
Page 1 of 17 
 

Research Article 
 

Detecting the temporal structure of sound sequences in newborn infants 
 

Gábor P. Háden1, Henkjan Honing2,3, Miklós Török4, István Winkler1,5 

 
1 Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, 

Hungarian Academy of Sciences, H-1117 Budapest, Magyar Tudósok körútja 2, Hungary 
2 Institute for Logic, Language and Computation, University of Amsterdam, 1098 XH Amsterdam, 

Science Park 107, The Netherlands 
3 Amsterdam Brain and Cognition, 1018 WS Amsterdam, Nieuwe Achtergracht 129, The 

Netherlands 
4 Department of Obstetrics-Gynaecology and Perinatal Intensive Care Unit, Military Hospital, H-

1062 Budapest, Podmaniczky u. 111, Hungary 
5 Institute of Psychology, University of Szeged, H-6722 Szeged, Egyetem u. 2, Hungary 

 

Author email addresses: Gábor P. Háden, haden.gabor@ttk.mta.hu; Henkjan Honing, 

honing@uva.nl; Miklós Török, miklostorok@vipmail.hu; István Winkler, 

winkler.istvan@ttk.mta.hu 

 

Corresponding author: Gábor P. Háden 

Mailing address: 

Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, 

Hungarian Academy of Sciences 

H-1519 Budapest, P.O.Box 286. 

Phone: +36 1 382 6808 

Fax: +36 1 3826295 

E-mail: haden.gabor@ttk.mta.hu 

 

 

Author contributions: GPH, HH, and IW designed the experiment, GPH and MT oversaw the data 
collection, GPH analyzed the data, GPH, HH, MT, and IW wrote the paper 
The authors declare no conflict of interests. 
 

*Manuscript
Click here to view linked References

http://ees.elsevier.com/intpsy/viewRCResults.aspx?pdf=1&docID=3619&rev=2&fileID=104179&msid={2A739BAF-3E4F-4145-A03B-50DD3886F30B}


Page 2 of 17 
 

Abstract 

Most high-level auditory functions require one to detect the onset and offset of sound sequences as 

well as registering the rate at which sounds are presented within the sound trains. By recording 

event-related brain potentials to onsets and offsets of tone trains as well as to changes in the 

presentation rate, we tested whether these fundamental auditory capabilities are functional at birth. 

Each of these events elicited significant event-related potential components in sleeping healthy 

neonates. The data thus demonstrate that the newborn brain is sensitive to these acoustic features 

suggesting that infants are geared towards the temporal aspects of segregating sound sources, 

speech and music perception already at birth. 

Keywords: event related potentials, development, auditory processing, presentation rate, onset, 

offset 

Abbreviations (1st page footnote) 

ANOVA Analysis of variance 

EEG Electroencephalogram 

ERP Event-related potential 

IOI Inter-onset interval 

MMN Mismatch negativity 
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Introduction 

Extracting temporal regularities from sound sequences and detecting their violations are 

fundamental capabilities for correctly perceiving objects in the acoustic environment (Griffiths & 

Warren, 2004; Winkler et al., 2009a), including interpreting speech and music (Honing, 2013; Patel, 

2008) and also forms the basis of  synchronized communication with others (Jaffe et al., 2001, 

Jungers et al., 2002). Speech dynamics provide information about the emotional state and intents of 

the speaker, structure information within and between sentences and allow marking agreement and 

turn taking (O’Connell and Kowal, 2008). In music, temporal information defines beat, metrical 

structure, and tempo, allows the extraction of expressive timing in a performance, helps 

coordination between players, and conveys emotions (Honing, 2013). Because of its fundamental 

nature, one may assume that this capability appears early during infancy. The current study tested in 

newborn infants the detection of the three most basic temporal features of sound sequences: onset, 

presentation rate change, and offset. 

