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1 Introduction

In this paper, we consider the existence and uniqueness of solutions of the following impulsive problems:

CDiu(t) = f(t,u(t),n—1<q<n,teJ;=(tti),

u9(0) =uj(j =0,1,...,n—1),

where D7 is the Caputo fractional derivative, f € C(J x R, R), I, € C(R,R) (j = 0,1,...,n — 1),
J\{t17t27 s 7tp}a Au(tk) = U(tg) - U(t;),
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where u(t;) and u(t;) denote the right and the left limit of u(t) at t = t(k = 1,2,...,p), respectively.
Au(t) (j =1,2,...,n — 1) have a similar meaning for v (t) (j =1,2,...,n —1).

Recently, the subject of fractional differential equations has emerged as an important area of investi-
gation. Indeed, we can find numerous applications in electrochemistry, control, electromagnetic, porous
media, etc.[1-4]. Therefore, they have received much attention. For the most recent works for the ex-
istence and uniqueness of solutions of the initial and boundary value problems for nonlinear fractional
differential equations, we mention [5-16, 25-30]. But, as far as we know, there have been few papers which
have considered the multi-order fractional differential equations can be found in [18-24].

The organization of this paper is as follows: In Section 2, we give some basic definitions and properties.
In Section 3, will be devoted to existence and uniqueness results for nonlinear impulsive differential

equations of fractional order.

2 Preliminaries

Let us set Jo = [0,t1], J1 = (t1,t2], ..., Jp—1 = (tp—1,p], Jp = (tp, 1] and introduce the spaces:
PC(J,R)={u:J — R|ue C(Jx),k=0,1,...,p, and u(t]) exist ,k = 1,2,...,p} with the norm
Jull = sup,e s u()], and

PC" Y J,R)={u:J— R|ueC" 1 (J),k=0,1,...,p, and ul9 (t])

exist ,j=0,1,...,n—1,k=1,2,...,p},

with the norm ||lul| pen-—1 = max{|jul|,|«]],...,[[uV|}. Obviously, PC(J,R) and PC" '(J,R) are

Banach spaces.

Definition 2.1. A function v € PC"~1(J, R) with its Caputo derivative of order ¢ existing on J is a
solution of (1) if it satisfies (1).

Theorem 2.1 ([17]). Let E be a Banach space. Assume that 2 is an open bounded subset of E with
6 € Qandlet T:Q — E be a completely continuous operator such that ||Tu|| < |lul|,Yu € Q. Then T
has a fixed point in €.

Theorem 2.2 ([17]). Let E be a Banach space. Assume that T': E — E is a completely continuous
operator and the set V = {u € E | v = pTu,0 < o < 1} is bounded. Then T has a fixed point in E.

Lemma 2.1 ([1,9]). For ¢ > 0, the general solution of the fractional differential equation ¢ Du(t) = 0
is given by

u(t):C’0+C’1t+C’2t2+~~~+C’n,1t"’1,C’iGR,izO,l,...,n—l ,n:[q]+1,
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where [¢] denotes the integer part of the real number q.

In view of Lemma 2.1, it follows that
I19°D0(t) = u(t) + Co 4 Cut + Cot® + -+ + Cr_yt" 1, (2)

for some C; € R,i=0,1,...,n—1,n=[q] + 1.

Lemma 2.2. For a given y € C[0, 1], the unique solution of the following impulsive boundary value

problem
“Diu(t)=yt),n—1<q<nte ;= (ttis],
AuD () = Lp(ut )G =0,1,...,n—1),k=1,2,...,p, (3)
u@D(0) = u;(j =0,1,...,n— 1),
is given by
1 /t ] wi
_ f—sq Sd8+ ‘7]1&], tEJ,
F(q 0 ) Z 0
—1 t*tk 123 L
(t — )1 Ly(s)d L it ]
F()/ $) S+ZFJ+1 )\/tk (t —s) y(s)ds
R ' (4)
+Zlkzl (- t) + t’“*t)] /tl (t: — 5)7 "1y ds+z (ute))
j=0 i=1 LG+ 1)(g— ) tio1
n—1 kfl
t*tk kftz)] ]—
t k=12 ...
+j:0; j“rl) ZF]—}—l s € Jg, ,2, P

