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Abstract—We discuss how existing flow structure detection
methods can be realised in Smoothed Particle Hydrodynamcs
(SPH) simulations. We demonstrate the use of the ∆ criterion
for the detection of instantaneous Eulerian flow structures. The
standard calculation of the velocity gradient tensor (VGT) results
too noisy gradient field. We propose a correction method based
on the idea of XSPH that yields a much smoother VGT field,
enabling significantly more accurate structure detection. We also
demonstrate on test cases the process in which the instantaneous
Eulerian tools are used to locate Lagrangian coherent flow
structures.

I. INTRODUCTION

Finding reliable algorithms to pinpoint a flow structure in
the data of a sizable computer simulation has become a key
issue in most fields of computational fluid dynamics. The
different flow structure identification methods can be roughly
classified as Eulerian or Lagrangian.

Eulerian methods operate on the instantaneous flow field
and treat it as if it was steady. This is a serious drawback with
respect to Lagrangian ones that try to capture the flow features
evolving in time. However, the computational demands on
resources have so far prevented the latter ones from becoming
routine analytic tasks. The best approach seems to be the
application of an appropriate Eulerian criterion at some time
to the instantaneous fields to capture candidates of Lagrangian
flow structures. Having narrowed down to a much smaller part
of the fluid, high demand calculations can be started to further
verify or exclude the existence of Lagrangian flow features.

An important goal of the Eulerian methods is to detect
vortices, and, therefore, a great number of methods have been
developed for that purpose. Unfortunately, the very meaning
of a vortex is unclear: high vorticity and circular motion, the
main characteristics of a vortex, do not necessarily coincide,
like e.g. in shear layers. It seems that as many definitions of
vortex exist as many vortex detection algorithms. Instead of
seeking for a good definition of a vortex, one may look for a
good vortex detection algorithm instead. Apart from practical
issues three principal requirements have been formulated: a
good algorithm has to be dimensionless [1], frame-independent
[2] and capable of describing compressible fluids [3].

The last point seems to be the most decisive from the point
of SPH, which is, by design, compressible — at least weakly.
Therefore in Section II, following the recommendations of [3],

we present the concept of the ∆-criterion (which also happens
to be Galilean invariant) for two and three dimensional SPH
applications. Another key issue is whether it is possible to
achieve such a precision in SPH that the spatial derivatives
of the velocity field necessary for the Eulerian criteria can be
calculated: this problem will be discussed in Section III.

Finally, in Section IV, we shall turn to the investigation
of Lagrangian flow structures. As SPH is a genuine La-
grangian method, the field variables are related to particles
in the material frame. This makes SPH a very promising
potential tool for Lagrangian structure detection problems.
The central notion in the Lagrangian problems is mixing:
certain types of Lagrangian coherent structures are defined as
the ones that maintain their identity, other types correspond
to barriers to material transport. We calculate two quantities
that characterize the local strength of mixing in suspected
Lagrangian coherent structures: relative dispersion and finite
time Lyapunov exponents (FTLE).

The computations we present have been carried out by our
parallel SPH solver written in CUDA and C++.

II. THEORETICAL BACKGROUND

A. Flow Structures and Dynamical Systems

The flow pattern of steady flows can be completely de-
scribed by the local analysis of their stagnation points and
the global analysis of their invariant manifolds [4]. Due to
the achievements of dynamical systems’ theory this seems
to be a closed problem, even if in specific cases the actual
computations can be challenging.

The simplest case is that of isochoric (divergence free)
steady plane flows; their most typical flow features are

• two types of stagnation points — elliptic (centres) and
hyperbolic (saddles) points —,

• elliptic islands containing closed streamlines, which loop
around the centres, and

• separatrices — stable and unstable invariant manifolds of
the saddles — that form boundaries among the elliptic
islands and regions of unbounded flow.

It is natural to identify elliptic islands with vortices and elliptic
stagnation points with vortex centres. There is an immediate
relation between these (in fact Eulerian) flow structures to the
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Lagrangian view of the flow. Since fluid particles following
streamlines cannot cross separtrices they act as transport
barriers: passive tracers that follow the streamlines of the flow
get trapped within the elliptic islands thus showing only a
limited dispersion.

