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Abstract 20 

Aims: Since prominent role in valproate metabolism is assigned to CYP2C9 in pediatric 21 

patients, the association between children’s CYP2C9-status and serum valproate 22 

concentrations or dose-requirements was evaluated. 23 

Methods: The contribution of CYP2C9 genotype and CYP2C9 expression in children (N=50, 24 

Caucasian) with epilepsy to valproate pharmacokinetics was analyzed. 25 

Results: Valproate concentrations were significantly lower in normal expressers with 26 

CYP2C9*1/*1 than in low expressers or in patients carrying polymorphic CYP2C9 alleles. 27 

Consistently, the dose-requirement was substantially higher in normal expressers carrying 28 

CYP2C9*1/*1 (33.3 mg/kg vs 13.8-17.8 mg/kg, P<0.0001). Low CYP2C9 expression 29 

significantly increased the ratio of poor metabolizers predictable from CYP2C9 genotype (by 30 

46%). 31 

Conlusion: Due to the substantial down-regulation of CYP2C9 expression in epilepsy, 32 

inferring patients’ valproate metabolizing phenotype merely from CYP2C9 genotype results 33 

in false prediction. 34 

 35 
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Introduction 42 

One percent of Hungarian pediatric population has been reported to suffer from 43 

epilepsy [1], but most of them are treated successfully with anticonvulsants. One of the first 44 

choices of antiepileptic therapy is valproic acid (VPA), which is generally well-tolerated, and 45 

rarely induces serious side effects. Rare complications may occur in patients treated 46 

chronically with VPA, including hepatotoxicity, hematologic disorders, hyperammonemic 47 

encephalopathy or neurological toxicity [2,3]. The risk of serious adverse effects is increased 48 

in children, especially in those younger than 2 years of age. The mechanism of VPA-induced 49 

toxicity is not clearly understood, but both the parent compound and some of its unsaturated 50 

metabolites have been associated with mitochondrial dysfunction and cytotoxicity [4]. 51 

VPA, the branched short-chain fatty acid, is extensively metabolized in the liver, 52 

resulting in conjugated, unsaturated and hydroxylated metabolites [5,6]. In adults, the 53 

majority of VPA dose is eliminated as glucuronide conjugate in the urine. Mitochondrial 54 

β-oxidation is the second major route of biotransformation, forming 2-ene-VPA, 2,4-diene-55 

VPA and 3-keto-VPA. The cytochrome P450 (CYP) mediated branch of VPA metabolism is 56 

the formation of 4-ene-VPA and hydroxylated metabolites (3-, 4-, and 5-hydroxy-VPA 57 

metabolites) [7,8]. Kiang et al. have demonstrated that CYP2C9 is the major enzyme in CYP-58 

mediated metabolism of VPA, accounting for about 10-15% of the administered dose, 59 

whereas CYP2A6 and CYP2B6 play a minor role in VPA metabolism [9]. Although CYP-60 

mediated pathways contribute to a minor part of VPA metabolism in adults (less than 20% of 61 

the administered dose), the CYP-catalyzed oxidation may become the principal route of the 62 

metabolism in those special cases when glucuronidation or mitochondrial β-oxidation 63 

pathways are compromised or poorly developed, for example, in children. Shifting the 64 

metabolic pathways may account for the age-related differences in the incidence of VPA-65 

induced adverse effects. i) Hepatic glucuronidation is known to be developmentally regulated. 66 
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UDP-glucuronyl transferases involved in VPA glucuronidation [10], are expressed under the 67 

adult levels until sometime after 10-15 years of age [11,12]. In vitro glucuronide conjugation 68 

of VPA has been demonstrated to be catalyzed by UGT1A6, UGT1A9 and UGT2B7 [10]; and 69 

Guo et al. have confirmed the role of UGT1A6 in vivo; however, UGT2B7 seems to catalyze 70 

VPA glucuronidation less efficiently [13]. ii) VPA and some of its metabolites are considered 71 

to be the inhibitors of mitochondrial β-oxidation [14]. iii) CYP-dependent metabolism in 72 

children exceeds adult activities, and decreases to adult levels by puberty [15]. As a 73 

consequence, larger amount of VPA dose is liable to CYP2C9-dependent metabolism in 74 

pediatric patients than in adults. Furthermore, the genetic and non-genetic factors, influencing 75 

