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Abstract. In this paper, by introducing τ −ϕ− mixed monotone operators in ordered Banach spaces, the
existence and uniqueness theorems for the operators are obtained. In the end, the new results are used to
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1 Introduction and preliminaries

Mixed monotone operators are introduced by Dajun Guo and V. Lakshmikantham in [1]
in 1987. Thereafter many authors have investigated these kinds of operators in Banach
spaces and obtained a lot of interesting and important results [2 − 7]. These results are
used extensively in nonlinear differential and integral equations. But in these results,
continuity and compactness are the two basal conditions. These results need to restrict
the operators to be completely continuous, weakly compact or having lower and upper
solutions and so on.

In this paper, by introducing τ − ϕ− mixed monotone operators in ordered Banach
spaces, we modify the methods in [2, 6] to obtain some new existence and uniqueness
theorems of fixed points for τ −ϕ− mixed monotone operators. Finally we apply the main
result in this paper to study the existence of positive solutions to second order equations
with Neumann boundary conditions.

Let E be the Banach space, and θ be a zero element of E. Let P be a cone of E.
We define a partial ordering ≤ with respect to P by x ≤ y if only if y − x ∈ P . A
cone P ⊂ E is called normal if there is a number N > 0, such that θ ≤ x ≤ y, implies
‖ x ‖≤ N ‖ y ‖,∀x, y ∈ E. The least positive number N satisfying the above inequality
is called the normal constant of P . Putting P ◦ = {x ∈ P : x is an interior point of P},
a cone P is said to be solid if its interior P̊ is nonempty. If x ≤ y and x 6= y, we write
x < y; if cone P is a solid and y − x ∈ P ◦, we write x ≪ y. A : P × P −→ P is said
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to be a mixed monotone operator if A(x, y) is increasing in x and decreasing in y, i.e.,
xi, yi(i = 1, 2) ∈ P, x1 ≤ x2, y1 ≥ y2, implies A(x1, y1) ≤ A(x2, y2).

For all x, y ∈ E, the notation x ∼ y means that there exist λ > 0 and µ > 0, such that
λx ≤ y ≤ µx. Clearly, x ∼ y is an equivalence relation. Given h > θ, we denote by Ph the
set Ph = {x ∈ E | x ∼ h}. It is easy to see that Ph ⊂ P is convex for all λ > 0. If P̊ 6= φ

and h ∈ P̊ , it is clear that Ph = P̊ .

Lemma 2.1[8] Let P be a normal cone in a real Banach space E. Suppose that {xn} is a
monotone sequence which has a subsequence {xni

} which converges to a x∗, then {xn} also
converges to x∗, moreover, if {xn} is a monotone increasing sequence, then xn ≤ x∗ (n =
1, 2, 3, · · · ); if {xn} is a monotone decreasing sequence, then xn ≥ x∗ (n = 1, 2, 3, · · · ).

2 Main Results

In this section, we present our main results. To begin with, we give the definition of τ−ϕ−
mixed monotone operator.

Definition 2.1 Let P be a normal cone in a real Banach space E and A : P ×P −→ P

is a mixed monotone operator. We say that A is a τ − ϕ− mixed monotone operator if
there exist two positive-valued functions τ(t), ϕ(t) on interval (a, b) such that

(i) τ : (a, b) −→ (0, 1) is a surjection;

(ii) ϕ(t) > τ(t),∀t ∈ (a, b);

(iii) A(τ(t)x, 1
τ(t)y) ≥ ϕ(t)A(x, y),∀t ∈ (a, b),∀x, y ∈ P .

Then we say A is a τ − ϕ− mixed monotone operator.

Theorem 2.1 Let P be a normal cone in a real Banach space E, and let A : P×P −→ P

be a τ − ϕ− mixed monotone operator. In addition, suppose that there exists h ∈ P \ θ

such that A(h, h) ∈ Ph.Then

(H1) there exist u0, v0 ∈ Phand r ∈ (0, 1) such that rv0 ≤ u0 < v0, u0 ≤ A(u0, v0) ≤
A(v0, u0) ≤ v0;

(H2) operator A has a unique fixed point x∗ in [u0, v0];

(H3) for any initial x0, y0 ∈ Ph, constructing successively the sequence xn = A(xn−1, yn−1), yn =
A(yn−1, xn−1), n = 1, 2, 3 · · · , we have ‖ xn −x∗ ‖−→ 0, and ‖ yn −x∗ ‖−→ 0 as n −→ ∞.

Proof (1) Proof of (H1). Since A(h, h) ∈ Ph, we can choose a sufficiently small number
e0 ∈ (0, 1) such that

e0h ≤ A(h, h) ≤ 1

e0
h.