Proof. Let u be a solution of (3). Then, by (2), we have

n—1 t n—1
. 1 .
u(t) = ]qy(t) — E CjJrlt] = / (t - S)qfly(s)ds — E CjJrlt], te J(), (5)
=0 I'(q) Jo =0
for some c1,ca,...,c, € R. Furthermore
’ 1 ' 2 2 2
4) = —— | (t—8)"%y(s)ds — ca — 2c3t — 3eat® — - — (n— D)et™ 2, t € Jy,
u'(t) F(qfl)/o( $)17%y(s)ds — ca — 2c3 4 (n—1)c € Jo
" 1 ! 3 3
t) = ——— t—s)1™ ds — 2c3 — t—---—(n—1 —2)e " t
u’(t) F((1_2)/0( $)1"y(s)ds — 2¢3 — 6ey (n=1)(n—2)c , teJo,
(n—1) 1 t
() = t—s) " ds—(n—1Dle,, t
u ( ) F(q —n+ 1) /O ( S) y(S) S (n ) Cn, € JO;

if t € J1, then

u(t)ﬁ/(tsq ! dszd]Jrl t—t))

t1
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u'(t) = ﬁ /t1 (t —5)7y(s)ds — dp — 2d3(t — t1) — 3da(t — t1)> — - -

u’(t) = !

= (n—1)dp(t —t1)" >
Tq—2) /tl (t — 5)73y(s)ds — 2ds — 6dy(t —t1) — - — (n— 1)(n — 2)d, (t —t1)" 3,

3

n—1 _ 1 ‘ q—n
umI(t) = TR /t1 (t— )T "y(s)ds — (n — 1)ld,,

for some dj,ds,...,d, € R. Thus we have

- 1 h _ _
u(ty) = @/o (t1 — 8)1 y(s)ds — c1 — caty — c3t3 — cats — - — T L, w(t]) = —dy,
t1
u'(t]) = 1 (t1 — 8)7 2y(s)ds — co — 2c3t1 — 3eath —
1 T(q—1) J 1 ) 2 3l1 4ty

—(n— 1)cnt71’72, u’(tf) = —ds,

t1
= TQ)/O (t1 — 8)973y(s)ds — 2c3 — 6caty — -+ — (n— 1)(n — 2)eaty 0" (t]) = —2d3,

u i) = m / (41— 51 y()ds — (0 — Dlen, u™ D) = —(n — 1)ldy,
(

In view of Au(ty) = u(t]) —u(t]) = Ioa(u(ty)), Au'(t) = o' (t]) —u/'(t7) = Lia(u(tr)), Du(t) =
u"(t5) —uw"(t7) = Loy (u(ty)) , -y Du D (t) = u=D () — =D (t]7) = L_1.1(u(t1)), we have

I
*dl - m/ (tl — s)qfly(s)ds — C1 — Cgtl — Cgt% — C4t% — e — Cnt?_l —+ Ioﬁl(u(tl)),
0
1 h
—dy = m/ (t1 — )1 ?y(s)ds — cg — 2c3ty — 3eaty — - — (0 — Dent? ™2 + I a1 (u(ty))
- 0
1 h
—2ds3 = m / (t1 — 8)13y(s)ds — 2c3 — 6caty — -+ — (0 — 1)(n — 2)ent} > + Lo (u(th)),
- 0
1 h
—(n—-Dld, = ——— t1 —8)9"ds — (n— 1)l + Lo .
(n—1) F(q—n—i-l)/o (t1 — )T "ds — (n — D)ley + Ln—11(u(ty))
Consequently
W= ) Ly(s)ds 1 St " 1
ult) = —— | (t—35)T" y(s)ds+ —/ t; — )47 ds
@ Js 2 TG+ Jy T
n—1
(t—t1)’
+ Z - Z Cj+1t teJi
= rGG+1) =
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Similarly, we get

u(t) = ﬁ/ﬁk(tsq ! dHZ”f;t’“ )/k (tk = 5)777 " y(s)ds

tp—1
n—1k— 1 n—1 ;
t—tk tk_t)] / —j-1 (t —tx)’
+ t; — )77 y(s)ds + —— 1 i (u(ty
—1k—1 (£ — te) ) n—1 _
+ZZ ) g+1) Lia(u(ts) = > cjt! L€ Jy, k=1,2,....p. (6)
7=0 =1 7=0

By u)(0) = u;, we have
Cip1 = ——2
TG+

It follows that the solution given by (4) satisfies (3). This completes the proof.

