Constraints on the origin of sub-effusive nodules from the Sarno (Pomici di Base) eruption of Mt. Somma-Vesuvius (Italy) based on compositions of silicate-melt inclusions and clinopyroxene

Rita Klébesz1,2,*, Rosario Esposito1,2, Benedetto De Vivo2 and Robert J. Bodnar1

1Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, U.S.A.
2Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università di Napoli “Federico II”, Naples, 80134, Italy
*Present address: MTA CSFK Geodetic and Geophysical Institute, Sopron, 9400, Hungary, e-mail: klebesz.rita@csfk.mta.hu

Abstract

Major and trace element and volatile compositions of reheated melt inclusions (RMI) and their clinopyroxene hosts from a selected “sub-effusive” nodule from the uppermost layer of the Sarno (Pomici di Base; PB) plinian eruption of Mt. Somma-Vesuvius (Italy) have been determined.

The Sarno eruption occurred during the first magmatic mega-cycle and is one of the oldest documented eruptions at Mt. Somma-Vesuvius. Based on MI and clinopyroxene composition we constrain processes associated with the origin of the nodule, its formation depth, and hence the depth of the magma chamber associated with the Sarno (PB) eruption. The results contribute to a better understanding of the early stages of evolution of long-lived Mt. Somma-Vesuvius volcanic complex.

The crystallized MI were heated to produce a homogeneous glass phase prior to analysis. MI homogenized between 1202-1256 °C, and three types of RMI were distinguished based on their compositions and behavior during heating. Type I RMI is classified as phono-tephrite – tephriphonolite – shoshonite, and is the most representative of the melt phase from which the clinopyroxenes crystallized. The second type, referred to as basaltic RMI, have compositions that have been modified by accidentally trapped An-rich feldspar and/or by overheating during homogenization of the MI. The third type, referred to as high-P RMI, is classified as picro-basalt and has high-P content due to accidentally trapped apatite.
Type I RMI are more representative of magmas associated with pre-Sarno eruptions than to magma associated with the Sarno (PB) eruption based on published bulk rock compositions for Mt. Somma-Vesuvius. Therefore, it is suggested that the studied nodule formed from a melt compositionally similar to that which was erupted during the early history of Mt. Somma. The clinopyroxene and clinopyroxene-silicate melt thermobarometer models suggest minimum pressures of 400 MPa (~11 km) for nodule formation, which is greater than pressures and depths commonly reported for the magmas associated with younger plinian eruptions of Mt. Somma-Vesuvius. Minimum pressures of formation based on volatile concentrations of MI interpreted using H$_2$O-CO$_2$-silicate melt solubility models indicate formation pressures \leq300 MPa.

Keywords: melt inclusion, homogenization, thermobarometer, Mt. Somma-Vesuvius, nodule, volcanic risk

Introduction

Volcanic activity at Mt. Somma-Vesuvius (Campanian Plain, South Italy) has been the focus of volcanological research for at nearly two millennia, starting with the letters written by Pliny the Younger describing the eruption of Mt. Somma in 79 AD that destroyed Pompeii and killed his uncle, Pliny the Elder. This work has been motivated not only by scientific curiosity but also, in more recent years, by the significant volcanic hazard posed by the proximity of Mt. Somma-Vesuvius to the densely populated city of Naples.

While Mt. Somma – Vesuvius has been active for more than 25 ka, most research has focused on the products of the post-79 AD eruptions. The research focused both on the juvenile products (Ayuso et al. 1998; Barberi et al. 1981; Belkin et al. 1993, 1998; Black et al. 1998; Cioni 2000; Cioni et al. 1995, 1998; Civetta et al. 1991; Fulignati and Marianelli 2007; Joron et
al. 1987; Lima et al. 1999; Marianelli et al. 1995, 1999, 2005; Marini et al. 1998; Mastrolorenzo et al. 1993; Mues-Schumacher 1994; Paone 2006, 2008; Piochi et al. 2006a; Raia et al. 2000; Rolandi et al. 1993; Rosi and Santacroce 1983; Santacroce et al. 1993, 2008; Schiano et al. 2004; Somma et al. 2001; Vaggelli et al. 1993; Villemant et al. 1993; Webster et al. 2001) and on the co-genetic or xenolithic lithic fragments, referred to as nodules (Barberi and Leoni 1980; Belkin and De Vivo 1993; Belkin et al. 1985; Cioni et al. 1995; Cundari 1982; Del Moro et al. 2001; Fulignati and Marianelli 2007; Fulignati et al. 1998, 2001, 2004, 2005; Gilg et al. 2001; Hermes and Cornell 1978, 1981; Lima et al. 2003, 2007; Savelli 1968; Sorby 1858). As a result of these studies, the composition of the source region, the structure of the plumbing system, and the pre-eruptive processes and volatile contents of the magmas are fairly well constrained for the post-79 AD eruptions. However, less attention has been devoted to the older eruptions. While abundant data are available for the whole rock compositions of the juvenile products, much less information is available for the melt inclusions (MI).

MI can provide valuable information concerning melt generation and evolution, and the trapping conditions for the MI (Anderson 2003). In addition, MI represent the only tool that can directly provide the pre-eruptive volatile (such as H$_2$O, CO$_2$, S, Cl, F) content of a magma. The bulk rock measurements only provide a minimum estimate of volatiles at depth owing to continued degassing during ascent and emplacement on the surface (Lowenstern 2003). In addition, MI from nodules may provide important information related to igneous processes occurring at the magma-country rock interface (e.g., De Vivo et al. 2006).

This study focuses on a sub-effusive nodule (NLM1-1a) previously described by (Klébesz et al. 2012). They reported preliminary results (major and trace element compositions) of MI obtained by analyses of crystallized, unexposed MI using Laser Ablation Inductively-Coupled
Plasma Mass Spectrometry (LA-ICP-MS). This method, however, does not provide information on the volatile content, and the formation P and T cannot be constrained due to large uncertainties in the major element content associated with analyzing crystallized MI. By heating and homogenizing the MI in the clinopyroxenes, we were able to overcome these obstacles. Major and minor element concentrations of 132 RMI were obtained by Electron Microprobe Analysis (EPMA), trace element concentrations of 73 RMI by LA-ICP-MS, and volatile element concentrations of 32 RMI by Secondary Ion Mass Spectrometry (SIMS). Although homogenization experiments have some disadvantages owing to possible overheating and/or host assimilation, variations related to natural processes and those associated with the heating experiments can often be distinguished. In addition, the obtained data can be used to estimate the formation conditions (P, T) of the MI, hence the depth at which the nodule originated or last equilibrated. The results of this study provide constraints that help us to better understand the early stages of evolution of the Mt. Somma-Vesuvius volcanic complex.

Geological background

During the Quaternary period, potassium-rich volcanism developed in central and southern Italy, forming the Roman Co-magmatic Province (Washington 1906) located along the Tyrrhenian margin. The Mt. Somma-Vesuvius volcanic complex is a stratovolcano situated at the southernmost end of the Roman Province, south of the Campanian Plain. The most recent review by De Vivo et al. (2010) summarizes our current knowledge about the source region, plumbing system and volcanic activity of Mt. Somma-Vesuvius, and here we describe the eruptive history briefly.
Eruptive activity associated with the Mt. Somma-Vesuvius volcanic complex started after the highest magnitude eruption in the Campanian Magmatic Province, the Campanian Ignimbrite eruption (39 ka; De Vivo et al. 2001). Other volcanic activity in the area dates back to ca. 400 ka (Brocchini et al. 2001; De Vivo et al. 2001; Rolandi et al. 2003; Santacroce et al. 2008 and references therein).

The Mt. Somma-Vesuvius bulk rock compositions define three groups, i.e., three mega-cycles (Arnó et al. 1987; Ayuso et al. 1998; Civetta and Santacroce 1992). In the following, the eruptive history is described according to Rolandi (1997), and in parenthesis the names of eruptions according to Santacroce (1987) are listed. The first mega-cycle lasted from >25 ka to about 14 ka, and includes the older Somma activity, the Codola, the Sarno (Pomici di Base; PB), and the Novelle (Verdoline) plinian eruptions and the subsequent interplinian stages. The second mega-cycle started around 8 ka and lasted until about 2.7 ka, incorporating the Ottaviano (Mercato) and Avellino plinian eruptions and protohistoric interplinian activity. The third mega-cycle started in 79 AD with the Pompeii plinian eruption and the subsequent ancient historical interplinian activity. Two other subplinian eruptions belong to this mega-cycle; the 472 AD (Pollena) and the 1631 AD eruptions, both followed by interplinian activity. The last eruption occurred in 1944 and either represents the end of the most recent mega-cycle or simply one of the many eruptions within the continuing third mega-cycle, which would represent an unusually long repose time between eruptions within the continuing third mega-cycle (De Vivo et al. 2010 and references therein).