Behavioral studies testing the processing of temporal features of sound sequences found that 

2-month old infants detect 15% tempo accelerations in isochronous sequences at the base rate of 

600 ms inter-onset interval (IOI), but not at faster or slower IOIs (Baruch and Drake, 1997). They 

also coordinate movements with the tempo of external sounds (Bobin-Bègue et al., 2006). By 6 

months, infants form long-term memories of tempo (Trainor et al., 2004) and by 9 months they can 

distinguish between happy and sad music (Flom et al., 2008). The sensitivity to temporal features of 

the stimulation also proposed to be an important predictor of later performance in tests of verbal 

development in young infants (Benasich & Tallal, 2002; Chonchaiya et al., 2013) though the 

mechanisms underlying these effects are unclear (Protopapas, 2014). Much less is known about 

auditory temporal processing in newborns. Previous studies showed that neonates segregate 

interleaved tonal sequences by pitch (Winkler et al., 2003), prefer infant-directed to adult-directed 

speech and singing (Cooper and Aslin, 1990; Masataka, 1999), and discriminate languages based on 

rhythmic class (Nazzi et al., 1998; Ramus et al., 2000; Nazzi and Ramus, 2003). These capabilities 
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probably involve detecting auditory temporal cues. 

In neonates, sound processing can be tested by measuring event-related potentials (ERP) 

elicited by acoustic events. Two parallel event detector systems have been described in adults 

(Näätänen, 1990; Näätänen et al., 2011): one sensitive to sudden changes in sound energy and 

another triggered by violations of some regular feature of a sound sequence. The former is based on 

adaptation/refractoriness of afferent neurons (in adults, the N1 ERP response; Näätänen & Picton, 

1987; May & Tiitinen, 2010), the latter probably on prediction errors in the brain (the MMN 

component; Näätänen et al., 1987; Garrido et al., 2009; Winkler, 2007). Although no true equivalent 

of either of these adult ERP responses have been obtained in newborn infants, neonatal ERP 

responses to large energy changes and violations of simple acoustic regularities have been described 

(Alho et al., 1990; for a review, see Kushnerenko et al., 2013). Previous ERP studies testing 

temporal features of sound sequences in young infants showed that occasional shortenings of a 

regular 300 ms long pre-stimulus interval to 100 ms is detected at 2 months of age (Otte et al., 

2013; for similar results in 10-month olds, see Brannon et al., 2004, 2008) and that newborns can 

distinguish between the downbeat and other positions within a rhythmic sequence (Winkler et al., 

2009). 

Thus, whereas we know that young infants use temporal cues while making complex 

linguistic and musical discriminations, the developmental origins of the underlying processing 

capabilities have not yet been established. Here we assess the developmental origins of processing 

the temporal structure of sound sequences by testing whether the neonate brain is sensitive to the 

onset and offset of sound trains that roughly estimate the structure of sentences or short musical 

phrases as well as to presentation rate change within them. To this end we compare responses 

elicited by significant events (onset and rate change) in our sound sequences to events that are 

physically the same but appear in a different context. We assume that the onset of the train elicits a 

response however if the rate change elicits a response it signals that the change was indeed detected. 

Finally if we see a response at the offset of the train in a position where the continuation of the train 
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could be expected we can assume that the offset itself was detected. 

 

Methods 

ERPs were recorded from 30 (16 male) healthy, full-term newborn infants during day 1-3 

postpartum. The mean gestational age was 39.7 weeks (SD=1.00), birth weight 3450 g 

(SD=372.46), and the average Apgar score 9/9.8 (SD=0.52/0.48). An additional 7 (2 male) 

participants were recorded, but discarded due to excessive electrical artifacts (<100 artefact free 

epochs per condition). Informed consent was obtained from one or both parents. The mother of the 

infant could opt to be present during the recording. The study was conducted in full accordance 

with the World Medical Association Declaration of Helsinki and all applicable national laws and it 

was approved by the Medical Research Council – Committee of Scientific and Research Ethics 

(ETT-TUKEB), Hungary. The experiment was carried out in a dedicated experimental room at the 

Department of Obstetrics-Gynaecology and Perinatal Intensive Care Unit, Military Hospital, 

Budapest, Hungary. 

Trains of complex tones (Figure 1) uniform within but varying in pitch (F0) across trains (8 

different pitches taken from the C major scale: C3, D3, E3, F3, G3, A3, B3, and C4, viz. 130.80, 

147.15, 163.50, 173.96, 196.20, 217.13, 245.25, and 261.60 Hz, respectively) were delivered to the 

infants at ~65dBSPL. Each tone consisted of the F0 and its first five harmonics, the spectral power of 

the higher harmonics being set at 1:2, 1:3, 1:4, 1:5, and 1:6, with respect to that of the F0 

component. Tone duration was 50 ms, including 5 ms rise and 5 ms fall times (raised cosine ramps). 

