
MITIP 2012 Modern Information Technology in the Innovation Processes of Industrial Enterprises

VERIFICATION OF AN INDUSTRIAL SAFETY FUNCTION USING COLOURED
PETRI NETS AND MODEL CHECKING

Tamás Bartha1,2, András Vörös2, Attila Jámbor2, Dániel Darvas2

1Computer and Automation Research Institute of the
Hungarian Academy of Sciences (MTA SZTAKI)
Kende u. 13–17., H-1111 Budapest, Hungary

bartha.tamas@sztaki.mta.hu
2Department of Measurement and Information Systems,

Budapest University of Technology and Economics (BME)
Magyar tudósok körútja 2., H-1117 Budapest, Hungary

vori@mit.bme.hu

Abstract:

The verification of embedded, safety-critical industrial systems is important, since a failure of
these systems may have catastrophic consequences. Formal methods guarantee not only the
correctness, but also the completeness of the analysis. However, even moderately complex
industrial systems have state spaces so large that former analysis techniques could not handle.

In this paper we model and analyse a small, but important part of a safety-critical industrial
system: a safety function initiating an emergency procedure in a nuclear power plant. We
model safety function using a proprietary coloured Petri net formalism, and perform the analy-
sis by symbolic model checking based on the saturation algorithm. The analysis results were
computed by the model checking tool developed at our department∗. Although this particular
safety function has been analysed in earlier research [11], this is the first time the full behaviour
of this system could be examined without any restrictions.

Keywords:

safety systems, formal methods, coloured Petri net, model checking, saturation

1 INTRODUCTION

Embedded controllers are now a standard and prevalent part of industrial systems. They pro-
vide rich functionality and easy programmability. Still, these advantages also create a problem:
the verification and validation (V&V) of these devices and their programs is becoming increas-
ingly difficult. Testing is the traditional approach to V&V in industrial control systems. However,
their behaviour is typically complex enough to make it impossible to achieve a complete test
coverage for an even moderately complex controller. Hence, formal modelling and analysis is
gaining wider acceptance in the industry, especially in the safety-critical application areas.

A frequently mentioned weakness of formal methods is that they often “bite off more than they
can chew”, meaning that the formal models of real systems are susceptible to state explosion.
While this is a valid argument, the aim of our paper is to demonstrate that recent development
in the field of model checking, advanced state space exploration algorithms and storage data
structures make us possible to solve problems that older methods could not handle. Our ap-
plication example is a small, but important safety-critical industrial system: the safety function
initiating an emergency procedure in a nuclear power plant.

The contributions of this paper are twofold: theoretical and practical. On the theoretical side,
we have adapted and extended the so-called saturation algorithm [3] to be able to represent

∗The Department of Measurement and Information Systems, BME.



MITIP 2012 Modern Information Technology in the Innovation Processes of Industrial Enterprises

and explore the state space of coloured Petri nets, and implemented this new approach in
the model checking tool we are developing [14]. On the practical side, we have used this
new algorithm to successfully verify the PRISE safety function (its detailed description is in
Section 4.1) that had been analysed in earlier research [11], but its full behaviour could not be
examined without restrictions by former approaches. As our measurements show, we could
perform a complete analysis of this safety function quickly and efficiently, using only an ordinary
desktop computer, by employing state-of the-art formal verification methods.

1.1 Previous work

As shown later in Section 5.2, our case study, the PRISE safety function has a huge state
space (> 1012 states) and many different behaviours, therefore efficient automatic methods
are indispensable to prove its correctness. The first successful verification attempt was re-
ported in [10], where the authors used coloured Petri nets and the Design/CPN modelling tool.
Design/CPN has a simple explicit state model checker without built-in reduction methods, thus
it was not able to explore the complete state space of the model, only a small part (approx.
4 · 105 states) could fit into the memory. The authors used state space reduction techniques,
then partitioned the state space and separately analysed different subspaces. Finally, they
have managed to obtain reduced subspaces with manageable size and could complete the
formal verification.

Later, we have created a formal model of the PRISE safety function in the UPPAAL tool [12].
The modelling formalism of UPPAAL uses networks of timed automata extended with data
structures and a data manipulation language. It has symbolic state space representation,
built-in state space reduction methods, and a (partial) Computation Tree Logic (CTL) model
checker. Unfortunately, UPPAAL has also failed to explore the complete state space due to
memory overflow. Nevertheless, by reducing the model we have at least succeeded proving
some of the requirements with UPPAAL.

We have also tried other symbolic approaches. Our first choice was the Symbolic Analysis
Laboratory (SAL) model checker [12]. Sadly, this attempt to verify the PRISE safety function
has failed as well, even though SAL uses a Binary Decision Diagram based efficient state
space representation. Without being able to trace the low-level operation of SAL, our assump-
tion is that the next-state relation grew too large: the state space explosion turned into decision
diagram explosion in this case.

We have tried using other existing advanced Petri net verification methods [13]. They, however,
operate on simple, uncoloured Petri nets, therefore we have developed an automated system-
atic conversion procedure to convert the coloured Petri net model of PRISE to a simple Petri
net first.

• We have built an unfolding based analysis tool. As unfolding is efficient for asynchronous
models, our expectation was that it could overcome the state space explosion problem.
Unfortunately, this approach still ran out of memory due to the long distinctive trajectories.