The products of the first mega-cycle are slightly silica-undersaturated (K-trachyte, K-latite; e.g., Ayuso et al. 1998; Paone 2006; Piochi et al. 2006a; Santacroce et al. 2008). The products of the second mega-cycle are mildly silica-undersaturated (phonotephrites to phonolites; e.g.,
Ayuso et al. 1998; Piochi et al. 2006a; Santacroce et al. 2008). The third mega-cycle is characterized by strongly silica-undersaturated rocks with tephrite to tephriphonolite-foidite composition (e.g., Ayuso et al. 1998; Piochi et al. 2006a; Santacroce et al. 2008).

Previous studies on nodules from Mt. Somma-Vesuvius

In the Mt. Somma-Vesuvius literature, the term nodule refers to ejecta showing wide variability in composition and texture that are common in the pyroclastic products. Nodules can be metamorphic and/or metasomatized sedimentary rocks, ranging from carbonates to silicic skarn rocks, as well as coarse-grained igneous rocks and cumulate rocks. Zambonini (1910) was the first to describe nodules in the Mt. Somma-Vesuvius deposits, but the classification which has been used recently was proposed by Hermes and Cornell (1978). They divided the Mt. Somma-Vesuvian nodules into four groups: 1) ultramafic cumulates, 2) “skarns”, representing metasomatized carbonates, 3) recrystallized carbonate hornfels, and 4) “sub-effusive” rocks, which are shallow plutonic rocks.

In the Mt. Somma-Vesuvius system, the earlier studies focused on constraining the physical parameters of nodule genesis, but did not consider the geochemical or petrological origin of the nodules or whether they are co-genetic with their pyroclastic hosts. Sorby (1858) studied metasomatized carbonate (skarn) ejecta and concluded that the minerals formed between 340 and 380 °C and at a depth of about 0.6-1 km. Barberi and Leoni (1980) also studied skarns, but they assumed a temperature range of 360-790 °C and a maximum depth of 5-6 km. Cortini et al. (1985) estimated the crystallization temperature of phenocrysts in skarns to be 850-1050 °C, and 1170-1240 °C in cumulates, based on the homogenization temperatures of MI. Belkin and De Vivo (1993) and Belkin et al. (1985) suggested a multistage crystallization history, based on the
bimodal distribution of CO$_2$ fluid inclusion (FI) densities, and estimated 3.5-13 km and 4-10 km for the depth of nodule formation for the interplinian and the plinian eruptions, respectively. Belkin and De Vivo (1993) also noted that FI in nodules from the plinian eruption have higher H$_2$O-content compared to those from the inter-plinian eruption.

The origin and genesis of the nodules from Mt. Somma-Vesuvius has been controversial. Based on the mineral assemblages and the interstitial glass compositions, Hermes and Cornell (1981, 1983) inferred that the cumulate nodules formed over a range of depths, with a maximum pressure of 300 MPa (~8 km). But, Varekamp (1983) argued that all nodules were derived from the same, shallow source. Savelli (1968) examined carbonate ejecta and concluded, based on the non-equilibrium assemblages, that there was no direct evidence of wall rock assimilation but rather that metasomatism by volcanic fluids and gases was responsible for the observed compositions. Today, it is generally accepted that the silicate crystalline nodules and the skarns represent samples of the heterogeneous wallrock of the magma chamber. The large compositional variations reflect the gradual changes from the carbonate country rock through skarns and metasomatized cumulate rocks to a cumulate crystal mush along the inner walls of the chamber (Cioni et al. 1995). Little information is available about the origin of sub-effusive type nodules that were reported by Hermes and Cornell (1978) from several different eruptions. Most commonly, sub-effusive nodules are interpreted as representing shallow plutonic rocks that usually show compositions equivalent to the erupted lavas or pyroclastics (Belkin and De Vivo 1993; Hermes and Cornell 1978) or intermediate between lava and cumulate compositions (Hermes and Cornell 1978). Hermes and Cornell (1978) suggested that sub-effusive nodules represent the crystal rich part of the crystal mush zone, but this hypothesis was never tested.
Many studies have focused on skarn and silicic nodules from post 79 AD plinian eruptions to understand processes occurring at the magma/wall rock interface and to constrain the underlying plumbing system of the volcano. These studies (Del Moro et al. 2001; Fulignati et al. 1998, 2000, 2001, 2004, 2005; Gilg et al. 2001) concluded that skarn generation can be explained by carbonate wall rock assimilation by mafic alkaline magma that leads to the exsolution of CO₂-rich vapor and complex saline melts from the contaminated magma. These fluids react with the carbonate wall rock resulting in skarn formation. All of the above studies estimate a high (magmatic) temperature, above 700 °C, for skarn formation.

Lima et al. (2003, 2007) constrain the post 79 AD evolution of Mt. Somma-Vesuvius based on compositional data from FI and MI trapped in crystals of nodules. According to their model, separate small magma chambers exist at depths of >3.5 km and possibly a larger chamber is present at a depth of >12 km. In this model, interplinian periods represent a steady state condition under the volcano. During these periods, the volcano acts like an “open system”, indicating that the input of a new supply of magma is always followed by eruption. However, at the end of these periods, cooling of the magma leads to the precipitation of newly formed crystals, which subsequently leads to self-sealing, and hence “closing” of the system. In this situation, the pressure can build up, leading to a subsequent highly explosive plinian eruption. It was also suggested that a carapace forms around the upper portion of the shallow magma chamber (3.6-4.5 km) and acts as an interface between the brittle and plastic rocks (Lima et al. 2007).

Klébesz et al. (2012) studied sub-effusive nodules from the ~20 ka Sarno (PB) eruption. Their study focused mainly on the petrography and mineral chemistry of the nodules. They also reported MI in clinopyroxene. Klébesz et al. (2012) distinguished two types of MI based on
petrography, and their classification was supported by compositions determined by LA-ICP-MS. Type I MI contain mica, Fe-Ti-oxide phases and/or dark green spinel, clinopyroxene, feldspar and a vapor bubble. Type II inclusions are generally lighter in color, compared to type I MI, when observed in transmitted light. Generally, Type II MI contain subhedral feldspar, glass, oxides and/or one or more bubbles. Type I MI are classified as phono-tephrite – tephri-phonolite – basaltic trachy-andesite, while Type II MI have basaltic composition (Klébesz et al. 2012).

Based on the texture of the nodules and the composition of the minerals and MI, they proposed that the studied nodules originated from crystal-rich mush zones within the plumbing system of Mt. Somma-Vesuvius. In addition, Klébesz et al. (2012) reported that data from crystallized MI suggest magma heterogeneities during the early stages of this volcanic system.

Description of samples and methods

Nodules were collected from the uppermost layer of the Sarno eruption in the Traianello quarry, located on the NE slope of Mt. Somma. The nodules consist of An-rich plagioclase, K-feldspar, clinopyroxene (ferro-diopside), mica (phlogopite-biotite) ± olivine and amphibole and have a porphyrogranular texture. The phenocrysts are large (up to few mm) and show variable compositional zoning. Often irregular intergrowths of alkali feldspar and plagioclase with clinopyroxene, mica and Fe-Ti-oxide minerals are observed. These features are interpreted as crystallized melt pockets. For more detailed information on location of the collected samples, petrographic description and geochemistry of the minerals in the nodule described in this study (NLM1-1a) refer to Type A nodules in Klébesz et al. (2012).