3 Main Results

Define an operator T': PC(J, R) — PC(J, R) as

ru) = /t:(t—s)q‘lf(s,U(s))ds
+Z G f;t’“ 7 /tt (tr — 8)7971 f(s,u(s))ds
Z_;kZ t{f’;l o /t;il(ti = )19 £ (s, u(s))ds
+n_1mj+1tj, ted,, k=1,2,...,p. (7)
=0

where mj11 = —¢j11(j =0,1,...,n—1). Using Lemma 2.2 with y(¢) = f(¢, u(t)), problem (1) reduces to
a fixed point problem u = Tu, where T is given by (7). Thus problem (1) has a solution if the operator
T has a fixed point.

Theorem 3.1. Let lim,_,o——=~ f(t W — =0, limuﬁow =0,(j=0,1,...,n — 1) then problem (1) has at

least one solution.

Proof. Firstly, we show that the operator T : PC(J, R) — PC(J, R) is completely continuous. Note
that T is continuous in view of continuity of f and I ;. Let @ C PC(J, R) be bounded. Then, there exist
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positive constants L; > 0(i = 1,2,...,n+1) such that | f(¢,u)| < L1, |Ijx(u)| < Ljt2,(j =0,1,...

Vu € Q. Thus, Yu € Q, we have

jmy| < =
TETG A+
Therefore
1 t 1
Tu)] = g [ (6= 97 s u)lds
['(q) ty
+n—1 (t*tk)] /tk' (t )qf‘jfl'f( ( ))|d
T i1\ — ) k— S s,u(s))|ds
S PO+ —=9) i,
n—1k—1 X n
[(t —tg) + tk—t)]J/w o
* (t; — 5)79 7 £ (s, u(s))|ds
j;); F '7 +1 -7) ti—1
n—1 n—1k— 1 .
(t ) )+ ti)]J
- unl+ > |1
j= F( ) 7=0 i=1 F]+1)
< +Z tftk YLy Jr”i”czl (t— 1) + (te — )V Ly
< F(q+1 L(j+DI(g—7+1) pat TG+ 1)
+n71k . [(t_tk)‘f'(tk_tz)]]l/l +n 1( _tk Z
J=0 i=1 Flg—7+DIG+1) = Fj+1 F]+1
- P+ FG+1DI(g—j+1) T(j+1)
ny n—1 n—1
(p—1L Lito u;
+ + ,
which implies that
n—1
(p—1)Ly
Tul < + .

On the other hand, for any t € Ji, 0 < k < p , we have

|T'u,’(t)| = ﬁ/t(t_s)q—2|f(s’u(s))|d8
+joFUF@—jLL1“k 191 (s, u(s))ld
n—1k— 1 t—tk tk_ti)]j_l t; ' i
! =0 i=1 I'(q —J) /ti1 (t; — ) |f(s,u(s))|ds
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= (t—tw)? Y S [(t —te) + (s —ta) " ults = Uy
+ 3 s+ 35 o sttt + 3
L1 n—1 L1 n—1 (p B 1)L1 n—1 (p . 1)L1
S T LT D TS TG T T+ )
n—1 I n—1

T g ok

Hence, for t1,to € Ji with t; < t2, 0 < k < p, we have
to _
|(Tu)(t2) — (Tw)(t1)] < / |(Tw)'(s)lds < L(tz — t1).
t1
This implies that T is equicontinuous on all the subintervals Jx, & = 0,1,...,p. Thus, by Arzela-
Ascoli Theorem, it follows that T : PC(J,R) — PC(J,R) is completely continuous. Now, in view

f(t—L’lu) =0, 1imu_,0w =0 (j =0,1,...,n — 1), there exists a constant > 0 such that

of hmu_,o
£t w)| < dul, |Ljk(u)| < djsalul (=0,1,...,n—1) for 0 < |u| <, where §; >0 =1,2,...,n+1)

satisfy

o1 0j+2 = ( a+2 = (p—1)é
T(g+1) +ng+1)r( it ; ]+1 JZ:;F(quJrl)F(jnLl)
Zl"j-ﬁ-l j;)r(j+1)_ (9)

Define Q = {u € PC(J,R) | ||u|| < r} and take u € PC(J, R) such that |lu|| = r so that u € 9Q. Then,

by the process used to obtain (8), we have

1
+qu j—}—l j+1 ZI‘]+1 +]ZOF _’_1}H H (0)

which implies that ||[Tu| < |Jull, v € 0. Therefore, by Theorem 2.1, the operator T has at least one

fixed point, which implies that (1) has at least one solution u € €.