Steady flows in three dimensions and of compressible fluids
allow more types for stagnation points and more complex
topology but the previous picture prevails. Further general-
ization from steady to strictly time periodic flows is also
possible by extending the phase space to a fourth dimension.
Even if adding small perturbations to such systems, the above
mental picture of flow features remains valid up to a certain
extent. Certain transport barriers can survive small perturbation
(KAM tori) thus maintaining particle traps, others become
permeable (Can-tori) but still act as obstacles allowing only
slow leakage. [4]

As the perturbations become substantial, both the spatial ex-
tent and the lifetime of the elliptic islands become diminished.

In general unsteady flows of real fluids a plethora of
flow structures exist, e.g. Zabusky has collected dozens of
interacting fluid dynamical coherent structures in his glossary
in [5]. In turbulence coherent structures transport concentrated
energy (and enstrophy) packages between the macroscopic and
dissipative scales [6]. In geophysical and environmental fluid
dynamical problems the transport of advected pollutants and
nutrients by coherent flow structures effect the development of
life conditions [7]. These and several other important scien-
tific and engineering problems require robust, computationally
feasible algorithms for the identification of coherent structures
often from very large data sets. Even though these practical
problems are not tractable by the elegant mathematical way
described above, the mental concepts have fertilized the de-
velopment of flow structure detection algorithms.

B. Eulerian Flow Structure Criteria

Many Eulerian methods are limited to the local stability
analysis of the instantaneous VGT1

Aij =
∂vi

∂xj
, (1)

which is in general an asymmetric matrix. It can be decom-
posed as

Aij = Sij +W ij , (2)

to a symmetric and a skew-symmetric part

Sij = (Aij +Aji)/2

W ij = (Aij −Aji)/2 ,

which are referred as strain (Sij) and rotation or swirl (W ij)
tensors, the latter just expressing the vorticity in tensorial form.

1Throughout this paper we use superscripts to index spatial coordinates
and subscripts to index SPH particles. We restrict our discussion to Cartesian
coordinates, therefore no distinction between contravariant and covariant
coordinates are necessary. We follow the convention that double appearance
of a superscript symbol in a term implies summation over that symbol.

The characteristic equation for the eigenvalues (λ) of Aij

in two and three dimensions are

λ2 + Pλ+Q2D = 0, (3)

and

λ3 + Pλ2 +Qλ+R = 0, (4)

respectively, where the P , Q and R coefficients are the first,
second and third scalar invariants of the VGT.2 For divergence
free flows the first invariant vanishes,

P = −Aii = −∇v = 0 , (5)

which restricts the sum of all eigenvalues to zero.
a) Incompressible case: In two dimensional flows of

incompressible fluids (5) implies that the eigenvalues of the
VGT form either a pair of pure imaginary numbers or a pair
of real numbers with opposite signs depending on the sign
of the second scalar invariant. Weiss [8] introduced the terms
‘elliptical’ and ‘hyperbolic’ regions for the subdomains

Q2D > 0 (6)

and

Q2D < 0 , (7)

respectively, that match the types of any possibly existing
stagnation points within them. It seems tempting to identify
vortical structures using (6), the two dimensional Q criterion
for vorticity, and its opposite (7) to locate hyperbolic separatri-
ces, since in steady plane flows the vortex centers are always
located in the elliptical region and separatrices always emanate
from a saddle within a hyperbolic region.

Unfortunately, this simple criterion is not suitable to proper
identification: some parts of elliptic islands always belong to
the hyperbolic subdomain; the zero isoline of Q2D does not
follow the shape of the elliptic islands, often crossing the
separatrices; elliptic regions may occur at locations without
any actual vortical motion, yielding false positive vortex
detections. A typical remedy is to use a Q2D threshold that
differs from 0; however, when there is a wide range of vortex
strength, thresholding causes false negative identification of
weak vortices without relieving from the problem of false
positive cases. Some authors tried to improve the reliability
of the purely kinematic Q2D criterion (6) by combining it
with a seek for pressure minima as well, thus turning it to a
dynamical vortex detection criterion, but this method is also
fallible in case of unsteady plane flows.

Despite of its problems, the Q2D criterion has gained
popularity due to its straightforward applicability.

