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Background and purpose — Reports on twin pairs concor-
dant and discordant for Williams syndrome were published
before, but no study unravelled sleep physiology in these
cases yet. We aim to fill this gap by analyzing sleep records
of a twin pair discordant for Williams syndrome extending
our focus on presleep wakefulness and sleep spindling.
Methods — We performed multiplex ligation-dependent
probe amplification of the 7q11.23 region of a 17 years
old dizygotic opposite-sex twin pair discordant for Williams
syndrome. Polysomnography of laboratory sleep at this age
was analyzed and followed-up after 1.5 years by ambulato-
ry polysomnography. Sleep stages scoring, EEG power
spectra and sleep spindle analyses were carried out.
Results — The twin brother showed reduced levels of ampli-
fication for all of the probes in the 7q11.23 region indicat-
ing a typical deletion spanning at least 1.038 Mb between
FKBP6 and CLIP2. The results of the twin sister showed nor-
mal copy numbers in the investigated region. Lower sleep
times and efficiencies, as well as higher slow wave sleep
percents of the twin brother were evident during both
recordings. Roughly equal NREM, Stage 2 and REM sleep
percents were found. EEG analyses revealed state and deri-
vation-independent decreases in o power, lack of an a
spectral peak in presleep wakefulness, as well as higher
NREM sleep o peak frequency in the twin brother. Faster
sleep spindles with lower amplitude and shorter duration
characterized the records of the twin brother. Spectra show
a striking reliability and correspondence between the two
situations (laboratory vs. home records).

Conclusion - Alterations in sleep and specific neural oscil-
lations including the /o waves are inherent aspects of
Williams syndrome.

Keywords: Williams syndrome, 7q11.23 microdeletion,
sleep EEG, sleep spindles, a waves, dizygotic twins
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Hattér és célok — A Williams-szindrémdra concordans és
discordans ikrekrél eddig kézslt esettanulményok adésak
maradtak az alvdsélettani sajdtossdgok elemzésével. Célunk
ezt a hidnyt pétolni egy Williams-szindrémdra discordans
ikerpdr alvésregiszirdtumainak elemzésével, mikdzben vizs-
gélatunkat az elalvds elétti ébrenlétre és az alvdsi orsézds
sajdtossdgaira is kiterjesztjok.

Médszerek — A 17. életévikben aro, kétpeté|U, eltérs
nem( és Williams-szindrémdra discordans ikrek 7g11.23
kromoszémarégi6it multiplex ligaciéfiggé préba amplifika-
ciés eljdrassal vizsgdltuk. Az alvaslaboratériumban készilt
poliszomnogrdfigs felvételben, valamint a mésfél évvel
ezutdn megismételt ambuldns poliszomnogrdfids regisztrd-
tumban az alvdsstéddiumokat, az EEG-teljesitményt és az
alvdsi orsézést elemeztik.

Eredmények — A fi0 ikertestvér eredményei valamennyi
prébéban csékkent amplifikaciot mutattak, ami tipikusnak
mondhaté, legaldbb 1,038 Mb kiterjedés(, az FKBPé és
CLIP2 kazétt elhelyezkedd delécié. A lénytestvér eredményei
normal masolatszdmokat eredményeziek a vizsgalt
régidban. A fittestvér mindkét regisziratumdban ala-
csonyabb szint{ alvésidét és hatékonysagot, valamint
emelkedett lassd hulldmd alvdsi ardnyt taléltunk a
lanytestvérhez képest. A NREM, a 2. stddiumé és a REM-
alvési ardny az ikertestvérekben megkézelitSleg egyenld
szint( volt. Az EEG-elemzések az a-teljesitmény dllapot- és
elvezetésfiggetlen csékkenését, az elalvast megel6z8 ébren-
létben hidnyzé spekirdlis a-cstcsot, tovébbd a NREM-fézis-
ban magasabb spekirdlis o cstcsfrekvenciat tartak fel a
fivtestvér felvételeiben. Magasabb frekvencidgju, ala-
csonyabb amplitddéju és révidebb id8tartamy alvdsi
orsékat is megfigyeltink a fidtestvér felvételeiben. A speki-
rumok figyelemremélié egyezést mutattak a két helyzet
(laboratérium vs. otthon) kézstt.

