t,& € |a,blr,where [a,b]r ={t€T:a<t<
b}, g is strictly increasing with respect to t and decreasing with respect to £, and

the integral of equation (1.1) is in the sense of Riemann (see [7]).

By a solution of equation (1.1), we mean a nontrivial real valued function x(¢) which
has the properties z(t) + p(t)z(t — 7) € CY([ty, 00)r and 7(¢)[x(t) + p(t)z(t — 7)]> €
Cl([t,, 00)r and satisfying equation (1.1) for all ¢ € [tg, 00)r.

We restrict our attention to nontrivial solutions of equation (1.1) that exist on some
half-line [t,, 00)r, and satisfying sup{| z(t) |: ¢ € [t1,00)7} > 0 for any t; € [t,,00)r. A
solution x(t) of equation (1.1) is said to be oscillatory if it is neither eventually positive

nor eventually negative; otherwise it is called nonoscillatory. The equation itself is
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called oscillatory if all its solutions are oscillatory. Since we are interested in oscillatory
behavior of solutions, we will suppose that the time scale T under considerations is not
bounded above, that is, it is a time scale interval of the form [ty, 00)T.

We note that if T = R, then we have f2(t) = f'(t), and equation (1.1) becomes the
second order neutral differential equation with distributed deviating arguments of the

form
b
(r(®)(z() +pt)x(t —1))") +/ q(t, &) f(x(g(t,8))ds =0, ¢ >t (1.2)

If T =N, we have f2(n) = f(n+ 1) — f(n), and the equations (1.1) becomes the
second order neutral difference equation with distributed deviating arguments of the

form

A(rnA(@n + pan—)) + Y 6:(6) F(2(95()) =0, teN. (1.3)

s=a
Recently there has been an increasing interest in studying the oscillation of solutions
of dynamic equations with continuous deviating arguments, see for example [1,6,14,16-
18] and the references cited therein. To the best of our knowledge no paper has been
published in dynamic equations with distributed deviating arguments. This motivated
us to study the oscillatory behavior of equation (1.1).
The purpose of this paper is to derive some sufficient conditions for the solutions of

the equation (1.1) to be oscillatory under the conditions

() /t:o %As — 00, and (Cb) /: %As < .

In Section 2, we present some basic lemmas , and in Section 3 we will use the Riccati
transformation technique to prove our oscillation results of the equations (1.1) under the
condition (C). Also we derive sufficient condition for the equation (1.1) to be oscillatory
under the condition (C3). In Section 4, we present some examples to illustrate our main
results.

2. SOME BASIC LEMMAS

In this section, we give some preliminary lemmas which are useful to prove the main

results.

Lemma 2.1. [4]Assume that v € T — R is strictly increasing, and T = v(T) is a time
scale. Let w: T — R. If v2(t), and w™ (v(t) exist for t € T*, then

(wow)® = (w8 o v)v>.
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Lemma 2.2. Ifa > 0,b > 0, then

1 b?
—az® +br < —=x? 4+ —, z€R.
2 2a’

Proof. The proof is obvious. O

Lemma 2.3. Assume that condition (Cy) holds. Let x(t) be an eventually positive
solution of equation (1.1), and let y(t) = x(t) +p(t)x(t — 7). Then there exists a t, > 1
such that y(t) > 0,y>(t) > 0 and (r(t)y>(t))> <0, t € [t;,00)r.

Proof. Suppose that z(t) is an eventually positive solution of equation (1.1) with z(¢) >
0,z(t —7) > 0 and z(g(¢,§)) > 0 for all ¢t € [t;,00)r and § € [a,b]y. Set y(t) =
x(t) + p(t)z(t — 7). Then y(t) > 0 for all ¢ € [t;, 00)r. In view of equation (1.1) we have
(r(t)y®(t))® < 0, and this implies that 7(t)y®(¢) is an eventually decreasing function,
since q(t,€) > 0. We claim that r(¢)y®(¢) is eventually nonnegative on [t;, 00)r. Suppose
not, there is a ty € [t;, 00)r such that r(ts)y>(t2) =: a < 0. Then

r(t)y2(t) < r(ta)y>(ts) = a,t € [ty, 00)r.

Hence .
1
y(t) <wyl(ts) + a/ —As
t2 T(S)
which implies by condition (C) that y(t) — —oo as t — oo. This contradicts the fact
that y(t) > 0 for all ¢ € [t;, 00)r. Hence r(t)y>(t) > 0 eventually. O

3. OSCILLATION RESULTS

In this section, first we derive some sufficient conditions for the solutions of equation
(1.1) to be oscillatory when the condition (C;) holds. We begin with the following

theorem.