2The reader is warned that there is absolutely no uniformity in the literature
in these notations, the coefficients and even the signs of these quantities vary.
We use a notation here to emphasise the analogies between the two and three
dimensional cases.
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Fig. 1. Phase portrait of a compressible two dimensional flows. S1: unstable
focus, S2: unstable node, S3: saddle, S4: stable node, S5: stable focus.

b) Compressible case: When the flow is not divergence
free, like the flow on free surfaces, the discriminant of the
quadratic characteristic equation (3) is, in general

∆2D = P 2 − 4Q2D. (8)

The local stability map in the P—Q in two dimensions is
shown in Fig. 1. Now the two dimensional ∆ criterion

∆2D > 0 (9)

signals the region with complex pair eigenvalues and thus can
be considered as an indicator of potentially rotating motion,
since stagnation points here can be centres (P = 0), stable
(P < 0) and unstable (P > 0) foci. Saddle points can exist
wherever Q2D < 0, likewise in the incompressible case before,
but two other types of hyperbolicity can be present if Q2D > 0
and ∆2D < 0. The relationship between the two dimensional
Q2D and ∆2D criteria can be summarised as

Q2D < 0⇒ ∆2D > 0,

∆2D < 0⇒ Q2D > 0.

It was Okubo [9] who first related the Eulerian eigenvalue
spectrum of the VGT to Lagrangian behaviour. He found that
diffusive dispersion of surface floater particles becomes stable
around steady stagnation points falling in the quadrant

P < 0, Q2D > 0 (10)

indicating the presence of a trapping region. This criterion
is necessary and sufficient. It is noteworthy that the (instanta-
neous) Eulerian ∆-criterion does not match the (instantaneous)
Lagrangian criterion.

1) Three dimensional flows:
a) Incompressible case: For three dimensional incom-

pressible flows the scalar invariants of the cubic characteristic
equation (4) are

P = −Aii = 0, (11)
Q = −AimAmi/2 ≡ −

(
SijSji +W ijW ji

)
/2, (12)

R = −AimAmkAki/3 ≡ −SijSjkSki/3−W ijW jkSki,(13)

The corresponding discriminant of (4) is

∆ = (Q/3)
3

+ (R/2)
2
. (14)

Fig. 2. The phase portrait of the VGT for incompressible three dimensional
flows. The dashed line shows the zero disciminant curve. S1: compressing
unstable focus. S2: node compressing in one direction, S3: node stretching in
one direction, S4: stretching stable focus.

The classification of the local flow behaviour can be easily rep-
resented in the plane of the second and third invariants, Fig. 2.
The ∆ = 0 curve separates the Q—R plane into two regions.
In the region belonging to ∆ < 0 all three eigenvalues of the
VGT are real numbers, while the ∆ > 0 region corresponds to
one real and a pair of complex eigenvalues. [10] The Q axis
subdivides both regions in such a way that the R < 0 half
plane corresponds to local one dimensional expansion and two
dimensional contraction, while this dimesionality is exchanged
in the other half plane R > 0. The R = 0 case falls back to
the two dimensional incompressible problem. Similarly to the
two dimensional cases, one can identify the ∆ < 0 region
with hyperbolic, strain dominated behaviour and

∆ = (Q/3)
3

+ (R/2)
2
> 0 (15)

becomes the three dimensional incompressible ∆ vortex crite-
rion that identifies the rotation dominated behaviour; vortices
in the left and right half planes of the Q—R plane are
stretching and flattening vortices.

Similarly to the two dimensional compressible case, it is
possible to use a (now three dimensional) Q criterion as well,
which gives a more stringent criterion for hyperbolic behaviour
and less stringent one for vortex identification:

Q > 0⇒ ∆ > 0, ∆ < 0⇒ Q < 0. (16)

b) Compressible case: As we relinquish the incom-
pressibility constraint (5), the VGT invariants become more
complicated:

P = −Aii, (17)
Q =

(
P 2 − SijSji −W ijW ji

)
/2, (18)

R =
(
−P 3 + 3PQ− SijSjkSki − 3W ijW jkSki

)
/3, (19)

and the phase portrait of the sysem can be represented only
in three dimensions, and much more types of local behaviour
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Fig. 3. P = const. sections of the three dimensional phase portrait; (a)
P < 0, (b) P > 0. The P = 0 section is identical to the plane shown in
Fig. 2 for the incompressible case. Notations are described in Table I.

TABLE I
SUMMARY OF NOTATIONS IN FIG. 3 ACCORDING TO [11].