Kévetkeztetések — Az alvésban, valamint a specifikus

— /0 hulldmokat érint8 — neuralis oszcillacidkban
bekdvetkez8 médosuldsok a Williams-szindréma inherens
részét képezik.
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leep architecture and/or sleep EEG spectral

parameters were shown to be altered in several
developmental disabilities, including autism,
Asperger syndrome, Down syndrome, fragile X
syndrome and attention deficit hyperactivity disor-
der (ADHD).

Williams syndrome (WS) is a genetically deter-
mined developmental disorder linked to a micro-
deletion of 25 to 28 genes on chromosome 7q11.23
and characterized by mild to moderate mental retar-
dation, learning difficulties, cardiovascular abnor-
malities, high sociability and empathy and a dis-
tinctive cognitive-linguistic profile>°. Perhaps this
latter aspect is the most interesting for cognitive
research: severe visual-spatial deficits and relative
strength in expressive language’ ®. As overactivity
and shortened attention span are typical in WS, it is
not surprising that more than 50% of WS individu-
als are diagnosed with ADHD as well* 1°.

Although subjective reports suggest a particular-
ly high level of sleeping difficulties in WS, alter-
ations of actigraphic and polygraphic sleep were
only scarcely investigated. Previous studies report-
ed difficulties in initiating and maintaining sleep,
increased slow wave sleep, decreased REM sleep
and periodic leg movements during sleep in those
children with WS whose parents reported sleep
problems!!. Actigraphic studies'? and polysomno-
graphic investigations'> ' suggest the continuity of
most of these problems into the postpubertal ages,
however the data is still incomplete and scarce.
Additionally, sleep EEG spectra was shown to be
characterized by increased frontally-derived delta
activity as well as by decreased a and o power in
both NREM and REM sleep'®. Last, but not least a
special alteration in the spectral profile of the 8-16
Hz NREM sleep EEG of WS subjects was also
reported. This altered profile was characterized by
decreased a/low o activity, redistribution of power
toward higher o frequencies as well as higher spec-
tral peak frequencies in the 8-16 Hz range®.

As there is unequivocal evidence for the thesis
that psychosocial, socioeconomic and environmental
factors may substantially influence brain develop-
ment, neural activity and behaviour'® 7, studies on
twin pairs discordant for WS provide a unique
opportunity for revealing anatomical, physiological
or cognitive alterations specific to this syndrome.
Twin pairs concordant and discordant for WS have
been reported in the literature. In line with unequal
homologous recombination as the cause and the
100% penetrance of this genetic syndrome, monozy-
gotic twins were shown to be concordant, while dizy-
gotic twins discordant for WS'822, No twin study
reported sleep behaviour or physiology in subjects
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with WS before. Here we report the laboratory and
ambulatory polygraphic sleep of an opposite sex
twin pair discordant for WS. Our focus is on the
macrostructure of sleep and on the EEG profiles of
our subjects. We aim to confirm the reproducibility
and reliability of the recently reported differences in
sleep structure and EEG spectra of subjects with WS
compared to the typically developing (TD) ones' 15
in the twin pair discordant for WS, but sharing
socioeconomical and environmental factors with
potential developmental and sleep-related relevance.
In order to achieve this goal we first present a
detailed picture of the sleep laboratory records of the
twin pair previously enrolled in the polysomno-
graphic and spectral EEG studies of WS!* 15, Here
we pay special attention to previously reported pecu-
liarities in the sleep physiology of WS subjects!!: 13- 14
in order to test whether these features are reflected in
the differences between the twin with WS and his
TD sister. Furthermore, we aim to test the reliability
of these findings by repeating polysomnography
after a period of 1.5 years in the twins’ home, using
an ambulatory recording device. Such tests of relia-
bility are rarely used in the sleep studies of the devel-
opmentally disabled population's, but are particular-
ly relevant in discerning the individual sleep EEG
profiles in twin studies' %. In previous reports we
focused on WS- vs. TD NREM and REM sleep EEG
band power differences as well as on 8-16 Hz
NREM sleep EEG spectral profiles. Neither data on
WS-specific EEG activity in wakeful resting condi-
tions, nor a detailed analysis on NREM sleep EEG
spindling (spindle densities, durations and ampli-
tudes) was given. In this case study we provide pre-
liminary information on these aspects using the data
of the twin pair included in previous studies'> 1.