It follows from (i) that there exists t0 ∈ (a, b) such that τ(t0) = e0, and hence

τ(t0)h ≤ A(h, h) ≤ 1

τ(t0)
h. (2.1)

By (ii), we know that ϕ(t0)
τ(t0) > 1. So we can take a sufficiently large positive integer k such

that

(
ϕ(t0)

τ(t0)
)k ≥ 1

τ(t0)
. (2.2)
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It is clear that

(
τ(t0)

ϕ(t0)
)k ≤ τ(t0). (2.3)

Put u0 = (τ(t0))
kh, v0 = 1

(τ(t0))k h. Evidently, u0, v0 ∈ Ph and u0 = (τ(t0))
2kv0 < v0. Take

any r ∈ (0, (τ(t0))
2k), then r ∈ (0, 1) and u0 ≥ rv0. Construct successively the sequences

un = A(un−1, vn−1), vn = A(vn−1, un−1), n = 1, 2, 3 · · · .

By using the mixed monotone properties of operator A, we have

u1 = A(u0, v0) ≤ A(v0, u0) = v1.

Likewise,

u2 = A(u1, v1) ≤ A(v1, u1) = v2.

In a general way, un ≤ vn, n = 1, 2, 3 · · · .

Furthermore, by using the condition (2.1) and noticing inequality (2.2), we have

u1 =A(u0, v0) = A((τ(t0))
kh,

1

(τ(t0))k
h)

≥ϕ(t0)A((τ(t0))
k−1h,

1

(τ(t0))k−1
h)

≥ϕ2(t0)A((τ(t0))
k−2h,

1

(τ(t0))k−2
h)

≥ · · · ≥ ϕk(t0)A((h, h) ≥ ϕk(t0)τ(t0)h ≥ τk(t0)h = u0.

From condition (iii), we have

A(x, y) = A(τ(t)
1

τ(t)
x,

1

τ(t)
τ(t)y) ≥ ϕ(t)A(

1

τ(t)
x, τ(t)y),∀x, y ∈ P, a < t < b.

and hence

A(
1

τ(t)
x, τ(t)y) ≤ 1

ϕ(t)
A(x, y),∀x, y ∈ P, a < t < b.

Thus we have

v1 =A(v0, u0) = A(
1

(τ(t0))k
h, (τ(t0))

kh)

≤ 1

ϕ(t)
A((τ(t0))

−(k−1)h, (τ(t0))
k−1h)

≤ 1

ϕ2(t0)
A((τ(t0))

−(k−2)h, (τ(t0))
k−2h)

≤ · · · ≤ 1

ϕk(t0)
A((h, h) ≤ 1

ϕk(t0)

1

τ(t0)
h.

An application of (2.3) yields

A(v0, u0) ≤
1

τ(t0)k
h = v0.

Thus we have

u0 ≤ u1 ≤ v1 ≤ v0.

The proof of (H1) is complete.
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(2) Proof of (H2). By induction, it is easy to get that

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0. (2.4)

Let
rn = sup{r > 0 | un ≥ rvn}, n = 1, 2, 3 · · · .

Thus we have un ≥ rnvn, n = 1, 2, 3 · · · , and then

un+1 ≥ un ≥ rnvn ≥ rnvn+1, n = 1, 2, 3 · · · .

Thus we have rn+1 ≥ rn, i.e, rn is increasing with rn ⊂ (0, 1]. Suppose rn −→ r∗ as
n −→ ∞. Then r∗ = 1. Indeed, suppose to the contrary that 0 < r∗ < 1. By (i), there
exist t1 ∈ (a, b) such that τ(t1) = r∗. We distinguish two cases:

Case one: There exists an integer N such that rN = r∗. In this case we know rN = r∗

for all n ≥ N . So for n ≥ N , we have

un+1 = A(un, vn) ≥ A(r∗vn,
1

r∗
un) = A(τ(t1)vn,

1

τ(t1)
un) ≥ ϕ(t1)A(vn, un) = ϕ(t1)vn+1.

By the definition of rn, we get rn+1 = r∗ ≥ ϕ(t1) > τ(t1) = r∗. This is a contradiction.
Case two: For all integer n, rn < r∗.Then we obtain 0 < rn

r∗
< 1. By (i), there exist

sn ∈ (a, b) such that τ(sn) = rn

r∗
. So we have

un+1 =A(un, vn) ≥ A(rnvn,
1

rn
un)

=A(τ(sn)r∗vn,
1

τ(sn)r∗
un) ≥ ϕ(sn)A(r∗vn,

1

r∗
un)

=ϕ(sn)A(τ(t1)vn,
1

τ(t1)
un) ≥ ϕ(sn)ϕ(t1)A(vn, un)

=ϕ(sn)ϕ(t1)vn+1.