• In [3] the authors showed an efficient symbolic state space generation and model checking
method for asynchronous systems, especially for Petri nets. We have implemented and
ran the algorithm with different settings on the converted simple net, but the algorithm ran
out of memory. Unfortunately, the size of the converted model was too large, which caused
both the state space representation and the next-state relation to exceed our resources.

The common weakness of the listed past approaches is that they could only reach partial
success, as none of them was able to explore the full state space of the PRISE safety function.



MITIP 2012 Modern Information Technology in the Innovation Processes of Industrial Enterprises

2 BACKGROUND

In this section we outline the theoretical background of our work. First, we present coloured
Petri nets, the modelling formalism we used. Then, we introduce Multiple-valued Decision
Diagrams. They form the underlying data structures of our algorithms that store the state
space during model checking. Finally, we outline the saturation based state space exploration
algorithm, and the model checking background.

2.1 Petri nets

Petri nets are graphical models for concurrent and asynchronous systems, providing both
structural and dynamical analysis. A (marked) discrete ordinary Petri net is defined by a 5-tuple
PN = (P, T,E,w,M0), represented graphically by a directed bigraph. P = {p1, p2, . . . , pn} is
a finite set of places, T = {t1, t2, . . . , tm} is a finite set of transitions, E ⊆ (P × T ) ∪ (T × P )
is the finite set of edges, w : E → Z+ is the weight function assigning weights w(pi, tj) to the
edges from pi to tj . M : P → N is a marking function, where the number of tokens in a place
pi is represented by M(pi) for every i and M0 is the initial marking of the net. A t transition is
enabled, if for every e = (pi, t) incoming arc of t : M(pi) ≥ w(pi, t). An event in the system is
the firing of an enabled transition ti, which decreases the number of tokens in the input places
pj with w(pj , ti) and increases the number of tokens in every pk output places with w(ti, pk).
The firing of conflicting transitions is non-deterministic.

The state space or reachability graph of a Petri net is the set of states reachable from the
initial state through transition firings. It can be either finite or infinite. Figure 1(a) depicts a
simple example Petri net model of a producer-consumer system. The producer creates items
and places them in the buffer, from where the consumer consumes them. For synchronizing
purposes the capacity of the buffer is one, so the producer has to wait till the consumer takes
the item from the buffer. This Petri net model has a finite state space of 8 states.

producer buffer consumer

(a) The Petri net of the
producer-consumer model

terminal
level

consumer
level

producer &
buffer level

11

(b) State space
representation with MDD

Figure 1: Producer-consumer example

2.2 Coloured Petri nets

The coloured Petri net (CPN) formalism enriches ordinary Petri nets with complex data struc-
tures [8]. This allows the creation of clearer and more compact models. In this paper we
use a variant of well-formed coloured Petri nets that we built into the PetriDotNet tool [14], the
software we develop and use for modelling and analysis.

Our net variant has a CPN = (P, T,E,Σ, C,G,A,M c
0) formal structure. The meaning of P , T

and E is the same as in ordinary Petri nets. Σ = {σ1, σ2, . . . , σκ} is a set of colour sets (data
types). In well-formed coloured Petri nets, the Σ set is a finite set. C : P → Σ is the colour
function assigning colour sets to each place. G : T → Ĝ is a function that assigns a guard to
each transition. A : E → Â is the arc expression function assigning an arc expression to each
edge. M c

0 : P → M̂ is a marking function assigning multi-sets of tokens to each place.



MITIP 2012 Modern Information Technology in the Innovation Processes of Industrial Enterprises

The firing semantic is different from ordinary Petri nets. A G(t) guard is a logical function that
can contain Boolean operators and place marking expressions. An A(e) arc expression is a
function that evaluates to a multi-set of tokens. The σi colour sets determine the allowed sets
of tokens. A t transition is enabled, if for every incoming e arc the A(e) expression is satisfiable
and the value of the G(t) guard is true. A firing of an enabled transition ti takes A(e) tokens
from p for every e = (p, ti) ∈ E and puts A(f) tokens to p for every f = (ti, p) ∈ E.

The different variants of CPNs have various constraints for colour sets, guards and arc expres-
sions. In our formalism the colour sets can be simple or complex colour sets. A simple colour
set is a finite enumeration or a finite subset of integers. A complex colour set is a Cartesian
product of simple colour sets. An arc expression can contain token constants and simple vari-
ables representing a member of a simple colour set. The guard expressions can contain token
constants, simple variables, Boolean operators, relation signs and the successor operator [14].

2.3 Model checking

Model checking [5] is an automatic technique for verifying finite state systems. Given a model,
model checking decides whether the model fulfils the specification. Formally: letM be a Kripke
structure (i. e., state transition graph). Let f be a formula of temporal logic (i. e., the specifi-
cation). The goal of model checking is to find all states s of M such that M, s � f . Structural
model checking approaches compute the results with the help of the formerly explored state
space representation and transition relation representation. So at first the algorithm explores
the possible reachable states, and after it we can perform the model checking procedure.