Case history

There was no previous history of genetic disorders
in the family of the twins investigated in this study.
The mother was a 33-year-old primipara receiving
standard pregnancy care, the twin pregnancy was
diagnosed by ultrasonography during the 10th ges-
tational week. The twins were delivered per vias
naturales preterm on the 35th weeks after a high
risk pregnancy in 1991. Both twins required rehos-
pitalization during the first months of their life due
to growth delay and bronchopulmonary infections.

CASE 1

The boy weighed 2.250 grams at birth. Pediatric
examination after birth revealed dysmorphic body
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features and a varus foot, the latter required
orthopaedic examination and physiotherapy.
Because of the dysmorphic body features he was
tested for metabolic disorders, yielding negative
results. The chromosome examination indicated
normal karyotype. At the age of 13 months the par-
ents experienced abnormal facial twitching and on
one occasion tonal-clonal movement of the lower
limb. The subsequent electroencephalographic
examination showed abnormal epileptic activity,
the patient received low dose phenobarbital and
primidone medication until the age of six years. He
underwent right side orchidectomy because of cryp-
torchism in 1996. Cardiologic examination in 1998
showed mitral prolapse and grade I. mitral insuffi-
ciency, this was controlled later throughout his life,
and he received endocarditis prophylactic treat-
ment.

As an infant the boy showed slow gross motor
development, he started sitting up at 18 months of
age, standing at 19 months of age, and walking
when he was three. The fine motor development
was also delayed and his fine-motor deficits persist-
ed throughout his life (e.g. clumsy grasping).
Language development was also atypically slow, he
performed only babbling at the age of three years,
started to say distinct basic words at 4.5 and to talk
fluently at 5.5 years of age. Based on the symptoms
of mental retardation, hypermotility, and mitral
insufficiency, the diagnosis of WS was established
in 1998, by a positive fluorescent in situ hybridiza-
tion (FISH) test.

At the age of 16 years, neuropsychological
investigation found mild mental retardation, poor
visuo-spatial abilities, visual memory deficits. His
language perception and production was sufficient,
although he expressed himself in simple sentences.
He attended a special primary and secondary school
for mentally disabled children. In 2010 abdominal
ultrasonography and computer tomography showed
a coarctation of the abdominal aorta. Due to the
good general status no surgical intervention was
necessary, antihypertensive therapy was initiated.
He passed away unexpectedly due to sudden death
in May 2011, autopsy confirmed cardiwly and
acute heart failure.

CASE 2

The sister of the patient weighed 2.350 grams at
birth. She showed no sign of developmental disor-
der or delay during her childhood. She attended
normal public schools and performed at a good aca-
demic level. At the age of 21 years she is a college
student.

Methods
GENETIC ANALYSES

The twins were tested for WS at the age of seven
years with FISH of the elastine (ELN) gene as part
of the routine clinical genetic diagnostic procedure.
To further characterize and specify the extent of
copy number variation, i.e. the size of the hemideli-
tion of the affected twin, we performed multiplex
ligation-dependent probe amplification (MLPA)
using the SALSA MLPA KIT P029-A1 (MRC-
Holland, Amsterdam, The Netherlands) according
to the established protocol* 2. The MLPA reaction,
a robust and reliable method, is based on the
hybridization of specific oligonucleotide probes to
the sample DNA and the consequential amplifica-
tion of the hybridized targets after ligation.
Amplification fragments can be separated and
quantified afterwards using capillary electrophore-
sis. The P029-A1 assay contains probes for the fol-
lowing genes in the 7q11.2 chromosomal region:
FKBP6, FZD9, TBL2, STX1A, exons 1,6,20, and
33 in ELN, LIMK1, RFC2, and two loci in CLIP2.
The probe mix also contains 20 reference probes.