Theorem 3.1. Assume that condition (Cy) holds, and further assume that there exist
g2 (t,b), H(t,s) € CL(D;R), h(t,s) € CL(D;R), and a(t) € Cly([to,00), (0,00)), where
Do ={(t,s)/t >s>ty},D=A(t,s)/t > s >to}, such that

(Ay) H(o(t),t) =0,H(t,s) > 0;

(As) H(t,5) <0 and —H>(t,5) — H(t,5)5 = h(t, s)\/H(L,5).
If

nggpm S [H (@ s)als) [0 Ma(s, €)1 = plg(s,)]AE
(g5 ) ()W)
oGy )= B

then equation (1.1) is oscillatory.
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Proof. Suppose to the contrary that equation (1.1) has a nonoscillatory solution x(t).

Without loss of generality we may assume that z(t) is an eventually positive solution of

equation (1.1). Then there is a t; > to such that z(t) > 0, z(t—7) > 0, and z(g(¢,£)) > 0

for all t € [t1,00)T, £ € [a,b]r. Now we define y(t) = z(t) + p(t)x(t — 7) for t € [t;, 00)r.
Then using Lemma 2.3, there exists a t5 > to such that

y(t) >0, y*(t) >0 and (r(t)y>(t)> <0, t € [ty, 00)r. (3.2)

From Lemma 2.3 and using y(t) > z(t),t € [t1, 00)T, we get y(g(t,€)) > y(g(t, &) —71) >
x(g(t, &) — 1), and we write

b

0 = (T(t)(w(t)+p(t)$(t—7))A)A+/ q(t, &) f(x(g(t, £)))Ag
b

> (T(t)(w(t)+p(t)$(t—7))A)A+/ q(t, E)Mx(g(t,£)) AL

= (1)@ (t) + )t — 1))
m/Jthg gt €)a(g(t.€) — 1A

Y
—~
=
—~
~—
—~
8
—~
~
~—
+

=
—~
~—
—~
~

I

9

b
*/ M“t®D—p@uf»w@@@»A¢

or
b
(r()(x(t) + p(t)a(t — 7))%)* +/ Mq(t, §)[1 = p(g(t, €))]y(g(t, €))AE <0. (3.3)
Using the fact that g(t, ) is decreasing with respect to &, we have from (3.3) that

b
(r(t) (2 (t) + p(t)a(t — 7)) +y(g(t, b))/ Mq(t,§)[1 —p(g(t,£))]AL < 0. (3.4)

Define
A0 .

Then clearly w(t) > 0 for all ¢t € [tg,00)T, and

A Ao o) 78
wh(t) = (r(t)y*(1)) [y(g@’b))} TG )
(
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Let gy(t) = g(t,b). Then using Lemma 2.1, we have

(y o g5)2(t) = y™(gs(t)) g3 (1) (3.7)

From (3.6) and (3.7), we obtain

2(g(t.b))g"(t, ). (3-8)

Since y2(t) > 0, and (r(t)y>(t))> <0, t>t;, we have

y(g(t,b)) < ylg(t,0))7, and r(t)y>(t) < r(g(t,b)y>(g(t,b)). (3.9)

From (3.8) and (3.9), we obtain

b
uy/.qufnl—puxaanAg < —ub)+
at
a(g(t,

(W ()2 (3.10)

O
o)
D) (1))?

Multiplying (3.10) by H(t, s) and then integrating from T to t , for any t > T > t, we

have

Eﬂm)a /Mq - wMMM<Q/HH (5108
/H ) M—/Hts(f j?swﬂmma

af 8

Using integrating by parts, we have

/T H(t, sw(s)As = H(t s)w(s)[ — /T HA (1, w7 (5)A

t
— H(t, T)w(T) — / H( sy’ (s)As.  (3.11)
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In view of conditions (A4), (A45), and (3.11), we have

/Hts /qué )1 = plg(s, )]AEAS
< H(t, T)w(T) + /T (H “(t,s) + H(t, s)O‘AE;) w? (s)As
) oy S
— H(t, TYwA(T) — /T Bt )T 5w (5)As
- oy S

which implies that

H<t1t / / Ma(s (5.6))| A6 — r(g(s,0))(a”(s))*h?(t, 8)]A3

< w(t) /{a / (L)1 — plg(s, )] AEFAS = M < oo,
(3.12)

where M is a constant, which contradicts (3.1).