Computation Tree Logic (CTL) [6] is widely used to express temporal specifications of systems,
as it has expressive syntax and there are efficient algorithms for its analysis. Operators occur
in pairs in CTL: the path quantifier, either A (on all paths) or E (there exists a path), is followed
by the tense operator, one of X (next), F (future, or finally), G (globally), and U (until). However
we only need to implement 3 of the 8 possible pairings due to the duality [5]: EX, EU, EG,
and we can express the remaining with the help of them in the following way: AX p ≡ ¬EX ¬p,
AG p ≡ ¬EF ¬p, AF p ≡ ¬EG ¬p, A[p U q] ≡ ¬E[¬q U (¬p∧¬q)]∧¬EG ¬q, EF p ≡ E[true U p].

The semantics of the 3 implemented CTL operators are as follows [5]:

• EX: i0 � EX p iff ∃i1 ∈ N (i0) state so that i1 � p. This means that EX corresponds to the
inverse N function, applying one step backward through the next-state relation.

• EG: i0 � EG p iff ∀n > 0 : ∃I = (i0, i1, i2, . . . , in) path, so that ∀1 ≤ j ≤ n : ij ∈ N (ij−1), and
ij � p, so that there is a strongly connected component containing states satisfying p. The
evaluation of EG needs a greatest fixed-point computation, therefore saturation cannot be
applied directly to it. Computing the fixed-point, however, benefits from the locality provided
by decomposition.

• EU: i0 � E[p U q] iff ∃n ≥ 0,∃I = (i0, i1, i2, . . . , in) path, so that ∀1 ≤ j ≤ n : ij ∈ N (ij−1),
∀0 ≤ k < n : ik � p and in � q. The sates satisfying this property are computed with the
following least fixed-point: lfp Z[q∨ (p∧EXZ)]. Informally: we search for a state q reached
through only states satisfying p.

2.4 Decision diagrams

Decision diagrams [1] are used in symbolic model checking for efficiently storing the state
space and the possible state changes of the models. A Multiple-valued Decision Diagram
(MDD) is a directed acyclic graph, representing a function f consisting of K variables: f :
{0, 1, . . .}K → {0, 1}. An MDD has a node set containing two types of nodes: non-terminal and
two terminal nodes (0 and 1). The nodes are ordered into K + 1 levels. A non-terminal node
is labelled by a variable index 1 ≤ k ≤ K, which indicates to which level the node belongs



MITIP 2012 Modern Information Technology in the Innovation Processes of Industrial Enterprises

(which variable it represents), and has nk (domain size of the variable) arcs pointing to nodes
in level k − 1. A terminal node is labelled by the variable index 0. Duplicate nodes are not
allowed, so if two nodes have identical successors in the lower level, they are also identical.
These rules ensure that MDDs are canonical and compact representation of a given function
or set. The evaluation of the function is the top-down traversal of the MDD through the variable
assignments represented by the arcs between nodes. Figure 1(b) depicts an MDD used for
storing the encoded state space of the example Petri net. Each edge encodes a possible local
state, and the possible global states are the paths from the root node to the terminal one node.

2.5 Saturation

Saturation is a symbolic algorithm for state space generation and model checking. Decompo-
sition serves as the prerequisite for the symbolic encoding: the algorithm maps the state vari-
ables of the chosen high-level formalism into symbolic variables of the decision diagram. The
global state of the model can be represented as the composition of the local states of compo-
nents: sG = (s1, s2, . . . , sn), where n is the number of components. In addition, decomposition
helps to efficiently exploit locality, which is inherent in asynchronous systems. Locality en-
sures that a transition usually affects only some components or some parts of the sub-models.
The algorithm does not create a large, monolithic next-state function representation. Instead
it divides the global next-state function into smaller parts, according to the high-level model.
Formally: N =

⋃
∀e∈E Ne, where E is the set of events in the high-level model. The granularity

of the decomposition, i. e., the next-state relations represented by Ne can be chosen arbitrarily.

Saturation uses symbolic encoding of the next-state function. We used the symbolic next-state
representation from [2, 4]. This approach partitions disjunctively the global next-state function
according to the high-level model events in the system. Logically, if N is represented by the
relation between state variables (in the decision diagram representation) ~x, ~x′ with Re(~x, ~x′),
then the global relation can be expressed by the symbolic next-state relations of the events:
R(~x, ~x′) =

∨
∀e∈E Re(~x, ~x′). This way the algorithm can use smaller next-state representations.

However, in many cases the computation of the local Ne functions are still expensive. The
algorithm handles this problem by conjunctive partitioning according to the enabling and up-
dating functions [4]: Ne =

⋂
∀i:0≤i≤n

(
N enable
e,i

⋂
N update
e,i

)
, which can be symbolically computed

by Re(~x, ~x′) =
∧
∀i:0≤i≤n

(
Renablee,i (~x, ~x′)

∧
Rupdatee,i (~x, ~x′)

)
. Applying Ne to a given set of states

represented by states results Ne(states) = RelProd(Re(~x, ~x′), states), where RelProd is the
well-known relational product function [5]. The smaller the partitions we create, the less com-
putation they need. The limit for the size of the partitioning comes from the used high-level
modelling formalism.

Saturation uses a special iteration strategy, which is efficient for asynchronous systems [3].
Building the MDD representation of the state space starts at the MDD of the initial state. Then
the algorithm saturates every node in a bottom-up manner, by applying saturation recursively,
if new states are discovered. In this way saturation avoids the peak size of the MDD to be
much larger than the final size, which is a critical problem in traditional approaches.