LABORATORY POLYSOMNOGRAPHY

Sleep was recorded in 2008 in the laboratory for
two consecutive nights, according to the subjects
sleeping habits (lights on and lights off at the pre-
ferred time of the subjects). Electroencephalograms
(EEG) according to the 10-20 system?® at 18 record-
ing sites (Fpl, Fp2, F3, F4, F7, F8, Fz, C3, C4, Cz,
P3, P4, T3, T4, T5, T6, Ol1, O2) referred to the con-
tralateral mastoids, left and right electrooculograms
(EOG) with electrodes placed at the left and right
outer canthi (contralateral mastoid reference),
respectively, as well as bipolar submental elec-
tromyograms (EMG), electrocardiograms (ECG),
and accelerometry-based left and right leg move-
ment detections were carried out. Gold-coated
Ag/AgCl electrodes fixed with EC2 Grass
Electrode Cream (Grass Technologies, USA)
served for EEG recordings, while EOG, EMG and
ECG recordings were performed with disposable
electrodes (T40/80, Telic S.A., Spain). Impedances
for the EEG electrodes were kept below 5 k.
Signals were collected, pre-filtered, amplified and
digitized at a sampling rate of 249 Hz/channel by
using the 30 channel Flat Style SLEEP La Mont
Headbox with implemented second order filters at
0.5 Hz (high pass) and 70 Hz (low pass) as well as
the HBX32-SLP 32 channel preamplifier (La Mont
Medical Inc. USA). An additional 50 Hz digital
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notch filtering performed by the DatalLab acquisi-
tion software (Medcare, Iceland) was carried out
before data conversion (European Data Format or
EDF)”. EEG channels were re-referenced to the
mathematically-linked mastoids before quantitative
EEG analyses.

Sleep recordings were visually scored according
to standard criteria®® in 20 second epochs. The fol-
lowing definitions were used for sleep architecture
evaluation: sleep efficiency (calculated as the per-
cent of sleep duration / the time in bed), wake time
after sleep onset (WASO), as well as NREM, Stage
1, Stage 2, slow wave sleep (SWS, defined as the
amount of time in Stages 3 and 4) and REM sleep
percent.

The sleep architectural data of the twins was
compared with group means (expected values) of
WS (N=9) and TD (N=9) subjects (data from ref.
13). Deviations from the confidence intervals
(£1.96 SE) were considered as a significant.

Next the 4 second epochs containing artefactual
sleep EEG were manually removed before further
automatic sleep EEG analyses. Average power
spectral densities were calculated by a mixed-radix
Fast Fourier Transformation (FFT) algorithm
applied to the 50 percent overlapping, Hanning-
tapered, artefact-free 4 second (996 points) epochs
of whole night stages 2—4 NREM sleep and REM
sleep separately. Moreover, the Individual
Adjustment Method (IAM) of sleep spindle analy-
sis?” was used to unravel the potential peculiarities
of sleep EEG spindling in WS. In short the princi-
ple of sleep spindle detection is the idea that indi-
vidual spindles are those groups of waves which
last at least 0.5 seconds and contribute to one or two
of the major peaks in the 9-16 Hz average ampli-
tude spectra of NREM sleep EEG. Individual-spe-
cific spectral peaks were formalized by calculating
the zero crossing points of their second order deriv-
atives. The EEGs recorded during presleep wake-
fulness were first subjected to Independent
Component Analysis (ICA) in order to reduce the
movement artefacts and keep as much records for
analysis as possible. After ICA-based artefact filter-
ing a visual decision on further spectral analyses
was made on a 4 second basis. Spectral analysis fol-
lowed the procedure described above.