CYP2C9 activity, can increase the predisposition to VPA-induced serious adverse reactions; 76 

thus, recognition of risk factors can contribute to the avoidance of adverse events. 77 

There have been several clinical studies, investigating relationship between VPA 78 

pharmacokinetics and patients’ CYP genotypes, although clear evidence for the association 79 

between VPA serum concentrations and CYP2C9 genotype has been rarely provided [13,16]. 80 

Statistically significant, but relatively small differences in plasma concentrations of VPA have 81 

been observed in patients with CYP2C9*3 allele comparing to those with two wild type 82 

alleles [16]. Although polymorphic CYP alleles result in non-functional CYP enzymes and 83 

permanent poor metabolism, the individuals with functional wild type alleles may become 84 

transient poor metabolizers as an effect of internal (e.g. diseases, hormonal status) or 85 

environmental factors (e.g. nutrition, medication). This means that CYP genotype determines 86 

the potential for the expression of functional or non-functional CYP enzyme. For example, a 87 

patient with CYP2C9*2/*2 or CYP2C9*3/*3 basically displays poor metabolism of CYP2C9 88 

substrates, whereas a subject carrying CYP2C9*1/*1 possesses the potential for having 89 

functional CYP2C9 enzyme. However, non-genetic factors, such as co-medications or co-90 

morbidities give rise to altered phenotypes. Thus, CYP2C9*1/*1 genotype, predicted to be 91 
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translated to an extensive metabolizer phenotype, may be switched into poor metabolism due 92 

to phenoconversion, which eventually influences the patient’s response to VPA [17]. 93 

Furthermore, the genotype-phenotype mismatch results in more poor metabolizers than it 94 

would be predicted from CYP2C9 genotype. 95 

A patient’s CYP-status can be estimated by the evaluation of CYP genotypes and 96 

current CYP expression. We have previously described a complex diagnostic system 97 

(CYPtestTM) that can determine drug metabolizing capacity by combining CYP genotypes and 98 

current CYP expression in leukocytes [18]. CYP2C9 mRNA levels in leukocytes of those 99 

subjects who do not carry loss-of-function mutations in CYP2C9 gene was proven to reflect 100 

the hepatic tolbutamide hydroxylation activity selective for CYP2C9 [18]. A preliminary 101 

CYP2C9 genotyping for CYP2C9*2 and CYP2C9*3 can identify the genetically determined 102 

poor metabolism of CYP2C9 enzyme, and then CYP2C9 expression in leukocytes of patients 103 

with wild type alleles (CYP2C9*1/*1) can estimate a reduced or even increased CYP2C9 104 

activity resulted by non-genetic variations. A patient carrying CYP2C9*1/*1 genotype can be 105 

assumed to be an extensive metabolizer and able to biotransform VPA more rapidly than 106 

others carrying polymorphic CYP2C9*2 or CYP2C9*3 alleles. However, non-genetic factors 107 

can modify the expression of the functional wild type alleles resulting in transient poor 108 

metabolism similarly to those with non-functional polymorphic CYP2C9 alleles. In the 109 

present study, we investigated CYP2C9-status of pediatric patients younger than 15 years of 110 

age and its influence on the steady-state serum concentrations of VPA as well as on patients’ 111 

dose-requirements. We attempted to provide evidence for that CYP2C9 genotype is not the 112 

only determinant factor in CYP2C9 metabolizer status of a patient, but the expression rate of 113 

the wild type gene can highly influence a patient’s CYP2C9 metabolizing capacity and his/her 114 

response to a drug. 115 

 116 
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Patients & methods 117 

• Patients and sampling procedures 118 

Pediatric patients (N=50) suffering from epilepsy diagnosed with partial or generalized 119 

seizures were enrolled in the study carried out at Heim Pál Children's Hospital and at the 2nd 120 

