Modelling of Complex Physical Processes in Electrostatic Precipitators

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

(http://iopscience.iop.org/1742-6596/301/1/012060)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 152.66.21.59
The article was downloaded on 30/06/2011 at 15:23

Please note that terms and conditions apply.
Modelling of Complex Physical Processes in Electrostatic Precipitators

KISS István1, IVÁNCSY Tamás1, SUDA Jenő2, BERTA István1
Budapest University of Technology and Economics,
1Department of Electric Power Engineering, Egry J. u. 18, Budapest H-1111, Hungary
2Department of Fluid Mechanics, Bertalan Lajos 4–6., Budapest H-1111, Hungary
E-mail: kisz.istvan@vet.bme.hu

Abstract. Electrostatic precipitator (ESP) models have improved significantly in the past years. The dramatic development of the capacity of computers made it possible to increase the complexity of ESP models. Recently the different interactions between the gas, the electric field with ion space charge and the charged particles to be precipitated can be described more accurately by the newly developed complex approach. However even some of the newest computer models are limited; they are not able to follow the interactions of the complicated physical phenomena properly. For example pulse energisation of short time impulses cannot be described correctly with models assuming continuous corona current. There is another important problem, namely the examined duration of operation. Some of the models determine the trajectories of dust particles assuming that they are unchanged during the operation of an ESP. The validity of this assumption is very limited in such cases, where the development of certain phenomena is time dependent (e.g. back corona formation). In this paper the authors focus on the "long term" models, analysing such situations in which it is vital to investigate a longer period of operation of ESP’s. Using the newly developed model the effect of back corona, rapping, etc. can be analysed with higher reliability than it has been performed in previous ESP models.

1. Introduction
Numerical models are useful tools for predicting the performance of an electrostatic precipitator. There were numerous models developed by experts to predict the collection efficiency of ESP’s. The difficulty in the modelling of ESP’s is the large number of processes and phenomena which have influences on each other. In the modelling some of the effects are neglected because of the limited computational capacity or their minor influence on the modelled phenomena.

In the majority of the models 2D modelling is used. Both the electric and flow field can be treated as 2D, and the effect of gravity is neglected. This method provides a simple and good approximation of the processes in the electrostatic precipitator. The use of a 2D model reduces the amount of computation therefore longer sections – a whole ESP channel – and more complex processes can be modelled. 3D models also exists, but because of the high computational needs, these are just for short ESP sections (e.g. Chang[1], Adamiak[2]).

2. The modelled phenomena
In a numerical model it is necessary to include the parameters of the precipitated particles, the parameters of the energization and the gas flow. It is essential to know the electric field created
inside the ESP channel since this is relevant for particle charging and the charged particles transferred in the flow field.

2.1. Calculating the electric field
The early models supposed a uniform electric field through the whole channel[3]. Later analytical approximation[4, 5], then the finite differences method[6], the finite elements method[7] and the combination of the latter two with the finite volume method were used. Nowadays combined methods such as the combination of finite differences method and finite elements method[8, 9], and the boundary element method combined with finite volume method are used.

It is highly important to include the effects of ionic and dust space charge in the calculation of electric field. Based upon practical experience and measurements, the dust space charge has a notable influence on the electric field and therefore on the corona current, back corona formation and on the efficiency of the precipitation.

2.2. Particle charging
For the calculation of the particle charge in numerical models there evolved two major ways. One assumes for a given particle diameter a constant saturation charge through the whole ESP. The particles are assumed charged to the saturation charge from their entry in the ESP. Numerous models use this method[10, 11]. The other possibility is to calculate the charge of the particles in a time and position dependent way, taking into account the local electric field and the charge distribution. This method was also used by P. A. Lawless and later in a Lagrangian particle movement simulation by Meroth[12] and Schmid et al.[13]. There are just a few models which calculate the dust space charge using the Lagrangian method (one example is the model from I. Gallimberti[14]). The best solution is the use of the combined charging model and the Lagrangian approach for the particle movement[15].

2.3. Flow field
Simple models assume constant gas velocity profile in the cross-section of the channel (e.g. Deutsch[16] and Ramadan & Soo[17]). Beside the laminar flow models there were numerous different turbulent flow models created, such as $k-\varepsilon$ turbulence model: Källö & Stock[9]; DNS: Soltani et al.[10]; LES: Ullum[11]. These CFD simulations made the models more accurate, and through the determination of the diffusion coefficient (D_p) it is possible to calculate important turbulent flow parameters, for example the flow modification effect of the corona electrode geometry.

Nowadays the effect of the ionic wind on the turbulent gas flow can be better analysed. The differences in the EHD simulations are in the details of how they take into account the charge densities (ρ_i and ρ_d). One example of a model where the space charges and the ionic wind are also taken into account is the LES model created by Ullum[11]. Because of the large computational demand it just calculates an ESP section with 2 corona electrodes.