AMBULATORY POLYSOMNOGRAPHY

On the follow up, after 1.5 years (2009) subjects’
sleep was recorded at their homes by using ambula-
tory home polysomnography. Sleep recordings on
two consecutive weekend nights were performed
according to the subjects sleeping habits. We used a

Bédizs: Sleep in Williams syndrome: a twin study

portable 32 channel SD LTM Headbox together
with a BRAIN QUICK System PLUS software
(Micromed, Italy) for polysomnographic data
recording. EEG and polygraphic data was high-pass
filtered at 0.15 Hz and low-pass filtered at 1500 Hz
(both 40 dB/decade). Data were collected with an
analogue to digital conversion rate of 4096
Hz/channel (synchronous, 16 bit). A further 40
db/decade anti-aliasing digital filter was applied by
digital signal processing (firmware) which low pass
filtered the data at 124 Hz. Subsequently, the digi-
tized and filtered EEG was undersampled and
stored on a sampling rate of 1024 Hz. The analyses
were similar to the ones used in the laboratory sleep
study: EDF-converted EEG-signals classified into
Rechtschaffen and Kales®® stages (20 s) were bro-
ken into 4 second (4096 points) epochs, artefactual
ones removed and the remaining ones subjected to
FFT. Average spectra of whole night NREM
(Stages 2-4) and REM sleep were calculated by
averaging the periodograms of Hanning-tapered
and 50% overlapping epochs, re-referenced to the
mathematically-linked mastoids. Last, but not least
we used the IAM of sleep spindle analysis in order
to characterize sleep spindling in the ambulatory
records. Presleep wakefulness was cleaned from
artefacts by removing critical ICA-components,
then visually screened and subjected to spectral
analysis as described above.

Sleep architecture of the twins was compared to
the group means of WS (N=20) and TD (N=20)
subjects (data from ref. 15). Deviations from the
confidence intervals were considered as significant
alterations.

Results
GENETIC ANALYSES

Using the MLPA reaction the DNA sample of the
twin brother showed reduced levels of amplifica-
tion for all of the probes in the investigated region,
thus he was a carrier of a typical deletion spanning
at least 1.038 Mb between FKBP6 (7:72742167-
72772634) and CLIP2 (7:73703805-73820273).
The deletion of genes outside this chromosomal
region could not be tested with this assay. The
results of the twin sister showed normal copy num-
bers in the investigated region.

SLEEP ARCHITECTURE

When compared to his TD sister the WS twin had
lower sleep efficiency, higher WASO, and higher
SWS percent in the laboratory. In contrast the WS
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and the TD twins were character-
ized by similar NREM and REM
sleep percents in their laboratory
records (Figure 1.). The WS sub-
ject had only three sleep cycles
during the night, while his TD sis-
ter had four. Differences in REM
sleep latency might reflect a
skipped first REM phase in the TD
twin (Figure 2.). When using
group averages as a reference
(N=9 WS subjects) the sleep struc-
ture of the WS twin was close to
the WS group means in terms of
relative S1, S2, SWS and REM
values. However, the WS twin had
lower sleep efficiency as well as
higher WASO and NREM sleep
percent than the expected WS val-
ues. In contrast, the sleep architec-
ture of the TD twin was close to
the TD means (N=9 TD subjects)
in terms of sleep efficiency,
WASO and S1, but an increased
NREM and SWS as well as
decreased REM sleep was also
observed (Figure 1.).

The one year follow-up (ambu-
latory recording) confirmed the
striking differences in sleep effi-
ciency, WASO, and SWS between
the twins (Figure 1.). It is interest-
ing that both subjects had seven
sleep cycles during their ambula-
tory home recordings (Figure 2.).
Likewise in the laboratory records
the twins had similar NREM and
REM sleep values in the one year
follow-up.