3 SATURATION ALGORITHM FOR COLOURED PETRI NETS

As shown in Section 1.1, existing low-level models and inefficient model checking algorithms
prevented us from reaching our goal: to fully verify the PRISE safety function. Therefore we
selected coloured Petri nets as the modelling formalism, and saturation as the basis of state
space exploration and traversal. However, saturation has not supported CPNs at that time, thus
we needed to develop it further. In this section we introduce our approach to saturation-based
state space discovery for coloured Petri nets.



MITIP 2012 Modern Information Technology in the Innovation Processes of Industrial Enterprises

3.1 Next-state function representaton

There are several important differences between simple and coloured Petri nets that required
us to modify and extend both the MDD-based state representation and the saturation algo-
rithm. The first fundamental difference is that the decompositions of coloured Petri nets are
not Kronecker consistent [9], due to the additional net elements (e. g., guard expressions).
Therefore, the global next-state function of a decomposed CPN model cannot be computed as
the intersection of the local next-state functions of the sub-models, i. e., Ne =

⋂
∀i∈eNe,i does

not hold. As a consequence, the so called Kronecker matrices cannot be applied for storing the
next-state function N . Our approach uses an MDD-based representation of the state transition
relations instead.

Assume we decompose the coloured Petri net to K sub-models, just as we did in Section 2.5.
The set of possible states of the k-th sub-model is Sk. The set Lk denotes the states directly
reachable from Sk by a single firing. Applying conjunctive partitioning, we can describe the
N next-state function by a 2K-level MDD denoted as R. The ik : 1 ≤ k ≤ K denotes the
state at the k-th level of the MDD we are in before firing the e event (i. e., Renablee ), while
jk : 1 ≤ k ≤ K denotes the state at the k-th level we will get to after firing the e event (i. e.,
Rupdatee ). Consequently, ik, jk ∈ Sk and 1 ≤ k ≤ K. Therefore, a (iK , jK . . . , i1, j1) sequence
represents the global state transition, where the initial state is (iK . . . , i1), and the state after the
firing is (jK . . . , j1). A (iK , jK . . . , i1, j1) transition is enabled and fireable iff the corresponding
(iK , jK . . . , i1, j1) directed path leads from the root of R to the terminal 1 node.

3.2 Event handling

Coloured Petri nets can model complex systems in a very compact form by utilizing the data
content of tokens instead of pure structural constructs. However, this compactness takes its
toll during state traversal: the local state spaces of the sub-models in a decomposed CPN
are typically much larger and more complex than in simple Petri nets. Moreover, in CPNs
less variables are used to encode the same set of states into decision diagrams, thus there is
less redundancy in the state space representation, resulting in a less efficient form of storage.
Our previous research proved that the smaller the partitions are, the more efficient saturation
becomes, since the creation and maintenance of the smaller parts requires significantly less
resources. The aim of the conjunctive refinement of the partitioning, as described in this
section, is to further decompose the state transitions into smaller parts, and to treat these parts
separately and efficiently. The steps of this event handling process are shown in Figure 2.

State
transition
relation

Partitioning
according to

events

Conjunctive
partitioning

Offline
evaluation of
the guards

Discovering
new states

Updating
the complete

relation

Decision
diagram of
the relation

Figure 2: Flow diagram of the event handling

1) Partitioning according to events: the state transition relation is partitioned in accordance
with the events. The Ne relations of the e ∈ E events are stored in separate Re MDDs. The
original state transition relation can be calculated as R =

∨
∀e∈E Re.

2) Conjunctive refinement of the partitioning: the above partitioning is further refined by split-
ting the Ne state transition relation of each e event into K parts, and encoding them into



MITIP 2012 Modern Information Technology in the Innovation Processes of Industrial Enterprises

Re,k MDDs (where 1 ≤ k ≤ K). In order to deal with Kronecker inconsistency, the fire-
able bindings of the variables are also stored within the MDDs. Furthermore, another MDD
is created to represent the constraints imposed by the guards associated with the events.
This MDD, denoted asRguarde , stores those bindings of the variables in the input and output
arc expressions of the transition for which the guard evaluates to true.

3) Off-line evaluation of the guards: The Rguarde MDD that represents the constraints imposed
by the guard associated to the e event is created before the iteration of the saturation. The
variable bindings stored in this MDD need not be updated later during saturation.

4) Discovering new states: As soon as a new state is discovered during the iteration of the sat-
uration, the fireable state transitions from this new state must be instantiated immediately.
When a new state transition is found on the k-th level as a result of firing the e event, then
the Re,k MDD is expanded with this new state transition, and in addition to it the variable
binding that makes the state transition fireable is also stored.

5) Updating the complete relation: Since the original iteration order of the saturation is pre-
served in our algorithm, the complete state transition relation must be recreated by inter-
secting the MDDs of the partial relations: Re =

(∧
∀k:1≤k≤K Re,k

)
∧Rguarde .

3.2.1 Off-line evaluation of the guards

During the initialization of the saturation algorithm the Rguarde MDDs storing the constraints by
the guards of each e event need to be created. These MDDs are constructed in four steps:

1) The variables included in the guard expression are collected.

2) A new level is built for each variable in the MDD. These levels are inserted above the levels
corresponding to the state variables.

3) The variables are bound for every combination of values permitted by their colour sets in
an exhaustive manner.