Department of Pediatrics, Semmelweis University (Budapest, Hungary). We recruited novel 121 

epileptic patients, younger than 15 years of age, who were CYP2C9 tested at the beginning of 122 

antiepileptic therapy. The patients on non-VPA therapy or on multi-drug therapy were 123 

excluded from the study. The patients were also excluded if their VPA therapy was 124 

interrupted. The parents or representatives of each pediatric patient gave their informed 125 

consent to participate in this study. 126 

The patients’ demographic data, as well as the details of anticonvulsant therapy were 127 

recorded. The patients (boys/girls: 20/30) were at the average age of 6.75 years (range: 0.5 – 128 

15 years), and all of them belonged to the Caucasian white population. Blood samples for 129 

CYP2C9 testing were taken before the beginning of anticonvulsant therapy. The patients were 130 

not given any other medication, but VPA as mono-therapy, and the target dose was adjusted 131 

to the patients’ body weight according to the clinical protocol [19]. The therapy was initiated 132 

at low dosages (10-15 mg/kg), and the target doses were subsequently titrated until optimal 133 

clinical response was achieved, generally within 5-10 days. Blood samples for drug assays 134 

were taken two and four weeks after the beginning of VPA treatment. The sampling at the 135 

second week was applied for checking VPA serum concentration, and the dose was modified 136 

if the exposure exceeded the target range of VPA concentration. The serum levels measured at 137 

the fourth week were considered to be the stable steady-state concentrations, whereas the 138 

doses applied for the stable VPA concentrations were considered to be the maintenance doses. 139 

• CYP2C9 testing 140 

 Patients’ CYP2C9-status was determined by CYP2C9 genotyping and by assaying 141 
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CYP2C9 expression in leukocytes before the beginning of VPA administration. Genomic 142 

DNA and leukocytes were isolated from the samples of peripheral blood according to the 143 

methods described by Temesvári et al. [18]. CYP2C9 genotyping was carried out by 144 

hydrolysis single nucleotide polymorphism analysis for CYP2C9*2 and CYP2C9*3 using 145 

TaqMan Probes (BioSearch Technologies, Novato CA). For CYP2C9 expression, total RNA 146 

was isolated from leukocytes, RNA was reverse-transcribed into single-stranded cDNA, and 147 

then real-time PCR with human cDNA was performed using UPL probe for CYP2C9 (Roche 148 

Diagnostics, Mannheim, Germany). The quantity of CYP2C9 mRNA relative to that of the 149 

housekeeping gene glyceraldehyde 3-phosphate dehydrogenase was determined. Three 150 

categories of CYP2C9 expression were applied to describe low, normal and high expressers. 151 

The cutoff values for the CYP2C9 mRNA levels in leukocytes were previously established on 152 

the basis of the cutoff values for the hepatic CYP2C9 activity (tolbutamide hydroxylation), 153 

allowing a distinction between low, normal (medium) and high expressers (5*10-6 and 154 

2.5*10-5, respectively) [18]. 155 

• Serum VPA assay 156 

 The blood samples were taken before the patients were administered the morning dose. 157 

The steady-state serum concentration of VPA was determined by the fluorescence 158 

polarization immunoassay method (AxSYM Valproic Acid Assay, Abbott Laboratoties, IL). 159 

The VPA concentrations ranged between 40 and 100 µg/ml were considered to be the 160 

therapeutic levels [19]. 161 

• Statistical analysis 162 

The serum concentration values of VPA were normalized by the dose and the body 163 

weight, and expressed as (µg/ml) × (mg dose/kg body weight)-1. The data of normalized VPA 164 

concentrations and dose-requirements for the optimal therapeutic level in the groups with 165 

various CYP2C9-statuses were expressed as the median (and range). It should be noted that 166 
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median values did not differ much (generally by 1-2% and always under 5%) from the mean 167 

values. Between-group differences were calculated by the use of Kruskal-Wallis test followed 168 

by Dunn’s multiple comparisons test. A P value of <0.05 was considered statistically 169 

significant. 170 

  171 
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Results 172 

CYP2C9-status of pediatric patients 173 

Of 50 pediatric patients aged between 0.5 and 15 years, all expressed at least one 174 

functional CYP2C9 allele, and 70% of patients carried CYP2C9*1/*1 genotype (Table 1). The 175 

patients with two loss-of-function alleles were not enrolled in the study, since they were on 176 

non-VPA therapy. Fifteen patients (30%) carried one of the polymorphic variant alleles 177 