170 trains were presented in two stimulus blocks. For each train, a pitch was selected randomly 

(with equal probability; no pitch repetition allowed). Trains consisted of 8-24 (randomly selected, 

equal probability) tone repetitions and a silent interval. The N element trains were split into two 

parts: the first part consisting of N/2 (rounded down) + 0/1 (random) elements, the second part 

consisting of N-n(first part) elements. Tones in the first part of the train were presented at the “slow” 

rate (average IOI=200 ms, 150 ms offset to onset), and in the second part at the “fast” rate (average 
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IOI=100 ms; 50 ms offset to onset), followed by a silent interval (average IOI 1050 ms, 1000 ms 

offset to onset). All time intervals were taken from normal distributions with a standard deviation of 

5%. The amount of jitter is below the adult JND for tempo discrimination (Quené, 2007; Grondin et 

al., 2011) and was chosen to dampen steady state responses arising from the fast stimulation. The 

length of individual trains was about 1.2-3.6 seconds. Sounds were presented binaurally using the 

E-Prime stimulus presentation software (Psychology Software Tools, Inc., Pittsburgh, PA, USA) via 

ER-1 headphones (Etymotic Research Inc., Elk Grove Village, IL, USA) connected via sound tubes 

to self-adhesive ear-couplers (Natus Medical Inc., San Carlos, CA, USA) placed over the infants’ 

ears. 

 

[Insert Figure 1. about here] 

 

EEG was recorded with Ag/AgCl electrodes attached to the F3, Fz, F4, C3, Cz, and C4 

locations (international 10-20 system) using a direct-coupled amplifier (V-Amp, Brain Products 

GmbH., Munich, Germany) at 24-bit resolution and a sampling rate of 250 Hz or 1000 Hz (1000 Hz 

sampling rate was used for 16 participants due to experimenter error, these recordings were off-line 

down-sampled to 250 Hz). The reference and ground electrodes were attached to the nose and the 

forehead respectively. Signals were off-line filtered between 1-30 Hz and epochs from -100 to 

500 ms with respect to the event onset (tone or expected tone, see next paragraph) were extracted 

for each sound. The 100 ms pre-stimulus interval served as the baseline for amplitude 

measurements and illustrations. Epochs with an absolute voltage change outside the 0.1-100 µV 

range throughout the epoch were rejected from the analyses as artefacts. Data from infants with less 

than 100 artefact-free epochs per condition were dropped from the analyses. The mean number of 

epochs and per condition is given in Table 1. 

Responses were measures at the “train onset” (the first element of the train), at “presentation 

rate change” (the first element after a short, 100 ms IOI interval in the train), and at “expected tone” 
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(100 ms after train offset; see Figure 1 b.). Responses were also measured for ”slow control” tones, 

tones between train onset and the rate change but separated from both by at least 2 elements; and 

“fast control” tones, tones between rate change and train offset but separated from both by at least 2 

elements. (e.g. in a 20 element train where the rate change occurs at the 11th element, elements 4-8 

are slow controls whereas elements 14-17 are fast controls ). Responses to train onset were 

compared to slow control responses whereas rate change and train offset responses were compared 

to fast control responses. Average response amplitudes were measured from separate time windows 

for each type of the three events. The latencies of the two highest-amplitude (early and late) 

difference peaks were determined from the mean group response averaged over all six electrode 

locations. The corresponding window was defined as the continuous segment of data points on both 

sides of the respective peak within which the difference amplitude exceeded 30% of the 

corresponding peak amplitude (see Table 1. and Figure 2. for the latency ranges). This method 

allows comparison between responses to event types and their respective controls when the 

latencies of peaks vary or no clear peaks are visible. 

Effects were tested with separate dependent-measures analyses of variance (ANOVA) of the 

structure Stimulus type [Event vs. Control] × Frontality [F vs. C electrode line] × Laterality [left vs. 

midline vs. right] for the three timing events (Train Onset, Presentation Rate Change, Expected 

tone) and the two (early and late) measurement windows. Greenhouse-Geisser correction ε factors 

(where appropriate) and the partial η2 effect sizes are given in Table 1. 