Heating experiments on 67 clinopyroxene crystals from sample NLM1-1a were carried out in the Linkam TS1400 XY heating stage. The specifications of the heating stage and the details of a
heating experiment are discussed by Esposito et al. (2012). Heating experiments were conducted during five analytical sessions. In every crystal one MI was preselected and observed continuously and photographed at various times (temperatures) during the heating experiment (Deposit Item-01). Heating was continued until the observed inclusion homogenized, then the sample was quenched. Subsequently, the host crystals were individually mounted in epoxy and polished until the reheated melt inclusion (RMI) was exposed (Thomas and Bodnar 2002). The crystals were removed from the epoxy by a hot needle, and then they were cleaned in distilled water and mounted in a one-inch diameter indium probe mount. A 5 nm evaporative gold coating was applied for the Scanning Electron Microscope (SEM) and for EPMA, and a 30 nm thick sputtered gold coating was applied for SIMS to minimize C-contamination (see Esposito et al. 2014).

Reheated MI (RMI) were analyzed for major and minor elements (SiO$_2$, TiO$_2$, Al$_2$O$_3$, FeO, MnO, MgO, CaO, Na$_2$O) by EPMA and for trace elements (Sc, V, Cr, Ni, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Nd, Sm, Eu, Yb) by LA-ICP-MS. Sample preparation and the specifications of the analytical methods are identical to those described in Klébesz et al. (2012).

RMI were analyzed for volatile (H$_2$O, CO$_2$, F, Cl, S) abundances using the SIMS 7f GEO ion probe at Virginia Tech. Analyses were performed using 133Cs$^+$ as the source, with a current between 1 and 1.6 nA. A 30 µm x 30 µm spot was rastered within the glass for 240 s to clean the surface before analysis. Then, a 15 µm x 15 µm spot within the rastered area was analyzed using 15 accumulations in depth profile mode. Volatile contents were related to the ratio of the isotope (mass) of interest (16O1H, 12C, 19F, 32S or 35Cl) to 30Si. Four natural standard glasses were used to calibrate the SIMS (EN11346D-2, ALV1649-3, GL07D52-5 and ALV1654-3; Helo et al. 2011). The measured element ratios (e.g., 12C/30Si) were plotted against the known volatile
concentration (e.g., CO₂) of the standard glasses to define the calibration curve. In addition, it has to be emphasized that in some cases the volatile concentration (usually F and sometimes Cl) of the sample was too high and saturated the Faraday cup, therefore, the concentrations of those volatile species could not be determined. Calibration curves used in this study are reported by Esposito et al. (2014) in the deposit items for working session October 2011.

The estimated standard deviation (e.s.d.; 1 sigma) of the EPMA is usually below 5%, if the concentration is above 1 wt%. The e.s.d. (3 sigma) of the LA-ICP-MS analysis was calculated based on Longerich et al. (1996). The 1σ errors based on the slope of each calibration line are 5% relative for CO₂, 3% for H₂O and F, 6% for S, and 1% for Cl [see Deposit item AM-14-508, October_2011 working session in Esposito et al. (2014)]. Based on multiple analyses of three standard glasses, the 1σ reproducibility is 5% for H₂O and F, 6% for S, 14% for CO₂, and 24% for Cl in average. Esposito et al. (2014) analyzed groups of MI all trapped at the same time (melt inclusion assemblage) and estimated SIMS uncertainties of ~10-15% for H₂O and Cl and ~10% for F. It is important to note that Esposito et al. (2014) reported that MI within a single melt inclusion assemblage show large variability for CO₂ and S concentrations that is beyond the SIMS analytical error and likely due to heterogeneity within the MI.

Results

Clinopyroxene chemistry

Clinopyroxenes are present as phenocrysts and in the groundmass of the nodule. Clinopyroxene compositions show some variability, but most can be classified as ferroan diopside based on the compositions obtained by EPMA (Table 1 and Table 1 in Deposit Item-02). Complex compositional zoning is not common in this sample, but normal zoning is occasionally observed.
The MgO content of the clinopyroxene shows only moderate variation, and the calculated mg# \([\text{Mg}/(\text{Mg}+\text{Fe}_{\text{tota}})]\) ranges between 0.72 and 0.82 (Table 1). No strong correlation was observed between MgO and Cr (Fig. 1b), but in general, clinopyroxenes with higher MgO content tend to have higher Cr concentration, showing up to ~1,300 ppm Cr in some crystals. The MgO content correlates negatively with TiO2 and Al2O3 contents (Fig. 1d), and also with most REE and HFSE (e.g., Zr, Nb). The CaO/Al2O3 ratio shows good positive correlation with MgO content (Fig. 1c).

Some variation in the trace element concentration is observed, but all samples show similar trace element patterns. The trends defined by major and trace elements and trace element patterns of clinopyroxenes are consistent with fractional crystallization.

Melt inclusions in clinopyroxene

MI in clinopyroxene from the NLM1-1a nodule are either randomly distributed in the crystals or occur along a growth zone that defines a MI assemblage (Bodnar and Student 2006) and are interpreted to be primary (Roedder 1979; Sobolev and Kostyuk 1975). The MI are usually 20-30 μm in maximum dimension, but range from about 5 to 60 μm, and have prismatic shape. They are partially to completely crystallized, indicating (relatively) slow cooling (Roedder 1979). We observed two types of MI, similar to those described by Klébesz et al. (2012).

The homogenization temperature \((T_h)\) of MI in clinopyroxene ranges from 1202 to 1256 °C, but most of the MI show \(T_h\) between 1220-1250 °C. However, some other (smaller) MI that were not monitored continuously during heating may have homogenized before the larger MI that were monitored continuously and quenched after homogenization. The \(T_h\) does not necessarily equal the trapping temperature \((T_t)\) of the MI. Therefore, if the \(T_h\) is below the \(T_t\), the MI can be depleted in the host mineral components, instead if the \(T_h\) is above the \(T_t\) then the MI can be enriched in those components. However, ratios of elements that are incompatible with the host
and elements showing similar concentrations in the melt and the host (e.g., TiO$_2$, SiO$_2$, La, Ce, Eu, Zr.) should not be affected significantly by quenching the MI at a T_h different from T_t (Lima et al. 2003).

For crystallized MI that were analyzed by LA-ICP-MS, it was always possible to determine if the analyzed MI belongs to Type I or Type II based on petrography (Klébesz et al. 2012). In this study, usually one or a small number of MI in each crystal were documented and photographed before the heating experiment, and these MI were monitored continuously during heating to homogenization. However, after heating and then further polishing of the sample to expose the target MI, additional MI that could be analyzed but which had not been documented before heating were often observed. Thus, no record was available for the phases and appearance of these MI before heating. Therefore, we were unable to assign some RMI to the classification of Klébesz et al. (2012) using petrographic data, but instead we classify the RMI based on chemical composition (Table 2 and Table 2 in Deposit Item-02). Thus, RMI with total alkali content >5 wt% are classified as Type I RMI (Fig. 2), due to the fact that they have compositions similar to Type I MI in Klébesz et al. (2012). Based on the calculated mg# of the clinopyroxene which would be in equilibrium with the RMI and the measured mg# of the host, only Type I RMI are in, or close to, equilibrium with the clinopyroxene host (Putirka 2008).

A large number (25) of RMI had alkali, silica and trace element contents that were lower than Type I RMI. Here, we refer to these RMI as basaltic RMI, owing the fact that they are classified as basalts on the total alkali silica diagram (Fig. 2; Le Bas et al. 1986). No petrographic observations before heating are available for most of the basaltic RMI, but a few (5) are similar to those that were classified as Type II by (Klébesz et al. 2012) based on petrography. Basaltic RMI are usually small (≤20 µm) compared to type I RMI.
Some RMI with picro-basaltic composition (Fig. 2) and with high P$_2$O$_5$ (up to 8 wt%) coupled with high CaO/Na$_2$O ratio (up to 7) were also observed, referred to here as *high-P RMI*. Similar to the basaltic RMI, pre-heating petrographic information was available only for a few high-P RMI. Those high-P RMI are similar to MI that were classified as Type II (Klébesz et al. 2012) based on petrography. Some of the high-P RMI did not homogenize completely, in some cases a small solid phase, that was not large enough to be analyzed, was observed after quenching. This solid phase fluoresced under the focused electron beam. These characteristics suggest that the inclusions trapped silicate melt plus apatite. We have corrected the high-P RMI compositions by subtracting the apatite contribution (using the stoichiometric formula Ca$_5$[PO$_4$]$_3$OH) and assuming that the melt contained 0.8 wt% P$_2$O$_5$, which is the average P content of Type I RMI, and any P in excess of this value is from trapped apatite. The corrected compositions of the high-P RMI become similar to other RMI.