Sector Description
S1 Unstable Focus Compressing
S2 Unstable Node/Saddle/Saddle
S3 Stable Node/Saddle/Saddle
S4 Stable Focus Stretching
S5 Stable Focus Compressing
S6 Stable Node/Stable Node/Stable Node
S7 Unstable Focus Stretching
S8 Unstable Node/Unstable Node/Unstable Node

become possible. We present these in Fig. 3 with the notations
listed in Table I. As before, the discriminant of (4) separates
the sectors with foci from the sectors of nodes; this yields

∆ =
(
Q/3− P 2/9

)3
+
(
PQ/6− P 3/27−R/2

)2
> 0 (20)

as the three dimensional compressible ∆ vortex criterion that
identifies the rotation dominated behaviour as a generalisation
of (15).

The relationship between the compressible three dimen-
sional ∆ and Q vortex criteria takes the form of

Q > P 2/3⇒ ∆ > 0, ∆ < 0⇒ Q < P 2/3. (21)

C. The VGT Equation of Motion

The equation that describes the development of the VGT
can be obtained by taking the gradient of the Navier–Stokes
equation [12]:

DAij

Dt
+AikAkj −AkmAmk δ

ij

3
= Hij , (22)

where the first term on the LHS is the material derivative of
the VGT and the matrix Hij on the RHS condenses the effects
of all forces acting on the fluid element. In two dimensions
the number 3 in the denominator in the last term on the LHS
of (22) has to be replaced by 2. For the sake of simplicity we
restrain to the case of a Stokesian fluid with constant density
and viscosity, then the source terms are [12]

Hij = −1

ρ

(
∂2p

∂xi∂xj
− ∂2p

∂xk∂xk
· δ

ij

3

)
+ ν

∂2Aij

∂xk∂xk
. (23)

In general, terms due to the variability of the density and the
viscosity should also appear in (23).

III. DETECTING EULERIAN STRUCTURES BY SPH

In this section we describe an actual realization of instanta-
neous Eulerian flow structures in SPH, using the ∆ criterion
discussed in Subsection II-B.

A. SPH Details

Because in the present paper we focus on the motions
and flow conditions in the interior of the fluid, for simplicity
we have calculated the density directly, based only on the
instantaneous configuration of particles,

ρa =
∑
b

mbWab , (24)

and ignored the kernel truncation errors near the fluid bound-
aries. The average number of neighbours has been set to 55
particles in all calculations in this paper. For the pressure
calculation the Tait equation has been used,

Pa = c2sρ0/γ ((ρa/ρ0)
γ − 1) , (25)

with the specific heat ratio γ = 7 and speed of sound cs = 10.
Dissipation forces have been based on the artificial viscosity
model [13] with α = 0.3. Particle positions have been updated
by a second order predictor-corrector scheme.

The calculations have been carried out with our 3 dimen-
sional SPH solver. The code has been written in C++ and the
parallelization has been done in CUDA. We have performed all
calculations in this paper with a 3.0 CUDA compute capability
Kepler architecture GPU with 2 GiB device memory and
384 CUDA cores.

B. Generating the Velocity Gradient Tensor Field

In order to detect instantaneous Eulerian flow structures in
SPH, the components and the scalar invariants of the VGT
field has to be generated. The direct SPH formulation of the
dynamic VGT equation (22) is not possible, because the effect
of SPH forces on its RHS cannot be formulated in closed form.
Therefore, the VGT has to be obtained by numerically taking
the derivatives of the velocity fields.

Obviously, the roughness of the velocity field is a serious
limiting factor. In order to smooth the velocity field as much as
possible, we have applied the XSPH correction in the position
calculation [14]

dria
dt

= via + ε
∑
b

mb

ρab
(vb − va)iWab (26)

with ε = 0.5, as a first step. Next, the VGT has been gener-
ated by using the standard tensor product and differentiation
convention of SPH:

Aija =
∑
b

mb

ρb
(vb − va)i∂jWab. (27)

Unfortunately, this way of calculation leads to substantial noise
due to the inaccurate calculation of the derivatives. In order
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Fig. 4. PDF of particles projected to Q—R plane without correction of
VGT. The ∆ = 0 curve is shown by dotted line. Isolines are logarithmically
scaled.

to achieve a smoother result, we have applied yet another
correcting step similar to that of XSPH:

Aija ← Aija + εA
∑
b

mb

ρb
(Ab −Aa)ijWab. (28)

The εA factor is left tunable (to be further discussed below).
To complete the calculation, one needs to calculate the

scalar invariants from the VGT components using the formulæ
in Subsection II-B. Since our fluid is weakly compressible,
c.f. (25), we have had to use the three dimensional compress-
ible forms (17–19). Finally, the ∆ criterion can be evaluated
using the appropriate formula (20).