Theorem 3.2. Assume that
(H,) there exist positive constants L;(¢ = 1,2,...,n + 1) such that |f(¢,u)| < L1, |Ljr(w)| < Ljt2,(j =
0,1,...,n—1)fort € J,u € Rand k =1,2,...,p. Then problem (1) has at least one solution.

Proof. As shown in Theorem 3.1, the operator T : PC(J,R) — PC(J, R) is completely continuous.
Now, we show the set V = {u € PC(J,R)lu = pTu,0 < p < 1} is bounded. Let u € V, then
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u = pAu,0 < u < 1. For any t € J, we have

u(t) = —&i/@ASV”f@w@D%

L'(q) J,
= p(t — tk)j " q—j—1

+Jz; G107 /tm(tk — 5)179 7 f (s, u(s))ds
n—1k—1

pl(t —tn) + (e — ) [ a1 £ u(s))ds
o I(j +DI(g - J) /t (b = )77 (s, uls))d

7j=0 i=1 i1
n—llj/(t—tk J n_lk_lﬂ[(t—tk)-i-(tk )

+ JZ:; TG +1) Ik (u(te)) + JZZ:O ; TG0 a(u(ty)

+n7 umj+1t3, (11)
7=0

where mjy1 = —¢j+1(j =0,1,...,n —1). Combining (H;) and (11), we obtain

lu(®)] = |T“(t)
< Wtfsqlusu<m¢
= (t —tr) " q—j-1
+;;FGIﬁﬁ_fﬂﬂ;f%—@ (s,
n—1k—1

[(t =) + (ts — )} [* a1 (s uls) lds
3 r@+1ﬁ@_j)tlluz o315, u(s))ld

7=0 =1
n—1 n—1k— 1 : n—1
(t—ty)’ — )]
+ L (u(ti) + Y Z L (u(t)| + D Imyal
j=0 T(j+1) j=0 i=1 ]+1) =0
n—1
(p—1)Ls
< ~ 7
- Fq+1 ZF]+1 (¢—j+1) ZOF(J'+1)

+2
+Zl" —j+1 j+1 ijj-i-l ij-i-l

Thus, for any ¢ € J, it follows that

n—1
ful| < Z +Z(*71)L
- Fq+1 I‘j—i—l —-Jj+1) = I'(j+1)

(p +2
+Zl"q—j+1 I'(j+1) Zl"jj—i—l ZF]+1

So, the set V is bounded. Therefore, by the conclusion of Theorem 2.2, the operator T has at least one

fixed point. This implies that (1) has at least one solution.

Theorem 3.3. Assume that
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(Hz) there exist positive constants K; (i = 1,2,...,n + 1) such that |f(t,u) — f(t,v)| < Ki|lu — v,
|Lik(w) — I x(v)] < Kjpolu—v|, (j=0,1,...,n—1) fort € Jyu,v € Rand k =1,2,...,p. Then problem

(1) has a unique solution if

n—1 n—1
L L1 (p—l)Ll
A= st Ly
I(g+1) JZOFijl)F( —Jj+1) ;F(ijl)
(p— Ljio
. 12
JFZ1"q j+1 j+1 ij-i-l (12)

Proof. For u,v € C(J), we have

@) - @0l < s [ - (o) - S ot

+ e (e ke = s
+;; 28 ™ s () = s s
+; Lt futtn)) — Lis(olon)
+_k_ Ut 2B utt) — Liaottw))

= q+1 ZF]+1 j+1)+g%
+Zr y+1 g+1 ZF ]H o=l

< Alu—ol.

where A is given by (12). Thus, ||Tu—Tv|| < Allu—v|. As A < 1, therefore, T is a contraction operator.

Hence, by the contraction mapping principle, problem (1) has a unique solution.
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