(CYP2C9*2 or CYP2C9*3). The frequencies of CYP2C9*2 and CYP2C9*3 alleles in patients 178 

(9% and 6%, respectively) were similar to those in Caucasian (white) populations (11% and 179 

7%, respectively) [20,21]. CYP2C9 expression assays revealed that almost half of the patients 180 

(46%, N=23) were normal CYP2C9 expressers, and substantial portion of the patients (54%, 181 

N=27) were low expressers (Table 1). None of the children displayed high CYP2C9 182 

expression. On the basis of CYP2C9-status (CYP2C9 genotypes and CYP2C9 expression), 183 

the patients were grouped into two main categories - homozygous wild (CYP2C9*1/*1) and 184 

heterozygous CYP2C9*1/mut genotypes (CYP2C9*1/*2 or CYP2C9*1/*3), - and subdivided 185 

into two subgroups: normal (medium) and low CYP2C9 expressers (Table 1). Although 186 

patients with two wild type alleles are generally considered to be extensive metabolizers, 187 

merely 12 children of 35 patients with CYP2C9*1/*1 genotype were found to be normal 188 

CYP2C9 expressers, whereas the other 23 patients were low expressers, predicting poor 189 

CYP2C9 metabolism. Furthermore, the group of patients with heterozygous CYP2C9*1/mut 190 

genotypes comprised both low and normal CYP2C9 expressers (4 and 11 patients, 191 

respectively). It is not surprising, since the mutant alleles are transcribed into CYP2C9 192 

mRNA; however, their expression rates are modified by non-genetic factors, such as nutrition, 193 

food additives, or hormonal status, similarly to the wild type allele. Co-medication as a non-194 

genetic factor can be excluded, since the children on multi-drug therapy were not enrolled in 195 

the present study.  196 
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Patients’ VPA exposure and dose-requirement 197 

The statistical analysis displayed significant association between the patients’ 198 

CYP2C9-status and the steady-state serum levels of VPA normalized by the dose and the 199 

body weight. The normalized serum VPA concentrations were significantly lower in the 200 

normal expresser patients with CYP2C9*1/*1 genotype (2.12 (µg/ml)×(mg dose/kg bw)-1) 201 

than in low expressers (5.13 (µg/ml)×(mg dose/kg bw)-1) or in patients carrying any 202 

polymorphic CYP2C9 alleles (CYP2C9*2 or CYP2C9*3) (4.33 (µg/ml)×(mg dose/kg bw)-1 203 

for normal CYP2C9 expressers and 5.54 (µg/ml)×(mg dose/kg bw)-1 for low expressers) 204 

(Figure 1). The low expressers and the patients with polymorphic CYP2C9 alleles showed 205 

about 2- to 3-fold higher normalized serum VPA levels as compared to normal expresser 206 

patients carrying CYP2C9*1/*1 genotype. The difference in normalized serum concentrations 207 

was not statistically significant between the patients with heterozygous genotypes 208 

(CYP2C9*1/*2 or CYP2C9*1/*3) and those low expressers with two functional alleles 209 

(CYP2C9*1/*1). Moreover, no significant difference in normalized serum levels was 210 

observed between normal and low expressers with heterozygous CYP2C9 genotypes. 211 

According to the clinical practice, VPA serum concentrations ranged between 40 and 212 

100 µg/ml are considered to be therapeutically optimal in the management of epilepsy [19]. 213 

The low expresser patients or subjects with heterozygous genotypes required significantly 214 

lower dose of VPA for the optimal serum level than normal expressers carrying 215 

CYP2C9*1/*1 genotype (Figure 2). The dose-requirement of VPA for the target serum level 216 

was similar for the low expressers and for the patients carrying polymorphic CYP2C9 alleles 217 