The correction (28) we recommend in this procedure is a
crucial step, since it produces in a substantially smoother VGT
field. To study this effect, we capture the VGT components
of each particle in a chosen time instant of the simulation.
In order to have a comparable distribution for different cases,
we normalize the VGT of each particle independently of each
other using the formula

Aija ←
Aija√

Amna Amna
. (29)

This ensures that −1 < Aij < 1 and that we can subsequently
obtain the scalar invariants in the same compact frame without
loss of information. [15]

Figures 4 and 5 show the empirical probability density
functions (PDF) in the Q–R plane of the particles obtained
the same calculation from the Test Case I without and with
the VGT correction step, respectively. It is obvious that the
distribution without correction is affected by a significant
noise.

C. Test case I.

In this test, we have performed experimental calculations to
study the effect of the artificial viscosity α and εA upon our

Fig. 5. PDF of particles projected to Q—R plane with correction of
VGT using (28). The ∆ = 0 curve is shown by dotted line. Isolines are
logarithmically scaled.

Fig. 6. Empirical probability density functions on the normalised Q—
R plane obtained in case of different α and εA values in Test Case I.
Isoprobability curves are logarithmically scaled.

correction method (28). We have simulated vortex decay in a
simple vessel of cubic shape with 2 m edge size. The container
was filled by a vertical jet of water until the level reached 1 m,
then the inlet was closed. The instantaneous configuration of
particles on Q–R plane was captured right after the incoming
water had stopped.

The procedure has been repeated with several settings of α
and εA. The empirically obtained distributions are presented in
Fig. 6 for different cases, after using the normalization (29).
The effect of α and εA on the second momentum of R in
the PDF’s is shown in Fig. 7, their joint smoothing effect is
obvious and requires more effort to be completely understood
and exploited for optimal smoothing.
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Fig. 7. The variance of R of the PDF’s in Fig. 6 vs. α and εA.

Fig. 8. Geometry of the second and third test cases.

IV. LAGRANGIAN FLOW STRUCTURE ANALYSIS

In this section we present two simple test cases, in which we
attempt to carry out simple Lagrangian flow analysis within
the framework of SPH. The geometry and the flow problem is
identical in both cases, it is shown in Fig. 8. The number of
particles in the simulation was about 200, 000. Otherwise we
used the same program settings as in the previous Section.

The first step is to use the Eulerian tools introduced in the
previous Sections to identify candidates of Lagrangian flow
features. We have applied the three dimensional compressible
∆ and Q criteria, c.f. (20) and (21), to take this first approach.
As Fig. 9 shows, by means of these criteria the rotating
structures can be successfully separated from hyperbolic ones.
Next we have chosen a candidate ‘elliptic’ and ‘hyperbolic’
flow feature, their location is indicated in Fig. 8, where the
existence of a corresponding Lagrangian structure have been
expected. Then we picked a ‘core’ particle inside each of
these candidates, and marked the particles within close vicinity
around them. In addition we have also generated passive tracer
particles — one ‘child’ for each SPH marked particle —
exactly at the position of its ‘parent’. We realised passive
tracers as special particles that are moved by the smoothed
velocity field of the ‘real’ SPH particles, but they had no effect
on the flow (nor each other).

Fig. 9. Red particles indicate rotation dominated structures (Q > 0), blue
ones signal hyperbolic flow type (∆ < 0). White particles (where Q < 0 and
∆ > 0) are considered to be without dominant properties.

In the subsequent steps of the simulation we have tracked
these particles and calculated their relative dispersion and
finite time Lyapunov exponent (FTLE). The initially nearby
particles were paired to form N couples. Their relative position
dispersion was obtained by

D(t; t0, d0)2 =
1

N/2

∑
a=1,3,5,...

|xia − xia+1|2, (30)

as defined in [6], while the FTLE was calculated as

Λ(t) = log(d(t)/d0)/t, (31)

where d0 and d(t) denote the initial and later distances
between the paired particles and t is the elapsed time.