RMI that are petrographically similar to Type II MI reported by Klébesz et al. (2012) were heated to ~1250 °C during homogenization experiments. These MI appear to homogenize to a silicate melt during heating; however, after quenching and exposing them on the surface of the crystals, these MI were analyzed using the SEM and classified as not having homogenized. A tabular mineral phase surrounded by melt was observed. Some of these mineral phases show plagioclase composition based on EPMA. Sometimes the analyzed phases were smaller than the analytical volume (area) of the EPMA, therefore some of the surrounding material was included in the analysis, resulting in elevated MgO, FeO and lower Al$_2$O$_3$ content. We interpret these results as an indication that the MI trapped a plagioclase crystal along with melt and we will refer hereafter to these MI as *Feldspar (Fsp), or fsp-bearing RMI* (Fig. 2).
RMI data show considerable scatter, but general trends are recognizable in the case of Type I RMI when plotted on MgO vs. major oxide and trace element variation diagrams (selected diagrams are shown in Fig. 3a-c). The data show an increase in SiO₂, Al₂O₃, K₂O and also in P₂O₅ and Na₂O, and a decrease in CaO and FeO, with decreasing MgO, but no trend in MgO vs. TiO₂. Most of the RMI trace elements (Rb, Sr, Zr, Nb, Ba, La, Ce) show increasing abundance with decreasing MgO content for Type I RMI, except for Cr, Sc and Mn. Some of the trace element data show significant scatter and no trend is recognized for MgO vs. Y, Nd, Sm, Eu and Yb. Compositions of the RMI of this study and the crystallized MI by Klébesz et al. (2012) partially overlap. However, RMI of this study show a wider compositional range. The observed trends in RMI are consistent with compositional variations resulting from overheating of the MI and incorporation of variable amounts of the host phase into the melt.

In this study, basaltic RMI define a continuous trend from Type I RMI compositions towards more primitive compositions and towards the composition of the host clinopyroxene. It is noteworthy that compositions of basaltic RMI always plot in between the compositions of the Type I RMI, plagioclase and the host clinopyroxene (Fig. 3). This trend is more evident on the Ba/Sr vs. 1000/Sr diagram (Fig. 3d), where mixing between end-members defines straight lines. Therefore, the compositions of the basaltic RMI can be derived from the mixing of plagioclase ± Type I melt ± host clinopyroxene.

Volatiles, including F, Cl, S, H₂O and CO₂, were analyzed in selected homogenized MI. The H₂O content was uniformly low, below 0.15 wt%. The CO₂ content varied between 131-1,893 ppm but was mostly below 400 ppm. The F content ranged up to 4,000 ppm but in some cases it is higher because the analytical conditions prevented us from determining the exact concentration because the detector became saturated. The S and Cl contents also vary greatly,
reaching maximum concentrations of 156 ppm and 2,771 ppm, respectively. On one hand, no correlation is observed between the volatile abundances when all types of RMI studied (basaltic-RMI, Fsp-MI, High-P, and Type I) are considered, with the exception of S concentration which shows a positive correlation with Cl concentration. On the other hand, we observe some correlations between volatile concentrations and major and trace elements and Mg# of the clinopyroxene host. For example, in Type-1 RMI, Cl increases with increasing S and H2O. Fluorine shows behavior similar to Cl with the exception of one outlier. Also, S and Cl decrease with increasing Sc, and H2O shows a strong positive correlation with MnO. Finally, there is a general positive correlation between F, Cl, S, H2O and the Mg# of the clinopyroxene host and the quenching temperature (Tq).

Considering felspar RMI, basaltic RMI, and High-P RMI, MI show Cl vs. Zr, Rb and La trends toward the origin of the axes with few outliers. Fluorine and S behave in a manner similar to Cl. The anomalous RMI show consistent H2O content between 0.10 and 0.20 wt% with the exception of one High-P RMI that contains 0.05 wt% H2O.

Discussion

Comparison of the MI data with previously-published results

It was previously suggested by Klébesz et al. (2012) that MI hosted in clinopyroxene from the same nodule studied here record small scale heterogeneities within the melt, which is common at the edges of a magma conduit system (Danyushevsky et al. 2004). However, some RMI of this study that are similar to Type II MI reported by Klébesz et al. (2012) did not homogenize to a glass during heating. In addition, the chemical composition of Type II MI reported by Klébesz et al. (2012) and the basaltic RMI of this study show that the compositions of these MI can be
derived by mixing various proportions of melt with an An-rich feldspar and the host clinopyroxene. This observation implies that basaltic RMI are overheated MI that became enriched in clinopyroxene component as a result of overheating and/or the MI trapped a feldspar inclusion along with the silicate melt. This interpretation is further supported by the fact that the inclusion compositions are not in equilibrium with their host. In addition, RMI with anomalously high Mg concentrations are usually smaller than 20 µm (Table 2 in Deposit Item-02). In order to minimize H₂O loss during heating, some MI may have been heated too quickly to maintain equilibrium. Therefore, if the small MI are hosted in a mineral containing larger MI that were observed during the heating experiment, then the smaller MI might have homogenized at a temperature that was lower than the temperature from which the crystal was quenched, and this MI would have therefore been overheated. Based on these observations, we conclude that the different MI compositions do not represent small scale heterogeneities, but rather that basaltic RMI, feldspar RMI and high-P RMI and also Type II MI reported by Klébesz et al. (2012) all trapped mineral phase(s) along with silicate melt in various proportions and which, in some cases, were overheated during microthermometry. This interpretation is supported by Cl, S, and F versus trace elements trends. The solid phase was often An-rich feldspar but in some cases apatite was trapped with the melt, implying that clinopyroxene, apatite, An-rich feldspar and melt were coexisting at the time that the MI were trapped. Therefore, it is likely that only Type I RMI are representative of the melt from which the clinopyroxene crystals grew. Consequently, only Type I MI compositions are compared with data from the literature to investigate the origin of the nodules.

Compositions of MI in various host phases from nodules from different eruptions of Mt. Somma-Vesuvius have been compiled from the literature (Fig. 4). Unfortunately, data are only
available for nodules from the 79 AD and younger eruptions. MI in syenite nodules and skarns from the 472 AD eruption (Fulignati and Marianelli 2007; Fulignati et al. 2001) have significantly different compositions than any other MI reported in the literature as well as the MI of this study. Fulignati et al. (2001) interpreted nodules from the 472 AD eruption to represent samples that were broken off of the magma chamber-carbonate wall rock interface and transported to the surface during the eruption. In addition to the highly differentiated phonolitic MI, Fulignati et al. (2001) also found complex chloride-carbonate and hydrosaline melt inclusions, as well as unmixed silicate-salt melt inclusions. Compositions of MI in skarns from the 1944 eruption (Fulignati et al. 2004) do not show such extreme compositions as those from the 472 AD eruption, but still differ from the compositions of MI from cumulate nodules. MI from skarns of the 1944 eruption tend to have lower SiO₂ and MgO content, but higher Al₂O₃, MnO, Na₂O and Cl contents. In addition, hypersaline FI are commonly associated with the MI. The clinopyroxene host in skarns has higher Al₂O₃ content, usually above 7 wt%, compared to clinopyroxenes from the juvenile rocks (Fulignati et al. 2004). The clinopyroxene in this study has significantly lower Al₂O₃ content, usually less than 6 wt%, lacks complex hydrosaline and chloride-carbonate inclusions, and the RMI in this study show compositions similar to MI in cumulate nodules rather than those in skarns. Consequently, the nodules studied here are not thought to represent an environment near the carbonate wall rock, contrary what was previously assumed (Klébesz et al. 2012). However, this does not exclude the possibility that these nodules represent samples of the crystal-mush zone near the magma conduit walls.

Klébesz et al. (2012) concluded that the petrographic features of nodules are consistent with a crystal mush origin, but it is unclear whether these nodules represent the same magma that was erupted during the sustained column phase of the Sarno (PB) eruption or if they crystallized from...
a melt associated with an older eruption, but were ejected later, during the Sarno eruption. In order to answer this question, Type I RMI were compared to bulk rock compositions of juvenile eruptive products of Mt. Somma-Vesuvius (Fig. 5).