(17.8 mg/kg for low expressers carrying CYP2C9*1/*1; 16.7 mg/kg for normal expressers 218 

with heterozygous genotype; 13.8 mg/kg for low expressers with heterozygous genotype). 219 

The conventional clinical practice is to target the VPA dose of 30 to 40 mg/kg in children. 220 

The conventional dosing approach was appropriate for normal CYP2C9 expresser patients 221 
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with CYP2C9*1/*1 genotype, comprising 24% of the children in the study. The CYP2C9 222 

genotype-controlled VPA dosing would have targeted reduced VPA dose for 30% of the 223 

patients, for those carrying heterozygous CYP2C9*1/mut genotypes. However, low expressers 224 

with CYP2C9*1/*1 genotype also required reduced VPA dose for the optimal serum 225 

concentration. CYP2C9 phenoconversion substantially increased the number of children (to 226 

76%) on reduced VPA dose. 227 

Multiple comparison analysis showed that CYP2C9-status (CYP2C9 genotype and 228 

CYP2C9 expression) influenced the serum concentrations of VPA as well as the dose-229 

requirements for the optimal serum concentration in pediatric patients. However, low 230 

CYP2C9 expression in patients with homozygous wild genotype seemed to display similar 231 

effects on VPA exposure and dose-requirement to those carrying polymorphic CYP2C9 232 

alleles (CYP2C9*2 or CYP2C9*3). Consistently, the serum VPA concentration and dose-233 

requirement of the children carrying two wild type CYP2C9 alleles (CYP2C9*1/*1) were 234 

found to be influenced by the CYP2C9 expression, whereas loss-of-function mutations in 235 

CYP2C9 gene resulted in poor metabolism of VPA independently on the degree of CYP2C9 236 

expression. 237 

 238 

Discussion 239 

 Drug metabolizing capacity highly influences the patient’s response to a drug and the 240 

risk of side effects. Genetic and non-genetic factors in drug metabolism give rise to 241 

substantial interindividual variability in clinical response of drugs, assigning the patient 242 

populations into three groups: poor, intermediate and extensive metabolizers [22]. By 243 

recognizing individual differences, personalized medication can help to avoid the therapeutic 244 

failure or potential adverse reactions [23]. Pharmacogenetic assays can determine poor drug 245 

metabolism by genotyping, identifying non-functional drug metabolizing enzymes [22], but 246 
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do not provide reliable information about the drug metabolizing capacity of patients who do 247 

not have loss-of-function mutations. Non-genetic factors, such as age, diseases, nutrition, or 248 

co-medication, can transiently modulate patient’s drug metabolizing capacity. Developmental 249 

regulation of drug metabolizing enzymes is known to contribute to age-related differences in 250 

drug efficacy or toxicity between children and adults [24]. CYP-dependent metabolism is 251 

generally low at birth (about 50-70% of adult levels); however, CYP enzyme activities exceed 252 

the adult values by the age of 2 years and decrease by puberty [15]. In contrast, the drug-253 

conjugating activities of several UDP-glucuronyl transferases are low or negligible around 254 

birth, slightly increasing, but not reaching the adult levels until puberty [11,12]. Concerning 255 

VPA, the major metabolic pathway in adults, glucuronidation can shift toward CYP-256 

dependent oxidation in pediatric patients because of reduced glucuronidation ability. On the 257 

other hand, chronic administration of VPA leads to the inhibition of β-oxidation pathway of 258 

VPA metabolism, assigning a prominent role in the metabolism to CYP enzymes [14,25].  259 

 CYP2C9, the main catalyst of CYP-dependent metabolism of VPA, is highly 260 

polymorphic with CYP2C9*2 and CYP2C9*3 being identified as the most frequent variants in 261 

Caucasian population [20,21]. These loss-of-function mutations have been reported to be less 262 

active in in vitro metabolism of VPA than the wild type allele [26]. The influence of 263 