4) For each possible binding the guard is evaluated. Every binding that evaluates to true is
stored in the decision diagram, since with this binding the guard permits the firing of the
transition. For this purpose each colour in the colour set of a token variable in a newly cre-
ated level is associated with an integer. This way a binding stored in the decision diagram
can be mapped to a directed path.

An Rguarde MDD initialized with the above steps contains the possible bindings that make the
guard enable the firing of the transition. Since the guard expression does not change during
the execution of the model, it is not necessary to update the conjunct represented by the MDD
during saturation.

3.3 Other modifications

We needed to adapt the Saturate() and SatFire() methods of the classical saturation algo-
rithm [3] to the extended data structures of the state transition relation. As the decompositions
of the coloured Petri nets are not guaranteed to be Kronecker consistent, the set of enabled
transitions on the k-th level may depend on the already visited states on higher levels. Con-
sequently, we modified the Saturate() and SatFire() functions so that during the depth-first
traversal they move downward in the Re relations consistent with the fired transitions, and the
resulting MDD nodes are always passed to the functions called on deeper levels of the recur-
sion. The pseudo-code of the modified ColouredSaturate() and ColouredSatFire() functions
is listed in Algorithm 1 and 2.



MITIP 2012 Modern Information Technology in the Innovation Processes of Industrial Enterprises

Algorithm 1 ColouredSaturate
Input: p : node
1: k ← Level(p)
2: chng ← true
3: while chng do
4: chng ← false
5: for all e : Top(e) = k do
6: for all i ∈ Sk, j ∈ Lk :

p[i] 6= 0 ∧Re[i][j] 6= 0 do
7: f ← ColouredSatFire(e, p[i],Re[i][j])
8: if f 6= 0 then
9: u← Union(f , p[j])

10: if u 6= p[j] then
11: p[j]← u
12: chng ← true
13: if j /∈ Sk then
14: ColouredConfirm(k,j)
15: end if
16: end if
17: end if
18: end for
19: end for
20: end while

Algorithm 2 ColouredSatFire
Input: e : event, p : node, R : relation
1: l← Level(p)
2: if l < Bot(e) then return p
3: if CachedFire(e, p, out s) then return s
4: s← NewNode(l)
5: chng ← false
6: for all i ∈ Sk, j ∈ Lk : p[i] 6= 0 ∧R[i][j] 6= 0 do
7: f ← ColouredSatFire(e, p[i], R[i][j])
8: if f 6= 0 then
9: u← Union(f , p[j])

10: if u 6= p[j] then
11: p[j]← u
12: chng ← true
13: if j /∈ Sk then
14: ColouredConfirm(k,j)
15: end if
16: end if
17: end if
18: end for
19: if chng = true then ColouredSaturate(s)
20: CheckIn(s)
21: PutInCacheFire(e, p, s)
22: return s

4 THE MODELLED INDUSTRIAL SYSTEM

The subject of our research is a safety function, designed to initiate an emergency prevention
action in the occurrence of the so-called PRISE event. This safety function is used in the Paks
Nuclear Power Plant (Paks NPP) located in Hungary. The Paks NPP operates four VVER-
440/213 type pressurized water reactor (PWR) units with a total nominal (electrical) power of
approx. 2 GW. Nuclear power plants are highly safety-critical and complex systems, where the
correct operation of the safety procedures is of great importance. The plant protection sys-
tems must satisfy high safety requirements and minimize spurious forced outages. Therefore,
formal modelling and verification methods need to be applied to prove the correctness and
completeness of the PRISE safety function.

The PRImary-to-SEcondary leaking (PRISE) event is one of the major faults in a reactor unit,
resulting due to a non-compensable leaking of parts in the primary circuit. The PRISE event
occurs when there is a rupture or other leakage within the steam generator (SG) vessel pri-
mary tubing, affecting either a few (3-10) tubes or their collector that contain the high-pressure
activated liquid of the primary circuit. The PRISE event is the VVER-440/213 analogue of the
well-investigated Steam Generator Tube Rupture (SGTR) event (see e. g., [7]) in other types of
pressurized water reactors.

In the unlikely case of a PRISE event, the safety procedures first initiate the emergency shut-
down (scram, trip) of the reactor, and then isolate the faulty steam generator. However, there
would still be a possibility to release some of the contaminated water to the environment, if
the event would not be handled properly. In order to prevent this and to increase the safety
of the plant, a safety valve for draining the contaminated water into the containment has been
added to each steam generator, and a new safety function, the PRISE safety function has been
developed to control its operation.



MITIP 2012 Modern Information Technology in the Innovation Processes of Industrial Enterprises

4.1 The PRISE safety function

The technological and I&C system experts of the Paks NPP have designed a timed logical
scheme, the basis of the PRISE safety function, in a heuristic way. The logical scheme was
specified as a Functional Block Diagram (FBD) representation (a formalism similar to the one
defined in the IEC 61131-3 standard). The PRISE safety function FBD is shown in Figure 3.
The description of the inputs and outputs of the PRISE safety function are included in Table 1.