Type I RMI show a continuous trend towards higher CaO/Al₂O₃ when plotted against other indicators of magma evolution (Fig. 5a-e). The least magnesian Type I RMI generally fit within the general trend defined by the Mt. Somma-Vesuvius rocks, whereas the Type I RMI with more primitive compositions (up to about 8 wt% MgO) overlap or show a trend similar to recent Vesuvius volcanics. The recent Vesuvian volcanic rocks define compositional groupings at MgO > ~ 4 wt% and CaO/Al₂O₃ > ~ 0.6, as has already been recognized by Danyushevsky and Lima (2001) and Marianelli et al. (1999). According to their interpretations, these rocks do not reflect true melt compositions, but rather represent accumulations of clinopyroxene crystals. Hence, these volcanic rocks represent magmas formed by mixing of evolved melts and various amounts of clinopyroxene crystals inherited from the cumulate layers (Danyushevsky and Lima 2001; Marianelli et al. 1999). The similarities between the trends defined by these volcanics and the Type I RMI of this study support the interpretation that the observed compositional trends are caused by incorporating varying proportions of clinopyroxene component into the melt due to MI overheating. However, there are still some important compositional features that cannot be explained by overheating.

As seen on plots for K₂O and MgO vs. CaO/Al₂O₃ (Fig. 5c-d), it is not possible to account for the disagreement in compositions of the least MgO-rich RMI in clinopyroxene compared to the whole rock trend of the Sarno (PB) and younger eruptions of the first mega-cycle by overheating, regardless of the amount of clinopyroxene component added to the MI by overheating. In other words, the compositions of the most representative (least MgO-rich) RMI
in this study are more enriched in MgO, K$_2$O, TiO$_2$ and P$_2$O$_5$ compared to any known compositions of volcanic rocks from the Sarno (PB) eruption or any other eruptions from the first mega-cycle. The same phenomenon can be observed with trace element systematics (Fig. 5e-g). More specifically, the compositions of MI from the nodules are more enriched in Sc, V, Cr and Ni but depleted in Sr, Y, Zr, Ba and Ce compared to the bulk rock compositions of the Sarno (PB) and younger volcanics of the first mega-cycle. In fact, the compositions of the least magnesian RMI of this study are similar to the compositions of lava rocks from the older Somma (pre-Sarno) activity. Danyushevsky and Lima (2001) reported that these pre-Sarno (PB) rocks can be divided into two groups based on composition of MI hosted in clinopyroxene. The first group has a composition similar to rocks of the first and second mega-cycles (low K-group), while the second group shows high KO$_2$ and SiO$_2$ and low Na$_2$O contents (high-K group). In most cases, the least magnesian compositions of MI in this study overlap with the compositions of the low-K group of older Somma rocks. This overlap is best illustrated by the major elements, but most of the trace elements also show similar behavior (Fig. 5). However, the concentration of some of the trace elements (e.g., Y, Sm, Nd, Eu) spans a wide range and geochemical trends are not well defined.

Despite the wide scatter of the trace element concentrations, the host clinopyroxene crystals in the studied nodule are interpreted to have crystallized from a magma associated with the early Somma activity, prior to the Sarno (PB) eruption, and not from the magma that was erupted during the sustained column phase of the Sarno (PB) eruption. This, however, does not necessarily mean that the entire nodule crystallized from the same magma. Clinopyroxene composition is sensitive to changes in the conditions of crystallization, such as P, T or the melt composition. The simultaneous increase in alumina and HFSE and REE with decreasing MgO is
characteristic of normal fractional crystallization. In addition to trends consistent with normal fractionation, no zoning was observed, making it unlikely that the clinopyroxenes in the nodule are xenocrysts. Therefore, the compositions of type I RMI are interpreted to represent melts trapped at various stages during the formation of the nodule.

The origins of the skarns and cumulate nodules are well constrained, but little information is available concerning the origin of sub-effusive type nodules (see above). Although the origin of the nodules in this study cannot be determined with certainty, their presence in the Sarno (PB) eruption indicates that the magma erupted during the Sarno (PB) eruption came from the same (or deeper) magma chamber(s) that fed earlier eruptions. The ascending magma accidentally entrained older, possibly already solidified, rock fragments. If the interstitial liquid had not yet solidified, it would have quenched into glass, as is observed in the cumulate nodules (e.g., Hermes and Cornell 1978).

Pressure and temperature of formation of the nodule

One of the goals of this research was to estimate the formation conditions of the nodules, and use this information to constrain the depth of magma chamber(s) during the early history of the Mt. Somma-Vesuvius volcanic system. The volatile content of the melt trapped in MI is pressure dependent; therefore, the volatile concentration can be used to estimate the minimum trapping pressure assuming a volatile-silicate melt solubility model (e.g., Papale et al. 2006). In addition, formation temperatures may also be estimated using clinopyroxene and clinopyroxene-silicate melt thermobarometers.

The model of Papale et al. (2006) requires as input the composition of the melt, including H$_2$O and CO$_2$ concentrations, temperature, and oxidation state. The model calculates the pressure at which the melt would be saturated in these volatiles for the input conditions. If the
melt were volatile saturated at the time of MI trapping, then the calculated pressure indicates that actual trapping pressure; if the trapped melt was volatile-undersaturated, the calculated pressure represents a minimum trapping pressure. Evidence for volatile saturation was not observed in the samples of the Sarno (PB) eruption (absence of FI coexisting with MI). For the calculation we assumed the average composition of Type I RMI, a temperature of 1250ºC, and oxidation states defined by FeO = FeOtot*0.8 (Fig. 6). The MI showing the maximum CO₂ content suggest a pressure ~300 MPa, but most of the Type I RMI show pressures between 50 and 100 MPa. It is important to emphasize again that the pressures calculated represent minimum trapping pressures as we observed no evidence to suggest that the MI trapped volatile-saturated melts..

Compositions of MI and their host clinopyroxenes were used to estimate the formation conditions for the NLM1-1a nodule using the model of Putirka (2008). Putirka (2008) includes the previously published models of Putirka et al. (1996, 2003) as well as newer models. As discussed above, MI may have become enriched in their host clinopyroxene component as a result of overheating. Published models are unable to correct for overheating, and only those MI that had compositions closest to the equilibrium composition with their host were used. According to Putirka (2008), one way to test for equilibrium is to compare the Fe-Mg exchange coefficient \([K_D(\text{Fe-Mg})_{\text{cpx-lic}}]\) calculated from the MI and its host clinopyroxene composition to a constant value of 0.28 ± 0.08 derived from 1,245 experimental observations. Because the exchange coefficient can vary from 0.04-0.68, with a roughly normal distribution (Putirka 2008), 18 MI-host pairs where the Fe-Mg coefficient was lower than 0.40 were used here. Applying the various thermobarometer models to the selected MI-host pairs, the temperature can be constrained with reasonable certainty, but the pressure varies within wide ranges (Table 3). The model of Putirka et al. (1996) predicted a temperature between 1043-1246 °C, with an average
value of 1186 °C. This same model predicts pressures of 120-1630 MPa, with an average of 610 MPa, and with 10 out of 18 pairs between 400-800 MPa. The accuracy of the thermobarometer for a single pair is reported to be at least ± 140 MPa and ± 27 °C, and probably ± 100 MPa and ± 15 °C when averaged over multiple pairs (Putirka et al. 1996). The model of Putirka et al. (2003) estimated temperatures of 980 to 1309 °C, with an average of 1152 °C. The estimated pressure ranges from -280 to 1160 MPa, and 11 out of 18 estimates are between 600 and 1000 MPa. The average estimated pressure is 760 MPa, not including the two negative pressures. The standard error of the pressure estimate is 170 MPa, and for temperature the standard error is 33 K (Putirka et al. 2003). Several newer thermobarometers were also developed by Putirka (2008). Most of these require the input of the H2O content of the liquid (i.e., the H2O content of the MI). These equations were not used because the H2O content in most cases was not measured and, when it was, it was very low (≤0.15 wt%) and it is unclear whether it is representative or not. H2O might have been lost from the MI during the heating experiments or as a result of hydrogen diffusion during the time the MI resided in the magma before eruption (e.g, Danyushevsky et al. 2002; Lloyd et al. 2013; Severs et al. 2007). Considering that the duration of each heating experiment was similar, the positive correlations between H2O and Tq and Mg# of Type I RMI suggests that H was significant H2O loss did not occur during heating experiments.