Suppose that x(t) is an eventually negative solution of equation (1.1). Then by taking
z(t) = —xz(t), we have that z(t) is eventually positive solution of the equation (1.1),
since f(—u) = —f(u). Similar to the proof as above we obtain a contradiction. This
completes the proof. O

As a consequence of Theorem 3.1, we obtain the following corollary.
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Corollary 3.2. Assume that the hypotheses of Theorem 3.1 hold. If

li?iigp . to / H(t,s) / Mq(s —p(g(s,8))|AEAs = 00
and
- (s b))( ?(s))*h*(t, 5)
lntriigp i, to / H(t Ta(s)g2 (5, D) As < 00,

then every solution of equation (1.1) is oscillatory.

Remark 3.3. By introducing different choices of H(t,s) and «(t) in Theorem 3.1, we
can obtain several different oscillation criteria for the equation (1.1). For instance, let
H(t,s) =1and H(t,s) = (t —s)™,t > s > ty, in which m > 1 is an integer, we obtain
the following criteria respectively.

Corollary 3.4. Assume that condition (Cy) holds. Further assume that there exist
g2 (t,b), and a(t) as in Theorem 3.1 such that

limsup/ / Mq(s —p(g(s,8))]AE — T 4aES)gA(3,b) T1As =o00. (3.13)

t—o0

Then every solution of equation (1.1) is oscillatory.

If we choose H(t,s) = (t — s)™,m > 1, then it is easy to verify that H®s < —m/(t —
s)™ 1 t > s > ty. FromTheorem 3.1, we have

Corollary 3.5. Assume that condition (Cy) holds, and there exist g°(t,b) and a(t) as
in Theorem 3.1. If, form > 1,

s [ (0= sae) [ Mats. 01— plals. D1

JMMM%WWW s = oo
4a(s)g?(s,b) s

CMA S . .
where h(t,s) = (t — s)™/?> (m —(t— s)%), then every solution of equation (1.1)

15 oscillatory.

Next, if we consider a(t) =t and «(t) = 1 for t > t, in Corollary 3.4, we can obtain

few more oscillation criteria as corollaries of Theorem 3.1.

Corollary 3.6. Assume that condition (Cy) holds, and there exists g*(t,b) as in Theo-
rem 3.1. If
imsup [ o [ arate 9 —piots.nae - T as oo gy
t—o0 to a ’ ’ 489 (S b) 7 .

then every solution of equation (1.1) is oscillatory.
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Corollary 3.7. Assume that condition (Cy) holds, and there exists g*(t,b) as in Theo-
rem 3.1. If

t b
lim sup / / Ma(s,€)[1 — plg(s, &) AEAs = oo, (3.15)

t—o0

then every solution of equation (1.1) is oscillatory.

Theorem 3.8. Assume that the hypotheses of Theorem 3.1 hold. Further assume that

0 < liminf [liminf 270 5)

s>to t—o00 H(O’(t),to)} = 00, (3.16)

and there ezists a positive delta differentiable function «o(t) such that

. 1 "r(g(s,0))(a(s))
tll>r£<> H(o(t),to) / a(s)g?(s,b) As < oo, (3.17)

hold. If there exists a function ¢ € Crq([to, 00),R) such that

0P o al
| o sty 085 =0 (3.18)
and for every T > t,
1
o / / Mq(s, €)1 — plg(s,€))| A
7(g(s,€))(a’(s))?h2(t, s)
. 4@( D) ]As > o(T), (3.19)

where ¢4 (t) = max{p(t),0}, then every solution of equation (1.1) is oscillatory.

Proof. On the contrary, we assume that (1.1) has a nonoscillatory solution z(t). We
suppose without loss of generality that x(t) > 0 for all ¢ € [tg, 00)r. Proceeding as in the
proof of Theorem 3.1, for t > u > t; > ty, we have

i | e [ a0 - plats en1ag
) ) S P Y A (T R P e I
ey RO H<t,u>/u [\/ g6, D) e )

r(g(s,b))a”(s)h(t, 8)} ® s
2y/a(s)g* (s, b)
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Let t — oo and taking the upper limit, we have

T / /Mq (905, €))A¢
)

(g5, ©)(@7 ()21, ) L [Hs)a()t 50
T La(9)gA(s.b) }ASS“’”‘h%fh(t u>/T[\/ (oG D) )

r(g(s,b))a’(s)h(t, 8)]2A
2 /a(s)g”(s,b)

lim su
t—o0 P h

N—
—
o
q
—~
N—
N—
no

From (3.19), we have
w(u) > p(u) for all u > to, (3.20)
and

1 T JH(t s)a(s)gh (s, b) r(g(s;b))a”(s)h(t, )72
fim inf h(t,u)/u [\/ 2 W)+ ] As

H(t,t) Ji, alg(s,b))a?(o(s))
and
) = = (13 - /t (e, )T 9w (s)] As (3.23)
for t > tg. Then by (3.21), (3.22) and (3.23), we obtain
ligglf[G(t) + F(t)] < oo. (3.24)
Now we claim that . (8)92(s.1)
a(s)g=(s, o/ o
/tl a(g(s,b))aQ(a(s))(w (s))*As < oo. (3.25)