 

Results 

ERP responses for train onsets, presentation rate changes, and expected tone (train offsets) are 

shown together with the corresponding control responses and difference waveforms on Figure 2a, b, 

and c, respectively. Each of these events elicited significantly different ERP responses in both time 

windows (except for the late window of the presentation rate change) compared with the 

corresponding control event (see Table 1). 
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The control responses show a much adapted response, hardly displaying any discernible 

waveforms. In contrast, all three stimulus train events elicited unique waveforms with detectable 

component structure. Thus the significant interactions with the scalp-distribution factors (frontality 

and laterality) mainly represent the scalp distribution of the ERPs elicited by the stimulus train 

events. Train onsets elicited a large early negative followed by a positive response with 

frontocentral maxima. This pattern is typical for large spectral energy changes (Kushnerenko et al., 

2007), as is the case for sounds appearing after a relatively long silent interval having a different 

pitch from that appearing in the previous train. The laterality effect found in the late latency time 

window was caused by the left deviant response being slightly smaller than the central deviant 

response (Tukey HSD, df=58, p<0.01). Presentation-rate changes elicited only an early 

frontocentral negative response. Finally, the response synchronized to the expected onset of the tone 

that would have continued the train in an isochronous manner shows an early broadly distributed 

positive waveform followed by a negative one. The three-way interaction found in the late time 

window was caused by the left central standard response being smaller than the left and right central 

deviant response (Tukey HSD, df=58, p<.05). 

 

[Insert Figure 2 about here] 

 

[Insert Table 1 about here] 

 

Discussion 

Results showed that the neonate brain detects the onset and offset of sound trains as well as changes 

in the presentation rate. Thus the abilities for detecting and processing these primary temporal 

events are functional already at birth. 

Train onsets elicited the largest responses, which were similar to the N1-P2-like components 

found in newborns (Wunderlich et al., 2006; Kusnerenko et al., 2002, 2007). The P2-like positive 



Page 9 of 17 
 

waveform has been shown to reflect the detection of sound onsets (Telkemeyer et al., 2009). This is 

similar to adults, in whom the auditory N1 is the most prominent response elicited by abrupt 

changes in spectral sound energy (Näätänen and Picton, 1987) and it likely reflects an 

adaptation/refractoriness based response increment. That is, in contrast to the highly refracted 

response elicited within the fast-paced train, the neuronal elements are relatively fresh after a longer 

silent interval and change of spectral contents. Such responses help one to detect the emergence of a 

new auditory object. 

Responses elicited by train offsets show that the infants were set for the regular continuation 

of sound sequences. The very early onset of the difference response militates against a passive 

effect (i.e., that the observed waveform would represent the late response to the previous stimulus, 

which was cut off within the train by the arrival of next tone), because even the earliest effects of 

the next sound take a little more time to reach the cortex. Rather, this response is quite similar to 

that observed when a predictable (as opposed to an unpredictable) tone is omitted from a sequence 

(Bendixen et al., 2009), suggesting that this response represents the brain’s preparation for a 

predicted sound event. This prediction error could allow one to detect the end of stimulus trains. 

The current response was morphologically different from that obtained in neonates for sound-

omissions violating the rhythmic structure of the sound sequence (Winkler et al., 2009). 

Predictability was lower in Winkler et al.’s (2009) study due to the variability set up to distinguish 

the detection of a repeating pattern (Stefanics et al., 2007) from that of the rhythmic structure. The 

difference in the morphology of onset and offset responses is unlike the corresponding adult 

responses where onsets and offsets elicit similar N1 responses (Yamashiro et al, 2009). This 

suggests that the continuation of the train was indeed expected and the response cannot be described 

in terms of an offset response. 

Finally, the presentation rate change elicited an early negative response. As the change of 

rate brings no spectral change and nor can it be explained by lower levels of refractoriness (because 

the inter-tone interval was shortened), this response is not likely to originate from differential 
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refractoriness. On the other hand, the observed response is quite different from the later positive 

response observed for occasional early sound delivery in 2-month olds (Otte et al., 2013). This 

difference suggests that the processing of temporal changes is context-dependent, as was also found 

for spectral changes (Háden et al., 2013). One possibility is that after several trials of the same 

structure, the neonatal brain learned that a switch to a faster presentation rate can be expected and 

the response marks the detection of the onset of the change. This is supported by the similarity of 

the responses to that obtained in 3 month olds to the onsets of sequences made up from of either 12 

or 25 ms long snippets of modulated noise (Telkemeyer et al., 2011). However, newborns did not 

show this type of response to the same stimuli (Telkemeyer et al., 2009). Thus the analogy may not 

be perfect. 