When using WS and TD group
means (20 WS and 20 TD subjects
participating in ambulatory sleep
recording studies) as references the
WS twin had a more fragmented
sleep (low sleep efficiency, high
WASO) and lower S2 value than
his counterparts. NREM sleep, S1,
SWS and REM sleep were close to
the expected WS values (Figure
1.). The sleep architectural meas-
ures of the TD twin were close to
the expected values based on group
means of ambulatory home-record-
ed sleep data of other TD subjects
(Figure 1.).
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Figure 1. Individual sleep architectural values (%) of the twins visualized on box

plots of group values (%). Individual values are open squares (3). Group values are

based on the subjects involved in a previous study®. Significant group differences are

indicated as follows: * p<.05, ** p<.0l
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Figure 2. Hypnograms of the twins referring to laboratory and home sleep. The 1*
and the 3™ graphs depict the sleep architecture of the laboratory and home sleep of
the WS twin, respectively. The 2" and the 4™ graphs depict the laboratory and the

home sleep of the TD twin, respectively
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Figure 3. Double logarithmic plots of the EEG spectra in different behavioural states and recording nights. Red lines
indicate plots of the WS twin, while blue lines indicate plots of the TD twin

EEG SPECTRA

Wakefulness NREM sleep and REM sleep were
characterized by striking stability in terms of their
individual- and state-specific EEG spectra. This is
evidenced by the visual inspection of Figure 3. As
regarding the comparison of the overall EEG spec-
tra of the twins, the 3 to 30 Hz power of the WS
twin was lower than the 3-30 Hz power of the TD
twin in both wakefulness and sleep. A clear-cut,
state-independent difference in EEG power is evi-
dent for the frequencies roughly corresponding to
the o band (8-12 Hz).

State-specific spectral EEG differences between
the twins are evident in the NREM sleep EEG o
(12-15 Hz) range. Spectral peak frequency (corre-
sponding to NREM sleep EEG spindling) is higher
in the WS than in the TD twin in both records.
Moreover, a slowing of spindling in the frontal
(anterior) derivations of the TD twin is evident in
both records, while there is no sign for a similar
phenomenon in the WS twin. As regarding higher
frequencies during NREM sleep, the striking beta
peak (~28 Hz) is present in the TD twin but not in
the WS twin.

Other state-specific differences are related to the
lack of the a peak in the presleep records of the WS
twin. This contrasts the presence of the clear-cut o
peaks of the TD twin in her presleep records.

Differences in lower frequencies could be
informative in NREM sleep, but these were not

Bédizs: Sleep in Williams syndrome: a twin study

unequivocal. The WS twin had higher power in the
range of the slow oscillation (<1 Hz) in some but
not all derivations, while less or equal values in the
1-2 Hz range during NREM sleep were also evi-
denced.

SLEEP SPINDLE ANALYSIS

Results of the sleep spindle analyses are presented
in Table 1. Siblings most consistently differed in
sleep spindle frequency and amplitude. The fre-
quency (Hz) of both slow and fast sleep spindles
were higher in the WS than in the TD twin. In con-
trast spindles (slow and fast) of the WS twin were
characterized by lower amplitude (uV) than spin-
dles of the TD twin. Last, but not least shorter sleep
spindles were characteristic for the WS twin in
comparison with his TD sister. This latter differ-
ence was mostly expressed in the case of fast sleep
spindles, and less so for slow spindles. Differences
in slow and fast sleep spindle densities (min!) were
usually low and/or inconsistent across the nights.

Discussion

Here we provide information on the differences and
similarities between the sleep of a twin pair discor-
dant for WS. Our aim was to replicate our previous
statistical findings in an individualized analysis
based on a case study in which psychosocial,
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Table 1. Data on the sleep spindles of the twins*
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*Values are given in the following format: WS (TD). In cases were WS > TD bold characters are used. Italics denote WS < TD. Peak frequencies are derivation-independent in accordance

with the IAM procedure of sleep spindle analysis.

socioeconomic and environmental factors are con-
trolled. Moreover, we aimed to compare some
sleep-wake variables which were not analyzed
before in subjects with WS. These were the EEG
spectra in wakefulness, detailed sleep spindle
analysis as well as the separation of state-specific
and state-independent EEG alterations.