CYP2C9*3 allele on VPA plasma levels was displayed in Chinese patients [16]; however, the 264 

moderate increase in normalized VPA concentrations in the patients carrying CYP2C9*1/*3 265 

may be attributed to the facts that the authors took neither the CYP2C9 expression nor the 266 

age-related differences in VPA metabolism into account. Predicting drug metabolizing 267 

phenotype from genotype seems to be highly complex even in the case of non-inducible 268 

enzymes, such as CYP2D6 [27]; thus, inferring a patient’s VPA metabolizing phenotype 269 

merely from CYP2C9 genotype can easily lead to false interpretations. We have previously 270 

reported a more than 60-fold difference in CYP2C9 mRNA levels in human liver tissues 271 
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which means that transient poor metabolizers (low CYP2C9 expressers) exist in the group of 272 

patients carrying CYP2C9*1/*1 genotype [18]. Thus, not only genetic, but non-genetic 273 

variations of CYP2C9 are of particular importance in the evaluation of patients’ CYP2C9-274 

status. The pediatric patients in the present study was divided into two CYP2C9 genotype 275 

groups (CYP2C9*1/*1 and CYP2C9*1/mut), although both groups comprised low and normal 276 

CYP2C9 expresser children. Patients carrying CYP2C9*1/*1 genotype are generally assumed 277 

to be extensive metabolizers; however, CYP2C9 genotype can be converted to a phenotype 278 

different from that would be predicted from the genotype. Hence, the normal expresser 279 

children carrying CYP2C9*1/*1 were basically expected to display extensive metabolizer 280 

phenotype, whereas low expressers with CYP2C9*1/*1 genotype were assumed to behave as 281 

poor metabolizers. It should be noted that the mutant CYP2C9 alleles are translated into non-282 

functional CYP2C9 protein, resulting in poor metabolism, even if they are expressed at 283 

normal levels.  284 

The present study, involving pediatric patients younger than 15 years of age, has 285 

clearly demonstrated that normalized serum concentrations of VPA were associated with 286 

patients’ CYP2C9-status determined by CYP2C9 genotyping and CYP2C9 expression 287 

analysis. The children with heterozygous CYP2C9 genotype (CYP2C9*1/*2 or 288 

CYP2C9*1/*3) were found to be poor VPA metabolizers, presenting high serum VPA 289 

concentrations and requiring low VPA dose. Although the patients carrying two wild type 290 

alleles (CYP2C9*1/*1) could be supposed to have functional CYP2C9 enzyme, their VPA 291 

metabolizing capacity was influenced by CYP2C9 expression. The low expresser patients 292 

carrying CYP2C9*1/*1 showed as high serum VPA concentrations and required as low dose 293 

for the optimal VPA levels as those poor VPA metabolizers with heterozygous CYP2C9 294 

genotype, whereas the normal expressers with two wild type alleles appeared to be more 295 

active in VPA metabolism, presenting significantly lower VPA serum levels. 296 
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Phenoconversion of patients’ genotype are generally explained by the fact that external or 297 

internal factors, notably co-medications, nutrition, diseases, inflammation or hormonal status, 298 

modify the expression or the function of drug metabolizing enzyme. The co-administration of 299 

VPA and antiepileptic drugs known to be CYP2C9 inducers (e.g. phenytoin, phenobarbital, or 300 

carbamazepine) results in increased CYP2C9 expression and enhanced VPA metabolizing 301 

capacity of patients on multi-drug therapy. Amini-Shirazi et al. have reported that the 302 

concomitant treatment of patients with VPA and CYP2C9 inducers increased the formation 303 

rate of 4-ene-VPA metabolite comparing to the patients on VPA monotherapy [28]. 304 

Nevertheless, the patients with distinct CYP2C9 expression occurred in both CYP2C9*1/*1 305 

and CYP2C9*1/mut genotype groups of the patients involved in our study that could not be a 306 

consequence of co-medications, because the patients on multi-drug therapy were excluded 307 

from the study. The ratio of low expresser patients was unusually high, more than half of the 308 

children involved displayed low CYP2C9 expression, predicting some suppressive factors in 309 

the background. The significant release of pro-inflammatory cytokines observed in epileptic 310 

patients following seizures seems to be a logical explanation, since the expression of drug 311 

metabolizing enzymes is down-regulated as a response to the increasing levels of the acute 312 

phase proteins, resulting in substantial impairment of drug metabolism [29-31]. The down-313 

regulation of CYP2C9 by the pro-inflammatory cytokines, such as IL-6 and IL-1β, is 314 

proposed to be mediated by the repression of the nuclear receptors (pregnane X receptor and 315 

constitutive androstane receptor) involved in CYP2C9 expression [32,33]. The 316 

phenoconversion of other drug metabolizing enzymes, including CYP2C19, CYP2D6, 317 