By the definition of rn, we have

rn+1 ≥ ϕ(sn)ϕ(t1) > τ(sn)ϕ(t1) =
rn

r∗
ϕ(t1).

Let n −→ ∞, we get r∗ ≥ r∗

r∗
ϕ(t1) > τ(t1) = r∗, which also is a contradiction. Thus

r∗ = 1. For any natural number p we have

θ ≤ un+p − un ≤ vn − un ≤ vn − rnvn = (1 − rn)vn ≤ (1 − rn)v0,

θ ≤ vn − vn+p ≤ vn − un ≤ vn − rnvn = (1 − rn)vn ≤ (1 − rn)v0.

Since P is normal, we have

‖ un+p − un ‖≤ N ‖ (1 − rn)v0 ‖→ 0(n → ∞),

‖ vn+p − vn ‖≤ N ‖ (1 − rn)v0 ‖→ 0(n → ∞).

Here N is the normality constant.
So {un} and {vn} are Cauchy sequences. Because E is complete, by Lemma 2.1, there

exist u∗, v∗ ∈ [u0, v0] such that un → u∗, vn → v∗ as n → ∞. By (2.4), we know that
un ≤ u∗ ≤ v∗ ≤ vn and

θ ≤ v∗ − u∗ ≤ vn − un ≤ (1 − rn)v0.
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Further

‖ v∗ − u∗ ‖≤ N ‖ (1 − rn)v0 ‖→ 0(n → ∞),

we know that u∗ = v∗. Let x∗ := u∗ = v∗, we obtain

un+1 = A(un, vn) ≤ A(x∗, x∗) ≤ A(vn, un) = vn+1.

Let n → ∞ and we get x∗ = A(x∗, x∗). That is, A has a fixed point x∗in [u0, v0].

In the following, we prove that x∗ is the unique fixed point of A in Ph. In fact,
suppose x is another fixed point of A in Ph. Since x∗, x ∈ Ph, there exist positive numbers
µ1, µ2, λ1, λ2 > 0 such that

µ1h ≤ x∗ ≤ λ1h, µ2h ≤ x ≤ λ2h.

Then we obtain

x ≥ µ2h =
µ2

λ1
λ1h ≥ µ2

λ1
x∗.

Let e1 = sup{e > 0 | x ≥ ex∗}, n = 1, 2, 3 · · · . Evidently, 0 < e1 < ∞. Furthermore, we
can prove e1 ≥ 1. If 0 < e1 < 1. From (i), there exists t2 ∈ (a, b) such that τ(t2) = e1.
Then

x = A(x, x) ≥ A(e1x
∗,

1

e1
x∗) = A(τ(t2)x

∗,
1

τ(t2)
x∗) ≥ ϕ(t2)A(x∗, x∗) = ϕ(t2)x

∗.

Since ϕ(t2) > τ(t2) = e1, this contradicts the definition of e1. Hence e1 ≥ 1, and then we
get x ≥ e1x

∗ ≥ x∗. Similarly we can prove x∗ ≥ x; thus x∗ = x. Therefore, A has a unique
fixed point x∗in Ph. Note that[u0, v0] ⊂ Ph, so A has a unique fixed point x∗ in [u0, v0].

(3) Proof of (H3). For any initial x0, y0 ∈ Ph, we can choose a small number e2 ∈ (0, 1)
such that

e2h ≤ A(h, h) ≤ 1

e2
h.

It also follows from (1) that there exists t3 ∈ (a, b) such that τ(t3) = e2, and hence

τ(t3)h ≤ A(h, h) ≤ 1

τ(t3)
h.

we can take a positive integer m such that

(
ϕ(t3)

τ(t3)
)m ≥ 1

τ(t3)
.

Put u0 = (τ(t3))
mh, v0 = 1

(τ(t3))m h. Evidently, u0, v0 ∈ Ph and u0 < x0 < v0. Let

un = A(un−1, vn−1), vn = A(vn−1, un−1), n = 1, 2, 3 · · · .

By using the mixed monotone properties of operator A , we get

un ≤ xn ≤ vn, un ≤ yn ≤ vn, n = 1, 2, 3 · · · .

Taking into account that P is normal, we immediately conclude that

lim
n→+∞

xn = lim
n→+∞

yn = x∗.