Both dispersion and FTLE have been calculated to SPH
pairs, passive particle pairs and pairs of SPH and passive
particles. The purpose of this investigation was to estimate
the rate at which SPH particles deviate from true Lagrangian
behaviour. Although we have used the XSPH correction, which
causes a less erratic behaviour, it is important to calculate
material trajectories as exactly as it is possible. The success of
Lagrangian methods depends on how accurately the particles
follow their exact material path.

A. Test Case II.

In the second test case the suspected elliptic type structure
has been investigated. Fig. 10 shows the trajectories of the SPH
and the passive particles side by side. For the first glance it
is hard to distinguish the small differences between the two
subfigures. This can be confirmed by checking out Fig. 11,
which shows the relative dispersion and the FTLE time series.
The dispersion between ‘child’–‘parent’ pairs has proved to be
smaller by almost two magnitudes than those among the SPH
particles only or the passive tracers only. This indicates that
passive tracers successfully shadow their counterparts’ motion.
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Fig. 10. The blue and red curves are the trajectories of the SPH and passive
particles, respectively, in the elliptic structure of Fig. 8.

Fig. 11. Relative dispersion and FTLE in the vortical flow structure. Black,
blue and red curves denote SPH, passive and mixed pairs, respectively.

The initially much larger FTLE values between mixed pairs
is an artifact caused by the small initial distance between
passive particles and their parent particles in (31). Fig. 12
shows the evolution of the scalar invariants of the SPH and the
passive particles separately. The passive particles show very
similar behaviour but with slightly less noise. The difference
between the variances (not shown for clarity) was significant
in favour of the passive tracers. The average values indicate
that the particle cloud remained within the Q > 0 sectors of
the Eulerian phase map, c.f. Fig. 3.

All of these findings indicate high level of coherence among
these trajectories in this sample region.

B. Test Case III.

In the third test case the hyperbolic structure candidate was
tested, which had been anticipated in the bottom corner of
the vessel, c.f. Fig. 8. This expectation was also supported
by Fig. 9. In this case the ‘core’ particle has been placed
directly upstream of the supected hyperbolic point, right into
the jet inside the fluid. The streamlines in Fig. 13 show as the
group of particles and passive tracers reach the hyperbolic
point on the wall where they experience flattening strain:
compression in the normal direction and rapid stretching in
the tangential directions. The trajectories of the tracer particles
are again very similar to those of the SPH particles but they
are definitely smoother. The evolution of the VGT invariants
shows that reaching the hyperbolic triggers a shock-like effect
especially in case of the SPH particles. The development of
the passive particles again seems much smoother. The relative

Fig. 12. Average VGT invariants of the SPH and the passive particles in the
rotation dominated structure.

Fig. 13. Particle trajectories. Blue and red curves indicate SPH and passive
particles, respectively.

dispersion curve in Fig. 15 shows again an order of magnitude
lower dispersion between SPH and tracer particles then among
particles of the same kind. The trend of the dispersion is
different from the previous test case, now the particles undergo
rapid stretching right after reaching the hyperbolic point. The
FTLE data shows the same artifact as before.

V. SUMMARY

In this paper we carried out the implementation of a
complete file structure analysis programme in SPH. The
simulations and calculations were carried out by our three
dimensional SPH solver. We argued for and implemented
the compressible ∆-criterion as a potentially useful tool for
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Fig. 14. Average of VGT invariants of the SPH and the passive particles
around the hyperbolic point.

Fig. 15. Relative dispersion and FTLE in the hyperbolic flow structure. Black,
blue and red curves denote SPH, passive and mixed pairs, respectively.

instantaneous Eulerian flow structures. The smoothing of the
VGT field proved to be a crucial step, for which we introduced
a method. The important role of a reliable instantaneous
structure detection method in Lagrangian flow analysis has
also been demonstrated in test cases. We have also presented
information about the comforting tendency of passive tracers
to shadow real SPH particles.

The analysis of the VGT invariants’ distribution shows
remarkable agreements with turbulent behaviour. Further work
in this field may result in a more sophisticated viscosity model,
which has the ability to reproduce the Kolmogorov energy
cascade down to the scale of discretization. The possible
adaptation to incompressible SPH which can provide simpler
and more accurate methods in case of incompressible fluids.
SPH carries a potential to be a succesful platform of even
better and higher order Lagrangian flow analysis tools.
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