CYP3A4 or NAT2, has also been observed in patients suffering from HIV, cancer or liver 318 

disease [34-38]; however, the present work was the first study that provided evidence for the 319 

phenoconversion and marked repression of VPA metabolizing CYP2C9 in epileptic children. 320 
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The novel findings of the present study demonstrated that the normalized VPA serum 321 

concentrations in pediatric patients were influenced by the patients’ CYP2C9-status 322 

determined not only by the genetic variability of CYP2C9, but also by CYP2C9 expression. 323 

The pediatric patients with various CYP2C9-statuses required different doses of VPA for the 324 

optimal serum concentrations. The low CYP2C9 expressers and patients with mutated 325 

CYP2C9 alleles (CYP2C9*2 or CYP2C9*3) required approximately half of the dose for 326 

normal (or medium) expressers with CYP2C9*1/*1 genotype (14-18 mg/kg vs 33 mg/kg). As 327 

a consequence, CYP2C9-status can guide the appropriate targeting of VPA dose at the 328 

beginning of anticonvulsant therapy. The VPA therapeutic strategy for the normal CYP2C9 329 

expressers with CYP2C9*1/*1 genotype can follow the conventional therapy (target VPA 330 

dose of 30-40 mg/kg) [19]. The low expressers and patients with mutated CYP2C9 alleles 331 

(CYP2C9*2 or CYP2C9*3) require substantial modification of VPA dose (14-18 mg/kg) for 332 

achieving the desired target serum concentrations. Despite the small size of genotype groups, 333 

our results would raise the concerns that the conventional clinical practice may overdose more 334 

than 70% of the pediatric patients, and CYP2C9 genotype-controlled VPA would also 335 

increase the misdosing risk in about two third of patients carrying CYP2C9*1/*1. It can be 336 

concluded, that the phenoconversion of CYP2C9 limits the predictive value of CYP2C9 337 

genotyping in optimizing VPA therapy. 338 

 339 

Conclusion & future perspective 340 

The optimal serum concentration of VPA is strongly influenced by the patients’ VPA 341 

metabolizing capacity which is also critical to avoid the therapeutic failure or toxicity of VPA. 342 

Glucuronide conjugation has been demonstrated to be the major metabolic pathway of VPA in 343 

adults; however, the influence of genetic variants of UGT isoenzymes on dose-requirement 344 

and treatment outcome remains elusive because of the conflicting results obtained from small 345 



16 
 

cohort studies. According to our knowledge, CYP-mediated oxidation is not the major route 346 

of VPA metabolism in adults; however, our present work clearly demonstrated that CYP2C9 347 

played a prominent role in children younger than 15 years of age. CYP2C9 pathway may be 348 

assumed to be more dominant in neonates and infants because of their strongly deficient 349 

glucuronidation ability, and focusing on younger pediatric patients may provide better 350 

understanding of the increased risk of VPA-induced toxicity in this vulnerable population. 351 

Comparing to the conventional clinical practice, the CYP2C9 genotype-based 352 

medication may bring some benefit to children on VPA therapy; however, metabolic activity 353 

of CYP2C9 is often overestimated by the prediction from the patient’s CYP2C9 genotype. 354 

The major source of overestimation is CYP2C9 phenoconversion that can be attributed to the 355 