3. Long-time modelling
In a numerical ESP model the following effects play a role in the efficiency of precipitation:

- electric field modified by space charges (ionic space charge and dust space charge)
- ionization (the generated free charges on the corona electrode and the ionic wind)
- particle charging, saturation charge and charging process (diffusion, field and mixed)
- gas flow (turbulent and boundary flow)
- dust collection, dust layer expansion
- dust re entrainment, back corona
To have an accurate model it is necessary to model these phenomena as accurately as possible and holding the computational needs of the simulation as low as possible. For the long time models it is necessary to generate a model, which calculates the processes in a non stationary manner i.e. it takes the short time (fast) changes and also the long time (slow) changes into account, especially in the case of pulse energization.

If there is a change in the parameters of the incoming dust (e.g. by fuel changes) the collection efficiency changes. In such cases the relative permittivity, particle size and resistivity of the dust changes, which influences the saturation charge, cohesion of the collected dust and back corona formation. Also, rapping has an influence on the dust emission. Closer to the inlet, larger particles are collected while closer to the outlet small particles[18], so the collected dust layer is different.

The different dust layer formation needs a different rapping cycle. The rapping of the sections closer to the outlet has greater influence on the dust emission, since the re entering dust particles are closer to the outlet and have smaller particle size which needs longer to collect. However the rapping cycle has a longer time period, because less dust reaches the last sections of the ESPs.

Also the back corona formation depends highly on the collected dust layer thickness, therefore the back corona occurrence is supposed closer to the inlet.

There are dust deposits on the corona electrodes which should be handled in the long-time modelling also. These dust deposits can be handled as changes in the corona wire diameter.

4. Conclusions
In the long-time modelling it is essential to track the amount of dust collected on the collecting electrode and modelling the effect of rapping. Practical experience shows that, the changes in the dust properties can generate lower efficiency periods for a while. The model should be able to handle dust mixtures with different electric properties and different concentrations. These property changes should be tracked on the collected dust layer also, to get reliable results.

References
[16] Deutsch W 1922 Annalen der Physik 68 335–341
Table 1. The main parameters of Electrostatic Precipitator models (numerical simulation)[15]

<table>
<thead>
<tr>
<th>Modelling of electric field</th>
<th>Charging of particles</th>
<th>Modelling of flow field</th>
<th>Modelling of two-phase flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniformly electric field</td>
<td>Ion mobility</td>
<td>Uniformly electric field</td>
<td>Modelling of two-phase flow</td>
</tr>
<tr>
<td>Electric field</td>
<td>Ion mobility</td>
<td>Electric field</td>
<td>Emulsion modelling</td>
</tr>
<tr>
<td>Electric field</td>
<td>Ion mobility</td>
<td>Electric field</td>
<td>0 / ∞ D_p diffusion coefficient</td>
</tr>
<tr>
<td>Electric field</td>
<td>Ion mobility</td>
<td>Electric field</td>
<td>Constant D_p value</td>
</tr>
<tr>
<td>Electric field</td>
<td>Ion mobility</td>
<td>Electric field</td>
<td>Local D_p value</td>
</tr>
<tr>
<td>Electric field</td>
<td>Ion mobility</td>
<td>Electric field</td>
<td>Lagrangian modelling</td>
</tr>
<tr>
<td>Electric field</td>
<td>Ion mobility</td>
<td>Electric field</td>
<td>CRW Continuous model</td>
</tr>
<tr>
<td>Electric field</td>
<td>Ion mobility</td>
<td>Electric field</td>
<td>SRF Simulated particle flow</td>
</tr>
<tr>
<td>Electric field</td>
<td>Ion mobility</td>
<td>Electric field</td>
<td>Random generated</td>
</tr>
<tr>
<td>Electric field</td>
<td>Ion mobility</td>
<td>Electric field</td>
<td>Fluctuating velocity</td>
</tr>
<tr>
<td>Electric field</td>
<td>Ion mobility</td>
<td>Electric field</td>
<td>PTM Particle trajectory</td>
</tr>
</tbody>
</table>

Legend:
- □: parameter of the previous version
- □: parameter of the previous version

Modeling of electric field:
- FD: Finite difference method
- FE: Finite elements method
- FY: Finite volume method
- REM: Boundary element method
- I: Including ion space charge
- P: Including dust space charge

Modeling of particle charging:
- F: Field charging, impact ionization
- D: Diffusion charging
- C: Field and diffusion charging
- FMD: Field modified diffusion charging theory
- FCT: Fluss Corrected Transport method

Modeling of flow field:
- Laminar model
- Turbulence model
- Boundary layer equation
- Direct numerical simulation
- Large eddy simulation
- Eddy lifetime

Modeling of two-phase flow:
- Emulsion modelling
- CRW Continuos model
- SRF Simulated particle flow
- Random generated fluctuating velocity
- Particle trajectory model