INPUT-1

INPUT-2

INPUT-3

INPUT-4

INPUT-5

INPUT-6

INPUT-7

INPUT-8

INPUT-9

1

1

1

&

&S

R1

S

R1

& S

R1

OUTPUT-1

OUTPUT-2

t 0

Figure 3: Functional block diagram of the PRISE safety function [11]

The purpose of the PRISE safety function is to initiate the draining of the steam generator if and
only if a PRISE event occurs. This implies preventing the activation of the safety valve, when
a non-PRISE fault event (causing similar symptoms, but without a classified PRISE event)
occurs, i. e., the PRISE safety function must be selective. Moreover, when the reactor unit is
either being started up or shut down, thus it is not in the normal operating regime, the PRISE
safety function is designed not to be active. In these circumstances the operators can activate
the draining valve manually, should a need arise.

The designed safety procedure initiates the draining (OUTPUT-1) when a critical decrease in
the primary pressure (INPUT-2) is followed (after a specified time delay) by the increase of the
steam generator level (INPUT-1) that lasts for a certain time interval. However, the draining
is initiated only if the containment pressure keeps its nominal value (INPUT-3), i. e., it is not
increasing due to another, non-PRISE fault causing an inflow of the primary water into the
containment. The minimum time interval constraint for INPUT-1 to hold its value prevents
the incorrect initiation of draining by an unreliable water level sensor measurement showing
temporarily a spuriously high value (caused by the solid scale content of the secondary water).

The INPUT-4 and INPUT-9 input conditions inhibit the operation in a startup or shutdown sit-
uation. INPUT-5 resets the operation of the PRISE safety procedure in case the reactor is
being shut down. INPUT-6 and INPUT-7 prevent the erroneous draining of the containment
after the isolation of a steam generator caused by a non-PRISE fault. INPUT-8 indicates the
situation when the steam generator was manually isolated due to a failure indication. The pri-
mary OUTPUT-1 of the procedure is the presence of a PRISE event. Note that the auxiliary
OUTPUT-2 signal indicates the presence of all but one of the symptoms of the PRISE situation.



MITIP 2012 Modern Information Technology in the Innovation Processes of Industrial Enterprises

Table 1: PRISE safety procedure I/O description

Name Description Function

INPUT-1 SG level high Steam generator water level is increasing (due to closure of
the turbine)

INPUT-2 Primary pressure
decreasing

The pressure of the primary water is decreasing (due to
PRISE or other leakage)

INPUT-3 Containment pressure
is normal

The pressure of the containment is not increasing (no primary
water inflow caused by a non-PRISE fault)

INPUT-4 Primary temperature
below nominal

Technical condition signifying that the reactor is in startup/
shutdown regime

INPUT-5 Control rods fully
down

Technical condition used to reset the operation of the PRISE
safety procedure

INPUT-6 SG deltaP Technical conditions used to avoid the erroneous draining of

INPUT-7 SG RAP 1/2 the secondary water after isolation of the steam generator

INPUT-8 SG inhibition Technical condition used to indicate the SG inhibited state

INPUT-9 Primary pressure low Technical condition signifying that the reactor is in startup/
shutdown regime

OUTPUT-1 SG is inhermetical Primary output, activates the secondary water drain

OUTPUT-2 ACTIVE Auxiliary output used in control operations

4.2 Coloured Petri net model of the PRISE safety function

We have created a hierarchical Coloured Petri net model of the PRISE safety function. Figure 4
shows the high-level main net of our CPN model. The gray circles are the inputs and outputs of
the PRISE logic. The larger labelled rectangles are substitution transitions that denote subnets
of the corresponding function blocks. The smaller net elements are simple places and transi-
tions that are only needed for connecting the subnets. This main net integrates and connects
the separately developed and validated lower-level CPN subnets of the different functional
blocks. The transformation of the Functional Block Diagram (see Figure 3) was straightforward
and simple to validate, since the structure of the FBD graph and the corresponding CPN graph
are isomorphic.

The run-time environment is a safety-critical, highly dependable digital distributed control sys-
tem (DCS), which runs at an explicit 50 millisecond long scan cycle. During each scan cycle
the controller first samples its inputs, then evaluates all of its functional diagram pages start-
ing from the blocks connected to the inputs and following the flow of data until they reach the
outputs, computes its new internal state, sets the outputs, and in the remaining time performs
self-tests. This behaviour is reflected by the CPN model the following way: the propagation of
the tokens in the net represents the flow of data in the functional diagram. The CPN model has
a feedback loop that puts simultaneously a single coloured token into each input place at the
beginning of a scan cycle. The colour of the input tokens carries the input data value. These
tokens initiate the execution of the subnets modelling the function blocks. When every subnet
has been executed, a single coloured token is generated into each output place. The feedback
loop takes away every generated token from the outputs and the scan cycle ends.

An example CPN subnet —modelling the operation of a functional block, namely the Delay
module— is shown in Figure 5(a). The functionality of the Delay module is given by a time
diagram in Figure 5(b). The purpose of the module (as its name implies) is to delay a rising
edge pulse for a predefined D number of cycles. When the module detects a rising edge, it



MITIP 2012 Modern Information Technology in the Innovation Processes of Industrial Enterprises

INPUT-1

INPUT-2

INPUT-3

INPUT-4

INPUT-5

INPUT-6

INPUT-7

INPUT-8

INPUT-9

neg

or

or

pulse
module

delay
module

pulse
module

pulse
module

neg

and

or

pulse
module

S

R
neg

neg

and
S

R
and

S

R

OUTPUT-1

OUTPUT-2

Figure 4: The Coloured Petri net model of the PRISE safety procedure

starts a counter. If the pulse is active (the input remains 1) for at least D number of cycles, the
Delay module will “let the pulse pass”, that is it sets its output to 1 (the true Boolean value).
The output will remain 1 as long as the input is active. When a falling edge is detected, the
module resets itself to its default inactive state.