Putirka (2008) also developed a thermobarometer based on clinopyroxene composition only. A large number (212) of clinopyroxene compositions (several analyses from each crystal, obtained by EPMA) were used to constrain the pressure and temperature of formation based on this model. The temperature estimate is in good agreement with the results given by the previously mentioned thermometers. The estimated temperature of the clinopyroxenes from this study varies between 1019-1366 °C, with an average of 1184 °C. The pressure varies widely,
from 160 to 2480 MPa. Over half of the estimates fall between 400 and 800 MPa, with an average of 780 MPa. The standard error of estimate for pressure and temperature is ± 310 MPa and ± 58 °C, respectively (Putirka 2008). In summary, model calculations suggest that clinopyroxene likely crystallized at slightly under 1200 °C. Unfortunately, the thermobarometer models that are available do not constrain the formation pressure of the nodule with high precision. Recognizing these limitations, we conclude that the NLM1-1a nodule most likely formed at ≥400 MPa, corresponding to a depth of at least 11 km. This depth is consistent with a minimum depth of formation calculated based on the H₂O-CO₂ contents of RMI, and this depth is not improbable considering our understanding of the plumbing system of Mt. Somma-Vesuvius, as described below.

The magma feeding system beneath Mt. Somma-Vesuvius consists of three main magma storage levels, the two deepest of which are probably long-lived reservoirs (Piochi et al. 2006b). Isotopic, MI and FI data (Belkin and De Vivo 1993; Belkin et al. 1985; Cioni 2000; Fulignati et al. 2004; Lima et al. 2003, 2007; Marianelli et al. 1999; Piochi et al. 2006b) indicate a shallow reservoir at <6 km, which typically hosts the magmas producing the plinian and sub-plinian eruptions (De Vivo et al. 2010). However, Webster et al. (2012) emphasized that significant concentrations of F, Cl and S can greatly influence the solubility of H₂O and CO₂; hence, geobarometers based on these latter two volatile species may not adequately constrain the pressure conditions, and would underestimate the equilibrium pressure. A deeper magma chamber that supplies the interplinian eruptions was detected at about 8-12 km, and the deepest reservoir is located at >15 km (Piochi et al. 2006b). The deep structure of the plumbing system of the volcanic complex is supported by geophysical evidence as well (De Gori et al. 2001; De Natale et al. 2001, 2006; Nunziata and Costanzo 2010; Nunziata et al. 2006). A low velocity
layer is recognized at ~15-35 km depth, which has been interpreted as the deep root for the shallow crustal magma chambers (De Gori et al. 2001; De Natale et al. 2001, 2006; Nunziata et al. 2006).

Thermobarometry results suggest that the PB-Sarno (PB) eruption was fed from magma chambers that are deeper than the magma chambers that supposedly supplied the other plinian eruptions (e.g., 79 AD or Avellino). This is in partial agreement with the findings of Landi et al. (1999), who also predicted that a deep magma chamber fed the Sarno (PB) eruption, but from slightly shallower depths of about 9-12 km. Due to the large variations in the estimated pressures, it cannot be stated with certainty whether a deeper reservoir already existed beneath Mt. Somma-Vesuvius prior to the Sarno (PB) eruption, or if the samples came from the same reservoir that fed the main, “plinian phase” (Landi et al. 1999) of the Sarno (PB) eruption.

Implications

Mt. Somma-Vesuvius is located in a densely populated area of southern Italy, with many hundreds of thousands of people living in the “red” zone surrounding the volcano (e.g., Barnes 2011). Even though it is currently in a dormant state, the volcano is well known for its several plinian eruptions, including the infamous 79 AD eruption that destroyed Pompeii and other nearby towns, and a future violent eruption cannot be excluded. Reducing uncertainty associated with risk assessment requires not only continuous monitoring of the system but also a good understanding of the eruption history and the evolution of the plumbing system of the volcanic complex. Results presented here extend our knowledge of the geochemical conditions associated with eruptions at Mt. Somma-Vesuvius to earlier eruptive events that preceded the 79 AD event, and thus contribute to our understanding of the longer-term history of this volcano. Importantly,
our results suggest that plinian eruptions may be fed from magma sources that are deeper than is generally assumed and this, in turn, has important implications for interpreting geophysical data from the perspective of predicting future explosive (plinian) eruptions.

Acknowledgements

The authors would like to thank Paola Petrosino for the field work assistance, Esteban Gazel, Claudia Cannatelli, and Annamaria Lima for valuable discussions concerning volcanic processes and Luca Fedele for help with LA-ICP-MS analyses. The research was partially funded by the PhD Program (XXV Cycle, Coordinated by B. De Vivo) “Internal dynamics of volcanic systems and hydrogeological-environmental risks” of the University of Naples Federico II, (Italy), in collaboration with Virginia Tech in the framework of the Memorandum of Understanding (MoU) signed by the two Universities. This material is based, as well, upon work supported in part by the National Science Foundation under Grant no. EAR-1019770 to RJB. Matthew Severs and an anonymous reviewer are acknowledged for their reviews, and Claudia Cannatelli for her helpful editorial handling.

References cited

residence times and volatile addition. Journal of Volcanology and Geothermal Research, 82, 97-111.

metasomatic magma chamber shell of the 1944 eruption of Vesuvius. Acta
Vulcanologica, 10, 47-54.

Vesuvius magma chamber. Genesis and P-T-X conditions from melt and fluid inclusion
data. European Journal of Mineralogy, 12, 1025-1039.

inclusion record of immiscibility between silicate, hydrosaline, and carbonate melts:
Applications to skarn genesis at Mount Vesuvius. Geology, 29, 1043-1046.

of second immiscibility within magmatic fluids (79 AD eruption of Mt. Vesuvius).
Periodico di Mineralogia, 74, 43-54.

geochemistry and fluid inclusion study of skarns from Vesuvius. Mineralogy and
Petrology, 73, 145-176.

mid-ocean ridges driven by CO2-rich magmas. Nature Geoscience, 4, 260-263.

associated with potash-rich lavas of Somma-Vesuvius volcano, NSF final technical
report, p. 58, University of Rhode Island.
Quenched crystal mush and associated magma compositions as indicated by intercumulus glasses from Mt. Vesuvius, Italy. Journal of Volcanology and Geothermal Research, 9, 133-149.

Figure Captions

Figure 1. Variation diagrams of representative major and trace elements in clinopyroxene from nodule NLM1-1a from the Sarno (Pomici di Base) eruption of Mt. Somma-Vesuvius (Italy). a) Spider diagram of clinopyroxene compositions normalized to primitive mantle. Trace element concentrations determined by LA-ICP-MS. b) Cr vs MgO, c) CaO/Al₂O₃ vs. MgO, and d) Al₂O₃ vs, MgO. Error bars in panels b), c), and d) indicate the average standard deviations. Major element concentrations of panels b), c), and d) were determined by EPMA, Cr was determined by LA-ICP-MS.

Figure 2. Composition of MI hosted in clinopyroxene from sample NLM1-1a plotted on the total alkali silica diagram (Le Bas et al. 1986). All data recalculated to 100% anhydrous. Average estimated standard deviation is smaller than the size of the symbols. Data were obtained by EPMA. Grey fields represent MI data from Klébesz et al. (2012).
Figure 3. Composition of MI hosted in clinopyroxene from sample NLM1-1a. a) MgO vs. CaO, b) MgO vs. TiO$_2$, c) MgO vs. La, d) 1000/Sr vs. Ba/Sr. Dashed lines indicate mixing between end-members. Error bars on panels b) and c) indicate the average standard deviation. All data recalculated to 100% anhydrous. Major and minor element concentrations of panels a), b) and c) were determined by EPMA, trace element concentrations of panel d) by LA-ICP-MS.