CYP2C9 down-regulation by cytokines in epilepsy. Thus, prospective investigation of 356 

pediatric patients’ genetic and non-genetic variations in CYP2C9 allows prediction of 357 

potential ‘poor metabolizers’ carrying CYP2C9 alleles with loss-of-function mutations or 358 

displaying low CYP2C9 expression. CYP2C9-status controlled medication may facilitate the 359 

improvement of the individual VPA therapy, leading to the dosage optimization for a more 360 

effective therapy, and minimizing the risk of severe side effects. Further prospective studies 361 

evaluating the clinical outcome are supposed to reveal the benefit of CYP2C9-status 362 

controlled VPA therapy over conventional antiepileptic therapy. 363 

 364 

 365 

Executive summary 366 

Background 367 

• The mainstay of antiepileptic therapy is valproic acid (VPA), which is well-tolerated 368 

by most of the patients; however, the risk of serious side effects, such as 369 

hepatotoxicity or hematologic disorders, is increased in pediatric patients. 370 
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• In adults, the major metabolic pathways of VPA are glucuronidation and 371 

mitochondrial β-oxidation, whereas cytochrome P450 (CYP)-dependent oxidation has 372 

minor role in VPA metabolism. 373 

• In children, CYP2C9-catalyzed oxidation may become the principal route of the 374 

metabolism which may lead to age-related differences in the incidence of adverse 375 

reactions. 376 

• Although genetic polymorphism of CYP2C9 may explain some interindividual 377 

differences in pharmacokinetics and dose-requirement of VPA, non-genetic factors 378 

give rise to low or even high CYP2C9 expression, modifying the patient’s VPA 379 

metabolizing capacity. 380 

Findings & conclusion 381 

• CYP2C9 genotyping of pediatric patients was able to predict VPA poor metabolism in 382 

approximately 30% of patients. 383 

• CYP2C9 expression was down-regulated in more than 50% of children probably due 384 

to the cytokine release in epilepsy; thus, inferring the patients’ VPA metabolizing 385 

phenotype merely from CYP2C9 genotype resulted in false prediction. 386 

• Although the VPA therapeutic strategy for the normal CYP2C9 expressers with 387 

CYP2C9*1/*1 genotype can follow the conventional therapy (target VPA dose of 30-388 

40 mg/kg), the low expressers and patients carrying loss-of-function mutation in 389 

CYP2C9 gene require substantial modification of VPA dose (14-18 mg/kg) for 390 

achieving the desired target serum concentrations. 391 

• CYP2C9-status controlled VPA therapy can contribute to the avoidance of misdosing 392 

and potential adverse reactions in pediatric patients. 393 

  394 
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Table 1. Demographic data of patients with various CYP2C9-statuses 545 
 546 

CYP2C9-status Number of 

patients 
Age (year)* Body weight 

(kg)* 
Boys/girls 

CYP2C9*1/*1    Normal expressers 12 4 (0.5 – 15) 25 (6 – 60) 4/8 

Low expressers 23 7 (1.5 – 15) 27 (14 – 65) 10/13 

CYP2C9*1/mut  Normal expressers 11 4 (3 – 14) 19 (14 – 52) 5/6 

Low expressers 4 7.5 (4 -15) 22.5 (15 – 60) 1/3 

Total 50 6.75 (0.5 – 15) 21.5 (6 – 65) 20/30 

*: median (range); CYP2C9*1/mut: CYP2C9*1/*2 or CYP2C9*1/*3 547 
 548 
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Figure legends 550 

 551 

Figure 1. Serum concentrations of valproic acid in patients with various CYP2C9-statuses. 552 

The serum concentrations were measured four weeks after the beginning of valproic 553 

acid therapy. 554 

 CYP2C9*1/mut: heterozygous CYP2C9 genotype (CYP2C9*1/*2 or CYP2C9*1/*3); 555 

normal: normal (medium) CYP2C9 expressers; low: low CYP2C9 expressers; bw: body 556 

weight; *: significant difference (P<0.05); solid line: median of the groups 557 

 558 

Figure 2. Valproic acid dose required for the therapeutic serum concentrations in patients with 559 

various CYP2C9-statuses. 560 

 CYP2C9*1/mut: heterozygous CYP2C9 genotype (CYP2C9*1/*2 or CYP2C9*1/*3); 561 

normal: normal (medium) CYP2C9 expresser; low: low CYP2C9 expresser; *: 562 

significant difference (P<0.05); ns: not significant 563 
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Figure 2 601 
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