INPUT-1

bool

1‘true

1‘true

1‘false 1‘false

1‘false

cp

cp

cp

1‘9

DELAY

int_0_9

cp cn

[cp = 0]

bool

OUTPUT

[cp != 0 && succ(cn) = cp]

1‘true

1‘9

(a) The CPN subnet model of the Delay module

0

1

0

1

OUTPUT

INPUT-1

t

t
k1 k1+D k2 k2+D

(b) Time diagram of the operation

Figure 5: Delay module: model and operation

The operation of the CPN subnet model of the Delay module (see Figure 5(a)) is easy to follow.
The model has two port places (the INPUT-1 port, and the OUTPUT port) that represent the
connections of the Delay module. The DELAY place stores the value of the delay counter. Its
colour set is int_0_9, a subset of integers: {0, . . . , 9} ⊂ Z. Its initial marking has one token
whose colour equals the required delay time, given as D cycles (in the example D = 9). The
three black rectangles are the transitions that realise the three main phases of the operation.
The expressions written in brackets next to the transitions are their guards. A guard is a



MITIP 2012 Modern Information Technology in the Innovation Processes of Industrial Enterprises

boolean expression that prohibits the firing of the corresponding transition unless it evaluates
to true. The three main phases of the operation and their transitions are as follows:

1) The lower transition detects the rising edge (a true value is in the input and the delay
counter has not yet reached zero), starts the delay counter, and continues counting down
in the subsequent cycles. The guard prescribes the previous value of the counter to be
the successor of the next value, thus implementing the counting down process. The output
remains inactive in this phase.

2) The upper transition will fire whenever the delay counter has ran out (reached zero), and
the input is active. The transition puts a token with true value in the output port place,
therefore the output will remain active as long as the input is active.

3) The middle transition detects the falling edge of the pulse, resets the value of the delay
counter, and deactivates the output.

5 VERIFICATION OF THE PRISE SAFETY FUNCTION

Our aim was to prove that the PRISE safety function initiates the draining always if a PRISE
event occurs in every normal operation regime coupled with a fault in the SG level sensor that
is highly unreliable; and never if a PRISE event does not occur even if severe faults causing
similar symptoms happen. In addition, it is also important to prove that the PRISE detection
logic is free from deadlocks as they represent dangerous situations. The required selective
detection of the PRISE event, and the heuristic design process of the safety logic made it
necessary to perform a rigorous formal verification of the PRISE safety procedure.

5.1 Formalization of the requirements

We could translate the above requirements into the following verification goals:

• Liveness requirement: the secondary water draining activity is always activated when a
real PRISE accident has occurred (no actuation masking).

• Safety requirement: the draining activity is not activated if not a real PRISE accident has
occurred (no erroneous actuation).

• Deadlock freeness: No deadlock situation can arise for any combination and sequence of
input signals.

We used branching-time temporal logic based model checking to prove the requirements. For
complexity reasons we chose CTL temporal logic, as it provides an expressive formalism with
efficient decision procedures.

• First, we checked the deadlock freeness of the system. Informally this means that in every
state there exists at least one reachable successor state. The equivalent CTL temporal
logic expression is the following: AG(EX(true)).

• We also checked if the model is reversible, that is from every state we can reach the initial
state. We expressed it with the following CTL formula: AG(EF([init ])). This property ensures
that the safety function can be made ready to fulfil its purpose in all circumstances.

• We used indirect proof to prove the safety requirement. We transformed the inverse re-
quirement into the following CTL formula: E(¬ [PRISE-event ] U [actuation]). This formula
is satisfied only if the draining activity is activated without a PRISE event.

• The liveness requirement was also easier to prove by indirect proof. We formalised the
inverse requirement as the following CTL expression: EF([PRISE-event ] ∧ EG(¬ [actuation]
∧ ¬ [reset-event ])). Informally, we are searching for strongly connected components in the
state space that contain no actuation and reset-event, but contain a PRISE-event.



MITIP 2012 Modern Information Technology in the Innovation Processes of Industrial Enterprises

5.2 Evaluation of the temporal expressions

The next step of the verification was to explore and store the state space of the CPN model
of the PRISE safety function, using our coloured saturation algorithm and state space storage
data structures described in Section 3. After obtaining the complete state space we could
evaluate the four CTL expressions introduced in the previous section. For state space traversal
and temporal logic based model checking we developed our own experimental implementation
of our algorithms written in the C# programming language. We used the following configuration
for our measurements: Intel L5420 2.5 GHz processor, 8 GB memory, Windows Server 2008
R2 (x64) operation system, .NET 4.0 runtime. The measurement results are listed in Table 2.

Table 2: Characteristics of the state space traversal

Parameter Value

Run-time 950 s

Number of global states 4.836·1012

State space representation (nodes) 1 497

Number of local state changes 10 082 881

Transition representation (nodes) 782 159

Run-time represents the time needed to explore the state space. The state space generation
required 950 s for the PRISE CPN model. The deadlock freedom and reversibility checking
temporal expressions took 6 s each to evaluate on the existing state space representation.
The liveness and safety requirements were evaluated in 2 s and 3 s, respectively.