Suppose to the contrary that

> a(s)g”(s,b) (N2 As — o
/tl a(g(s.))a2(o(s)) W ($) As = o0 (3.26)

From (3.16), there is a positive > 0 satisfying

lim inf [lim inf H(o(t),5)
s>to t—00 H(O‘(t), to)

On the other hand by (3.26) for any positive number p > 0, there exists 7' > t; such

als)g—(s, o(s ) )
/t1 a(g(sab))aQ(a(s))@’ (s))°As >

| >n>o. (3.27)

for all t > T. (3.28)
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So, forallt > T > tl, integration by parts yields that

/ Hit

925 ()2

) = ()

= H / Ht,5)a / a<gc<yi??§>§<f<)u>>(“}0(“”2“}
- ﬁ/ ] a ooy ] 510

> k1 /tHAS( (1), 5)As
> = o(t),
nH(t,t1) Jr
_ pH(T) > wH(T)
nH(t,t) — n H(t, t)
It follows from (3.27) that
e H(Es)
> >
h{ggxr)lf Hit i) = > 0, s >ty
Therefore, there exists a to > 1" such that
H(t,T) <
H(t, ty) —
for all t > 5. From (3.29) and (3.31),we have
G(t)>n for t > t,.
Since p is arbitrary, we conclude that
lim F(t) =

t—oo

From (3.24), there is a sequence {t,}52, in [t1, co)r with lim,, . ¢,

Tim (F(t,) + G(ta)) = Jim (F(t,) + G(ta)) < oo.

Thus there exist constants N; and M such that

F(t,) +G(t,) <M for n > Nj.
It follows from (3.33) that
nh—>Holo F(t,) = oc.
Further, from (3.34) and (3.35), we obtain
nh_)ngo G(t,) = —oc.

Then for any € € (0, 1), there exists a positive integer Ny such that

G(tn)
F(tn)

+1<e, for n > N,

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

= 00, and such that

(3.34)

(3.35)

(3.36)
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or

G(tn)

-1 : .
Fit,) <€ <0 (3.37)
From (3.36) and (3.37),we have
- G(tn)
1 = 0. .
Jim. Fit) G(t,) = o0 (3.38)
On the other hand, by Schwarz inequality,we have

1 tn

0 < G*t,) = m{ VH(tn, 8)h(tn, s)w’(s)As}?

A
B 1 " a(g(s,b a(s)) O(As
= Py ), T 0

G2(tn) 1 " a(g(s,b))a*(o(s))
Fi < T fy e e (339
for all large n. In view of (3.31), we obtain
1 1 Htwto 1 1
H(tn )~ H(tn ) H{t T) H{ly fo) — LH (b )’ (3.40)
and therefore, from (3.39) and (3.40), we have
G2(tn) 1 " a(g(s,b))a*(o(s))
Ft,) < LH{, 1) /t1 (592 (5.0) h(tn,s)As. (3.41)
From (3.41) and(3.38), we have
. 1 " a(g(s,b))a*(a(s)) C s
Jm H(o(t,), to) /to a(s)g?(s,b) Mlin 5)As = 0o. (3.42)
This implies that
sy 1 Falg(sb)a(o(s) ) Ay oo
B T ), et 4

which contradicts (3.17). Therefore, from (3.25) and w?(s) > ¢(s), we have

00 a(s)gﬁ(s,b) : o Oz(s)gA(s, b) )
/t1 alg(s, b))az(g(s))SOJr(S)As < /t1 a(g(s,b))aQ(a(s))w (o(s))As < o0, (3.44)
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which contradicts (3.18). This completes the proof. t

Next we obtain sufficient condition for the equation (1.1) to be oscillatory when con-

dition (Cy) holds.

Lemma 3.9. Assume condition (C3) holds. If x(t) is an eventually positive solution of
equation (1.1) and y(t) > 0, then y(t) satisfies the following inequality

r(t)m(t)y>(t) +y(t) > 0 (3.45)
where -
7(t) :/t @As

for all sufficiently large t > .

Proof. From (3.3), it is clear that r(¢)y®(¢) is nonincreasing on [ty, 0o)r for some o > 0..
Then

r(u)y®(u) < r(s)y(s) for all u > s > t.