The proof of Theorem 2.1 is complete.
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Remark 2.1: Let P be a solid cone in a real Banach space E. If we suppose that
operator A : P ◦ × P ◦ −→ P ◦, then A(h, h) ∈ Ph is automatically satisfied.

This proves the following corollary.

Corollary 2.1 Let P be a solid cone in a real Banach space E. Suppose A : P ◦×P ◦ −→
P ◦ be a τ − ϕ− mixed monotone operator.Then A has a unique fixed point x∗ in P ◦.

Remark 2.2: When τ(t) = t, t ∈ (0, 1) and ϕ(t) = t(1 + v(t)) or tα(t) with α(t) ∈
(0, 1), v(t) > 0 for t ∈ (0, 1). Theorem 2.1, Corollary 2.1 also hold. The corresponding
results in [2,3,4,6] turn out to be special cases of our main results, see [2, Theorem 2.1].

3 Applications

In this section, we use Theorem 2.1 to study the existence of positive solutions to second
order singular equations with Neumann boundary conditions.

{

u′′(t) + β2u(t) = f(t, u(t), u(t)), 0 < t < 1,
u′(0) = u′(1) = 0.

(3.1)

Here β ∈ (0, π
2 ) is a constant and the nonlinearity f : C([0, 1]×[0,+∞)×[0,+∞), [0,+∞)).

Let E = C[0, 1] be a Banach space with maximum norm ‖ · ‖, P = {u ∈ E | u(t) ≥
0,∀t ∈ [0, 1]}, then P is a normal solid cone in Banach space E.

Define an operator A : P × P −→ E

A(u, v) =

∫ 1

0
G(t, s)f(s, u(s), v(s))ds, t ∈ [0, 1].

Where

G(t, s) =

{

cos βs cos β(1−t)
β cos β

, 0 ≤ s ≤ t ≤ 1,
cos βt cos β(1−s)

β sinβ
, 0 ≤ t ≤ s ≤ 1.

It is to see that G(t, s) > 0 for all m ∈ (0, π
2 ) and

∫ 1
0 G(t, s))ds = 1

β2 .

Theorem 3.1 Assume that

(H1) f(t, u, v) is increasing in u for fixed (t, v); f is decreasing in u for fixed (t, u).

(H2) there exist two positive-valued functions τ(t), ϕ(t) on interval (0, 1) such that

τ : (a, b) −→ (0, 1) is a surjection, ϕ(t) > τ(t),∀t ∈ (0, 1) which satisfy

f(t, τ(λ)u,
1

τ(λ)
v) ≥ ϕ(λ)f(t, u, v),∀t, λ ∈ (0, 1), u, v ∈ P.

(H3) there exist two constants M1,M2 > 0 and h ∈ P \ 0 such that

M1h(t) ≤ f(t, h(t), h(t))ds ≤ M2h(t), t ∈ (0, 1).

Then equation (3.1) has a unique positive solution. Moreover,for any initial x0, y0 ∈
Ph, constructing successively the sequence xn = A(xn−1, yn−1), yn = A(yn−1, xn−1), n =
1, 2, 3 · · · , we have ‖ xn − x∗ ‖−→ 0, and ‖ yn − x∗ ‖−→ 0as n −→ ∞.

Proof It is easy to see that u is a solution of problem (3.1) if and only if u = A(u, u). Note
that since f(t, u(t), u(t)) ≥ 0, we have A(t, u(t), u(t)) ≥ 0 for t ∈ (0, 1). It is obviously to
know that A : P × P −→ P be a mixed monotone operator. For any u, v ∈ P, 0 < t < 1,
by the condition (H2), we have
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A(τ(λ)u,
1

τ(λ)
v) ≥ ϕ(λ)A(u, v), ∀u, v ∈ P, 0 < t < 1.

So operatorA is a τ − ϕ− mixed monotone operator. Further, from (H3) we know that
there exist two constants M1,M2 > 0 and h ∈ P \ 0 such that

M1h(t) ≤
∫ 1

0
G(t, s)f(s, h(s), h(s))ds ≤ M2h(t), t ∈ (0, 1).

So the conditions of Theorem 2.1 hold, Theorem 3.1 is proved.
Remark 3.1: There exist many functions which satisfy the conditions of Theorem 3.1.
Example 3.1:We give an example to illustrate Theorem 3.1. Consider the following

Neumann boundary problems

{

u′′(t) + β2u(t) =
√

1 + u(t) + 1
4
√

u(t)
, 0 < t < 1,

u′(0) = u′(1) = 0.
(3.2)

It is easy to show that Neumann boundary problems satisfy the conditions of Theorem
3.1. So equation (3.2) has a unique positive solution.
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