Figure 4. Comparisons between the compositions of Type I RMI (this study) and compositions of MI in skarn and cumulate nodules from the literature (Fulignati and Marianelli 2007; Fulignati et al. 2001, 2004; Hermes and Cornell 1981; Lima et al. 2003, 2007). a) CaO/Al$_2$O$_3$ vs. MnO, b) CaO/Al$_2$O$_3$ vs. MgO, c) CaO/Al$_2$O$_3$ vs. SiO$_2$. Error bars indicate the average standard deviation. All data recalculated to 100% anhydrous. MI data representative of skarn and cumulate nodules from Mt. Somma-Vesuvius are shown by grey fields. Data of this study were obtained by EPMA.

Figure 5. Comparison of compositions of Type I RMI in clinopyroxene from sample NLM1-1a with bulk rock compositions of juvenile eruptive rocks from Mt. Somma-Vesuvius. a) CaO/Al$_2$O$_3$ vs. SiO$_2$, b) CaO/Al$_2$O$_3$ vs. Na$_2$O, c) CaO/Al$_2$O$_3$ vs. K$_2$O, d) CaO/Al$_2$O$_3$ vs. MgO, e) CaO/Al$_2$O$_3$ vs. Ba, f) and g) K$_2$O/Ba vs. Sr/Zr. Bulk rock data, indicated by grey fields, are from the literature (see text). All data recalculated to 100% anhydrous. Average estimated standard deviations are smaller than the size of the symbols. On panel g) full, dashed and dotted lines indicate the compositional trend of the bulk rocks of the third, second and first mega-cycles, respectively. Major and minor element concentrations were determined by EPMA, trace element concentrations by LA-ICP-MS.

Figure 6. H$_2$O-CO$_2$ systematics of RMI from this study. The isobars were calculated using the H$_2$O-CO$_2$-silicate melt solubility model by Papale et al. (2006). For the calculation, we assumed...
the average composition of Type I RMI for the melt, a temperature of 1250°C, and redox conditions controlled by FeO = FeO_{tot}*0.8. Note that the maximum pressure estimated for Type I RMI plots close to the 300 MPa isobar. This pressure is considered a minimum trapping pressure due to the effect of overheating and absence of volatile saturation. Error bars indicate the average standard deviation. Volatile compositions were obtained by SIMS.
Table 1. Representative analyses of clinopyroxene from sample NLM1-1a

<table>
<thead>
<tr>
<th>Element</th>
<th>Sample</th>
<th>cpx153</th>
<th>cpx151</th>
<th>cpx143 (B)</th>
<th>cpx143 (C)</th>
<th>cpx140</th>
<th>cpx110</th>
<th>cpx05</th>
<th>cpx117</th>
<th>cpx116</th>
<th>cpx159</th>
<th>cpx139</th>
<th>cpx150</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>49.98(17)</td>
<td>48.00(17)</td>
<td>50.63(20)</td>
<td>49.46(20)</td>
<td>51.08(20)</td>
<td>49.12(26)</td>
<td>50.89(20)</td>
<td>49.85(20)</td>
<td>49.84(20)</td>
<td>49.81(20)</td>
<td>49.76(17)</td>
<td>50.38(20)</td>
<td>48.28(20)</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.10(3)</td>
<td>1.22(3)</td>
<td>0.93(3)</td>
<td>1.18(3)</td>
<td>0.89(3)</td>
<td>1.51(5)</td>
<td>0.75(2)</td>
<td>0.76(2)</td>
<td>1.10(3)</td>
<td>1.03(3)</td>
<td>1.18(3)</td>
<td>1.33(3)</td>
<td>1.61(4)</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>4.90(5)</td>
<td>5.07(5)</td>
<td>4.63(5)</td>
<td>6.11(6)</td>
<td>3.93(5)</td>
<td>6.37(8)</td>
<td>3.84(4)</td>
<td>4.72(5)</td>
<td>4.47(5)</td>
<td>4.49(5)</td>
<td>4.79(5)</td>
<td>5.45(6)</td>
<td>6.40(6)</td>
</tr>
<tr>
<td>FeO</td>
<td>7.61(13)</td>
<td>8.15(13)</td>
<td>6.59(12)</td>
<td>7.03(12)</td>
<td>6.59(12)</td>
<td>8.32(19)</td>
<td>6.66(12)</td>
<td>6.38(11)</td>
<td>7.94(14)</td>
<td>7.92(14)</td>
<td>7.55(13)</td>
<td>7.63(13)</td>
<td>8.11(13)</td>
</tr>
<tr>
<td>MnO</td>
<td>0.20(3)</td>
<td>0.15(3)</td>
<td>0.16(3)</td>
<td>0.20(4)</td>
<td>0.17(3)</td>
<td>0.16(5)</td>
<td>0.17(3)</td>
<td>0.12(3)</td>
<td>0.22(4)</td>
<td>0.20(4)</td>
<td>0.19(3)</td>
<td>0.18(4)</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>14.09(10)</td>
<td>13.87(10)</td>
<td>13.80(9)</td>
<td>14.53(10)</td>
<td>14.73(10)</td>
<td>13.18(13)</td>
<td>15.12(11)</td>
<td>13.99(10)</td>
<td>14.13(10)</td>
<td>14.95(10)</td>
<td>13.96(10)</td>
<td>12.93(9)</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.36(2)</td>
<td>0.38(2)</td>
<td>0.32(2)</td>
<td>0.32(2)</td>
<td>0.28(2)</td>
<td>0.44(4)</td>
<td>0.26(2)</td>
<td>0.25(2)</td>
<td>0.33(2)</td>
<td>0.34(2)</td>
<td>0.33(2)</td>
<td>0.35(2)</td>
<td>0.35(2)</td>
</tr>
<tr>
<td>Total</td>
<td>100.37</td>
<td>97.97</td>
<td>99.70</td>
<td>100.00</td>
<td>100.12</td>
<td>100.46</td>
<td>100.21</td>
<td>99.79</td>
<td>100.09</td>
<td>99.26</td>
<td>101.12</td>
<td>99.66</td>
<td></td>
</tr>
<tr>
<td>Mg#</td>
<td>-</td>
<td>0.82</td>
</tr>
<tr>
<td>En</td>
<td>41</td>
<td>41</td>
<td>43</td>
<td>46</td>
<td>47</td>
<td>46</td>
<td>46</td>
<td>47</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Wo</td>
<td>46</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>47</td>
<td></td>
</tr>
</tbody>
</table>

mg# = Mg/(Mg+Fe²⁺); En, Wo, Fs, enstatite, wollastonite, ferrosilite in mol% of clinopyroxene; -, below detection limit; major and minor elements are in wt%, trace elements are in ppm. Major and minor elements were determined by EPMA, trace elements by LA-ICP-MS. Estimated standard deviation (e.s.d.) is indicated in parentheses.
Table 2. Composition of representative RMI in clinopyroxene