Dividing the last inequality by r(u) and integrating over [s, t|t, we obtain

t
1
0 < y(t) < y(s) + r(s)y(s) / A 1> s>t (3.46)
Then we consider the following two cases:
Case(I): y2(¢) > 0. From (3.46), we find
t
1
0<y(t) < u(s) 4 [ s (3.47)
<1
< A — :
< y(s)+r(s)y (5)/8 ) Au (3.48)

which implies (3.45).
Case(II): y2(t) < 0. From (3.46), the condition (Cy) implies that y(¢) is bounded from
above. Letting ¢ — oo in (3.46), we have

0 < r(H)m(t)(y= (1) +y(t)
which gives (3.45). O

Theorem 3.10. Assume that condition (Cs) holds. If

/ (o) | Kt onto(e.)acas = o (3.49)

then every solution of equation (1.1) is oscillatory.
EJQTDE, 2010 No. 61, p. 12



Proof. Suppose to the contrary that x(t) > 0 on [ty, 00)r. Then there exists a point t;
in [tg, 00)r such that x(t) > 0,2(t — 7) > 0 and z(g(¢,€)) > 0 for all £ € [a,b]r, and
for all t € [t;,00)r. From (3.3), we write (r(t)y>(t)) < 0. Therefore r(t)y>(t) > 0 or
r(t)y2(t) < 0 eventually. Since r(t) > 0, we have y2(t) > 0 or y>(t) < 0. Now we
consider the case y*(t) > 0. We see that y(t) > y(t) for some ty € [t;,00)r. Since
limy o m(t) = 0, we find that y(to) > 7(t) for all t € [ta,00)r. Hence y(t) > m(t) for all
t € [ta,00)r. Suppose that y(¢) < 0. Then since (r(t)y>(¢))» < 0 for all t € [ty, 00)r,

r(t)y>(t) < r(t)y>(ta) = —co <0, t € [ta, 00)7. (3.50)
Substituting (3.45) in the above inequality we obtain
y(t) > com(t) for t € [ta, 00)T, (3.51)

or

y(g(t,€)) = com(g(t, §)) for t € [ta, 00)r. (3.52)
Then from equation (1.1), we have
(r(H)y™ (1) + /ab Meogq(t,§)[1 = p(g(t, €)]m(g(t, ) AE < 0. (3.53)
Now multiplying the last inequality by 7(c(¢)) and then integrating, we obtain
w () (t)y> () + y(t) — m(t2)r(t2)y> (t2) — y(t2)
/ / Meoa(s, €)[1 — plg(s, )lm(g(s, ) ACAs < 0.

This implies that

/t w(o(t)) / Meoq(s,€)[1 — plg(s, €))]m(g(s, ) AEAs < m(t2)r(ta)y (b) + y(ta).

This contradicts (3.49) as t — oo. Hence every solution of equation (1.1) is oscillatory.

The proof is now complete. O

4. EXAMPLES
In this section, we present some examples to illustrate our main results when the

conditions (C}) and (Cy) hold.

Example 4.1. Consider the dynamic equation

((x(t) + %x(t — 1)) + /0 x(t — )AL = 0. (4.1)

where r(t) = 1, p(t) =1, =0, b=1 7=1, ¢(t,¢) = 1. By Corollary 3.6,

a
every solution of equation (4.1) is oscillatory.
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Example 4.2. Consider the dynamic equation

1 AA P+l _
Here p(t) = 77,7(t) = 1,7 = La = 1/2,b =1, f(u) = u, M = 1,q(t,§) = t(t 5 and
g(t,&) =t —&. Then by Corollary 3.7, we have
t b
fimsup [ [ Ma(s. )1~ plo(s,€)] AAs
B , t—&+ 1 1
B h?lilfp/ //2 -9 fgrn

t—o0

=  limsup / -A¢
to
= o0.

Therefore every solution of equation (4.2) is oscillatory.

Example 4.3. Consider the dynamic equation

(to(B)(x(t) + p(t)a(t = 7)*)* + / o(t)

t
Here p(t) = 1/2,r(t) = to(t),q(t,&) = @(a(t) — &), and ¢(t,&) = t — &. Since (Cs)

holds, from Theorem 3.10, we have

i [ 7 [ ats. ot naeas = pim [ [ 7o) ot nacas

t—00 t—oo [ o(s)

(0(t) — )zt — E)AE =0, tel[l,00)r (4.3)

t

1
= lim ~As =00

t~>0015

Hence every solution of equation (1.1) is oscillatory.
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