We investigated the developmental origins of processing the gross temporal structure of 

short sound sequences. In general, we found that newborn infants have similar capabilities as adults 

for processing the cues that allow one to form a rough description of auditory objects. Although we 

have suggested in Introduction that such fundamental capabilities are required for infants for 

learning from others, the finding is still surprising on one sense: Research in young infants has 

consistently shown that when it comes to simple discrimination abilities, infantile capabilities are 

far from the adult level (see, e.g., pitch discrimination; Novitsky et al., 2007; for a review, see 

Werner, 2007). Regarding temporal features, for example, the sensitivity of detecting changes in 

sound duration (Kushnerenko et al., 2001; Čeponienė et al., 2002; Cheour et al., 2002) or gaps 

between sounds is much lower than that in adults even at 6-7 months of age (Smith et al., 2006; 

Trainor et al., 2001, 2003; Werner et al., 1992). In sharp contrast, the abilities required for 

structuring the auditory environment, such as auditory stream segregation (Winkler et al., 2003), 

source identification (Vestergaard et al., 2009), pattern detection (Stefanics et al., 2007), or 

extracting the temporal structure of sound sequences (the current study as well as Winkler et al., 

2009b) appear to be functional already at birth. These abilities found already at birth could allow 

them to access information encoded in the tempo of both speech and music and to enter into a 
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dialogue with others later in development where  timing is crucial to achieve synchrony and 

facilitates even preverbal communication (Jaffe et al., 2001). The neonatal auditory processing 

capabilities found in the current study are amongst those serving cognitive development through 

helping to learn speech and music perception and bootstrapping communication by sound. 
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Legends 

Figure 1 Panel a) gives a schematic overview of the experimental paradigm. Panel b) shows the 

temporal relations within a train. The events relevant to the analyses are highlighted. Tones are 

denoted by black rectangles; the expected continuation of the tone sequence is marked with a 

dashed rectangle; time flows from left to right. Note that the inter-onset intervals were jittered in the 

experiment (see Methods). 

Figure 2 Group average (n = 30) ERP and difference waveforms on all six electrodes (F3, Fz, F4, 

C3, Cz, C4) for the a) Start of train vs. Slow control; b) Presentation rate change vs. Fast control; c) 

Expected tone vs. Fast control events. Stimulus onset is at the crossing of the axes. Note that in c), 

the crossing of the axes is at the onset of the stimulus that would seamlessly continue the train. 

Stimuli are marked in black rectangles under each column. The stimulus mark in c) does not 

correspond to fast control. Amplitude measurement windows are marked with grey shading. 

Table 1 Significant effects obtained in the ANOVAs of the structure Stimulus type [Event vs. 

Control] × Frontality [F vs. C electrode line] × Laterality [left vs. midline vs. right], separately for 

the three temporal events (Train Onset, Presentation Rate Change, Train Offset) and the two (early 

and late) measurement windows (see Methods). In addition to the F, df, and p values, effect sizes 

(η2), and, where applicable, Greenhouse-Geisser correction factors (ε) are also shown. The mean 

and standard deviations (in parentheses) of the number of artefact free epochs are given in the 

second column. 

 



Page 1 of 1 

 

Tables 
[Table 1] 

 ANOVA results 

Condition 

µ epochs 

(σ) 

Measurement 

window 

Effect F df p ε η
2
 

Train Onset 150 (19) 

24-192 ms 

Stimulus type 6.48 1, 29 0.016 - 0.18 

vs.  Frontality 5.35 1, 29 0.028 - 0.16 

Slow Control 771 (91) 

232-408 ms 

Stimulus type 13.24 1, 29 0.001 - 0.31 

  Frontality 14.03 1, 29 0.001 - 0.33 

  Stimulus type 

× Frontality 

6.12 1, 29 0.019 - 0.17 

 

 Stimulus type 

× Laterality 

4.11 2, 58 0.028 0.83 0.12 

Presentation 

Rate Change  

146 (17) 

56-120 ms 

Stimulus type 4.97 1, 29 0.034 - 0.15 

vs.  Frontality 9.60 1, 29 0.004 - 0.25 

Fast Control 322 (35) 

248-352 ms 

Frontality 

× Laterality 

6.00 2, 58 0.005 0.95 0.17 

Train Offset 

vs. 

150 (17) 

0-164 ms Stimulus type 4.46 1, 29 0.037 - 0.14 

Fast Control 322 (35) 

256-372 ms 

Stimulus type 

× Frontality 

× Laterality 

4.43 2, 58 0.021 0.88 0.13 
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