Other characteristics of the state space shown in Table 2 include the number of global states,
which is the size of the state space, i. e., the number of reachable states from the initial state.
The state space representation gives the number of MDD nodes used to represent the state
space symbolically. The number of local state changes means the number of symbolically
enumerated possible state changes. Transition representation is the number of stored MDD
nodes in the symbolic next-state representation.

As the measurements show, we could quickly and efficiently complete the earlier unachievable
task (see Section 1.1) of fully verifying the PRISE safety function. However, state space gener-
ation is still challenging, even for state-of-the-art model checking tools. In our case, despite our
efficient next-state representation and state traversal algorithm, building the next-state relation
required an order of magnitude more nodes than the state space representation.

6 CONCLUSION

This paper presented the formal verification of a safety function initiating an emergency proce-
dure in a safety-critical environment. The contributions of the paper are twofold:

• Although this safety function has been analysed in previous research, this is the first time
its full state space could be explored without restrictions, using our own implementation
and an ordinary desktop computer.

• We could achieve this result by extending the highly efficient saturation algorithm into the
domain of coloured Petri nets. Since there are many non-trivial differences between simple
and coloured Petri nets, the extension required a novel state space storage structure and
appropriate modifications of the state space traversal algorithm.

Our future research is directed towards improving the performance of the algorithm by further
partitioning the state transition representation.



MITIP 2012 Modern Information Technology in the Innovation Processes of Industrial Enterprises

REFERENCES

[1] Bryant, R.E. (1986): Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, 35, pp. 677–691.

[2] Burch, J.R.; Clarke, E.M.; Long, D.E. (1991): Symbolic Model Checking with Partitioned
Transition Relations. In: Proceedings of the International Conference on Very Large Scale
Integration, pp. 49–58.

[3] Ciardo, G.; Marmorstein, R.; Siminiceanu, R. (2003): Saturation Unbound . In: Proc.
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), pp. 379–393,
Springer, DOI: 10.1007/3-540-36577-X_27.

[4] Ciardo, G.; Yu, A. (2005): Saturation-based symbolic reachability analysis using con-
junctive and disjunctive partitioning. Correct Hardware Design and Verification Methods,
3725, pp. 146–161, DOI: 10.1007/11560548_13.

[5] Clarke, E.; Grumberg, O.; Peled, D.A. (1999): Model Checking. The MIT Press.
[6] Emerson, E.A.; Clarke, E.M. (1982): Using Branching Time Temporal Logic to Synthe-

size Synchronization Skeletons. Sci. Comput. Program., 2(3), pp. 241–266.
[7] Izquierdo-Rocha, J.; Sánchez-Perea, M. (1994): Application of the Integrated Safety

Assessment methodology to the emergency procedures of a SGTR of a PWR. Reliability
Engineering and System Safety, 45, pp. 159–173, DOI: 10.1016/0951-8320(94)90083-3.

[8] Jensen, K.; Kristensen, L.M. (2009): Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer, ISBN 978-3-642-00283-0.

[9] Miner, A. (2006): Saturation for a General Class of Models. Software Engineering, IEEE
Transactions on, 32(8), pp. 559–570, DOI: 10.1109/TSE.2006.81.

[10] Németh, E.; Bartha, T. (2009): Formal Verification of Safety Functions by Reinterpre-
tation of Functional Block Based Specifications. In: D. Cofer; A. Fantechi, eds., Formal
Methods for Industrial Critical Systems, vol. 5596 of Lecture Notes in Computer Science,
pp. 199–214, Springer Berlin / Heidelberg, ISBN 978-3-642-03239-4, DOI: 10.1007/978-
3-642-03240-0_17.

[11] Németh, E.; Bartha, T.; Fazekas, C.; Hangos, K.M. (2009): Verification of a
primary-to-secondary leaking safety procedure in a nuclear power plant using coloured
Petri nets. Reliability Engineering and System Safety, 94 (5), pp. 942–953, DOI:
10.1016/j.ress.2008.10.012.

[12] Tóth Heinemann, Z. (2009): Modelling and verification of discrete industrial control sys-
tems using formal methods. Master’s thesis, Budapest University of Technology and Eco-
nomics (BME), [In Hungarian].

[13] Vörös, A.; Darvas, D.; Bartha, T. (2011): Bounded Saturation Based CTL Model Check-
ing. In: J. Penjam, ed., Proc. of the 12th Symposium on Programming Languages and
Software Tools, SPLST’11, pp. 149–160, Tallinn, Estonia, ISBN 978-9949-23-178-2.

[14] Homepage of the PetriDotNet Framework . URL: http://petridotnet.inf.mit.bme.hu/, last ac-
cessed May. 2012.

ACKNOWLEDGEMENT

This work was partially supported by the ARTEMIS JU and the Hungarian National Develop-
ment Agency (NFÜ) in framework of the R3-COP project. Dániel Darvas and Attila Jámbor
was partially supported by the MFB Hungarian Development Bank Plc. The authors would like
to thank Prof. Gianfranco Ciardo for his valuable advice and suggestions.