<table>
<thead>
<tr>
<th>Sample</th>
<th>Fsp or fsp-bearing MI</th>
<th>Basaltic RMI</th>
<th>High-P RMI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cpx134p2_A</td>
<td>cpx157_A</td>
<td>cpx05_A2</td>
</tr>
<tr>
<td>SiO₂</td>
<td>48.55(24)</td>
<td>50.40(24)</td>
<td>48.61(24)</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.10(3)</td>
<td>0.11(3)</td>
<td>0.95(4)</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>32.26(19)</td>
<td>29.40(11)</td>
<td>14.07(12)</td>
</tr>
<tr>
<td>FeO</td>
<td>0.71(7)</td>
<td>0.92(7)</td>
<td>6.71(17)</td>
</tr>
<tr>
<td>MnO</td>
<td>-</td>
<td>0.03(4)</td>
<td>0.24(10)</td>
</tr>
<tr>
<td>MgO</td>
<td>0.04(2)</td>
<td>0.04(2)</td>
<td>7.55(11)</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.84(6)</td>
<td>3.18(8)</td>
<td>1.30(4)</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.44(3)</td>
<td>0.37(2)</td>
<td>1.77(3)</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.08(4)</td>
<td>0.05(4)</td>
<td>0.47(5)</td>
</tr>
<tr>
<td>Sc</td>
<td>9.98</td>
<td>99.60</td>
<td>100.32</td>
</tr>
<tr>
<td>V</td>
<td>16.29</td>
<td>13.10</td>
<td>16.12</td>
</tr>
<tr>
<td>Cr</td>
<td>81.69</td>
<td>69.61</td>
<td>(CaO/Na₂O)</td>
</tr>
<tr>
<td>K</td>
<td>3.10</td>
<td>2.96</td>
<td>3.10</td>
</tr>
<tr>
<td>Ni</td>
<td>0.44</td>
<td>0.37</td>
<td>0.44</td>
</tr>
<tr>
<td>Rb</td>
<td>0.12</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>Y</td>
<td>1752(5)</td>
<td>1393(4)</td>
<td>1752(5)</td>
</tr>
<tr>
<td>La</td>
<td>5.3(3.7)</td>
<td>7.5(4.4)</td>
<td>5.3(3.7)</td>
</tr>
<tr>
<td>Ce</td>
<td>7.6(2.9)</td>
<td>21.3(1.9)</td>
<td>7.6(2.9)</td>
</tr>
<tr>
<td>Nd</td>
<td>6.9(3.4)</td>
<td>6.9(3.4)</td>
<td>6.9(3.4)</td>
</tr>
<tr>
<td>Sm</td>
<td>2.5(2.1)</td>
<td>1.6(3.2)</td>
<td>2.5(2.1)</td>
</tr>
<tr>
<td>Eu</td>
<td>1.7(1.3)</td>
<td>-</td>
<td>1.7(1.3)</td>
</tr>
<tr>
<td>Yb</td>
<td>-</td>
<td>CO₂</td>
<td>1717 ± 240</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.15 ± 0.01</td>
<td>0.14 ± 0.01</td>
<td>0.04 ± 0.00</td>
</tr>
<tr>
<td>F</td>
<td>980 ± 49</td>
<td>482 ± 24</td>
<td>350 ± 17</td>
</tr>
<tr>
<td>S</td>
<td>103 ± 6</td>
<td>47 ± 3</td>
<td>31 ± 2</td>
</tr>
<tr>
<td>Cl</td>
<td>652 ± 156</td>
<td>513 ± 123</td>
<td>129 ± 31</td>
</tr>
<tr>
<td>Tq</td>
<td>1256</td>
<td>1251</td>
<td>1256</td>
</tr>
<tr>
<td>host mg#</td>
<td>0.82</td>
<td>0.83</td>
<td>0.85</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Sample</th>
<th>cpx165_B</th>
<th>cpx153_E</th>
<th>cpx151_D</th>
<th>cpx143_B</th>
<th>cpx143_C</th>
<th>cpx140_D</th>
<th>cpx110_B</th>
<th>cpx05_B</th>
<th>cpx117_A</th>
<th>cpx116_A</th>
<th>cpx159_A</th>
<th>cpx139_C</th>
<th>cpx150_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>49.99±24</td>
<td>52.31±24</td>
<td>53.98±27</td>
<td>50.14±26</td>
<td>52.39±27</td>
<td>52.32±27</td>
<td>52.43±26</td>
<td>51.57±26</td>
<td>51.78±26</td>
<td>48.74±24</td>
<td>50.77±24</td>
<td>52.50±27</td>
<td>51.97±27</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.29±5</td>
<td>1.11±4</td>
<td>0.93±4</td>
<td>1.20±4</td>
<td>1.04±4</td>
<td>1.31±5</td>
<td>0.98±4</td>
<td>1.19±5</td>
<td>1.39±5</td>
<td>1.37±5</td>
<td>1.34±5</td>
<td>1.21±5</td>
<td>1.32±5</td>
</tr>
<tr>
<td>FeO</td>
<td>7.85±18</td>
<td>6.91±17</td>
<td>5.38±15</td>
<td>7.02±17</td>
<td>6.12±16</td>
<td>7.37±18</td>
<td>6.66±16</td>
<td>8.39±21</td>
<td>8.43±21</td>
<td>12.27±30</td>
<td>8.67±19</td>
<td>7.05±17</td>
<td>7.10±17</td>
</tr>
<tr>
<td>MnO</td>
<td>0.11±5</td>
<td>0.09±5</td>
<td>0.084</td>
<td>0.13±4</td>
<td>0.10±5</td>
<td>0.13±5</td>
<td>0.21±9</td>
<td>0.18±7</td>
<td>0.16±7</td>
<td>0.14±4</td>
<td>0.12±5</td>
<td>0.09±4</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>7.90±10</td>
<td>4.21±7</td>
<td>5.24±8</td>
<td>8.04±10</td>
<td>4.88±8</td>
<td>4.56±8</td>
<td>8.43±12</td>
<td>8.35±12</td>
<td>4.35±6</td>
<td>5.39±8</td>
<td>5.03±8</td>
<td>7.09±9</td>
<td>4.81±8</td>
</tr>
<tr>
<td>CaO</td>
<td>13.30±12</td>
<td>6.63±9</td>
<td>8.03±10</td>
<td>12.82±12</td>
<td>8.43±10</td>
<td>8.00±9</td>
<td>13.10±14</td>
<td>13.85±15</td>
<td>8.49±9</td>
<td>9.77±11</td>
<td>8.32±10</td>
<td>12.18±12</td>
<td>7.22±9</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.76±6</td>
<td>3.02±6</td>
<td>2.27±7</td>
<td>1.85±6</td>
<td>2.15±7</td>
<td>2.77±8</td>
<td>1.74±5</td>
<td>1.53±5</td>
<td>2.62±6</td>
<td>2.65±8</td>
<td>2.67±8</td>
<td>2.13±7</td>
<td>3.18±8</td>
</tr>
<tr>
<td>K₂O</td>
<td>5.30±6</td>
<td>6.65±9</td>
<td>6.57±9</td>
<td>4.21±7</td>
<td>6.52±9</td>
<td>6.09±8</td>
<td>3.85±6</td>
<td>3.47±6</td>
<td>5.24±9</td>
<td>4.14±7</td>
<td>5.65±8</td>
<td>4.00±7</td>
<td>6.21±8</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.68±7</td>
<td>0.72±7</td>
<td>0.73±8</td>
<td>0.66±7</td>
<td>0.83±8</td>
<td>0.98±8</td>
<td>0.72±7</td>
<td>0.37±4</td>
<td>0.74±7</td>
<td>0.72±7</td>
<td>0.80±8</td>
<td>0.57±7</td>
<td>0.89±8</td>
</tr>
<tr>
<td>Total</td>
<td>98.22</td>
<td>96.82</td>
<td>98.85</td>
<td>99.10</td>
<td>97.87</td>
<td>99.18</td>
<td>100.12</td>
<td>100.73</td>
<td>99.34</td>
<td>99.30</td>
<td>98.10</td>
<td>99.72</td>
<td>98.18</td>
</tr>
<tr>
<td>CaO/Na₂O</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 2. Composition of representative RMI in clinopyroxene (continued)
Table 3. Predicted formation conditions of clinopyroxene calculated by different geothermobarometers

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>1043-1246 °C ± 27 °C</td>
<td>980-1309 °C ± 33 °C</td>
<td>1019-1366 °C ± 58 °C</td>
</tr>
<tr>
<td>Temperature average</td>
<td>1186 °C ± 15 °C</td>
<td>1152 °C ± 33 °C</td>
<td>1184 °C ± 58 °C</td>
</tr>
<tr>
<td>Pressure</td>
<td>120-1630 MPa ± 100 MPa</td>
<td>-280-1160 MPa ± 170 Mpa</td>
<td>160-2480 kMPa ± 310 Mpa</td>
</tr>
</tbody>
</table>
Figure 4.

- ▲ Mi in cumulate nodules from the 1944 eruption
- △ Mi in skarn nodules from the 1944 eruption
- ◈ Mi in cumulate nodules from eruptions 1440-1631
- ◊ Mi in syenite nodules from the 472 AD eruption
- ● Mi in skarns from the 472 AD eruption
- ○ Mi in cumulate nodules from the 79 AD eruption
- + Mi in cumulate nodule from a pre-79 AD eruption
- ■ Type I RMI (this study)

Data from literature

- MI in skarn nodules
- MI in cumulate nodules

(a) MnO (wt%)

(b) MgO (wt%)

(c) SiO2 (wt%)

CaO/Al2O3