Reported WS-related macrostructural sleep
alterations'! 1314 were reflected in the differences in
sleep architecture between the twins. Lower sleep
efficiency and higher WASO of the WS twin was
evident in the laboratory as well as during the
ambulatory home recording. Likewise the previous-
ly reported difference in SWS was supported by the
higher relative SWS time of the WS twin during
both laboratory and home sleep. In contrast the
lower REM sleep values of WS subjects!!: 13-4 were
not supported by our case study. Both laboratory
and home records yielded equal percents of REM
sleep time in the twins. In other words alteration in
sleep continuity (low sleep efficiency, high WASO)
as well as increased SWS seem to be core features
of the disorder, while reduced REM sleep might be
at least in part consequences of some non-specific
environmental (sleep-related) or even non-WS-
related genetic factors. Obviously, the deliberate
testing of this statement needs further empirical
support and future studies.

Our spectral EEG results were supportive for a
strong reliability of this EEG measure as well as for
a state-independently decreased EEG power in the
o range. Although reports on decreased o power
during NREM and REM sleep of WS patients were
published before!* 5, no analyses focusing on
wakefulness were carried out in these studies.
According to our present case study the decreased
EEG o power in the WS twin is particularly evident
during presleep wakefulness, when clear o peaks
emerge in the EEG spectra of different derivations
in the TD twin. No such peaks are seen in the WS
twin. We can only speculate whether this striking
decrease in EEG o waves is characteristic for a
larger WS sample. Reports on decreased NREM
and REM sleep o in WS!* 15 as well as the several
strong state-independent, individual features in
EEG power® are suggestive for a general o EEG
anomaly in WS. Given the strong evidences for the
posterior (parietal and occipital) origin of o waves,
as well as the relationship between o waves and
visual information processing we could speculate
that this EEG phenotype is a direct reflection of the
parieto-occipital anomaly and visuospatial dysfunc-
tion in WS.

A displacement of the o spectral peak toward
higher frequency in NREM sleep was evident in our
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present study. Together with the lack of a clear slow
spindle (low o) peak with anterior predominance
this finding is coherent with the earlier reports'>.
The finding is consistent with the notion of the
NREM sleep-dependent acceleration of the thalam-
ocortical oscillatory dynamics in WS.

No direct analyses of sleep spindles were per-
formed in subjects with WS before. Here we pro-
vide the results of the IAM of sleep spindle analy-
ses for the whole nights of NREM sleep in the
twins. Analyses reveal faster sleep spindling with
lower mean amplitude as well as shorter bursts of
fast sleep spindles in the WS twin as compared to
the TD twin. These findings cohere with the notion
of an accelerated thalamocortical oscillatory
dynamism in the NREM phase of sleep of subjects
with WS, Moreover, results of our current analy-
ses of the amplitude of spindle events further
strengthen the report of a decreased NREM sleep o
power in patients with WS, It remains to be deter-
mined whether the reported shortening of the fast
sleep spindle bursts of the WS twin is a general fea-
ture of WS or some accidental phenotype. It is
worth noting, that the shortening of spindle bursts
was found to be a potential biomarker of dementia
among older subjects’, thus the cognitive deficits
of WS subjects could be related to the shortening of
sleep spindle bursts.

Although our understanding about the associa-
tion of the genetic alterations and the typical
behavioural phenotypes in WS is fragmented, con-
siderable effort has been made to delineate geno-
type-phenotype correlations in this genetic syn-
drome. Out of the 25-28 genes affected in WS,
some are associated with the typical somatic alter-
ations, i.e. connective tissue dysfunction, others
remain unknown as of today in terms of biological
function and disease pathology. It is conceivable
that the neuropsychiatric alterations should be
explicable by haploinsufficiency of genes shown to
be strongly expressed in the developing or adult
CNS by expression studies. Alternatively, these
symptoms might also be caused by direct or indi-
rect downstream effects, or possibly the interaction
of single gene-related effects. WS genes expressed
in the CNS include cytoplasmic linker 2 (CLIP2),
syntaxin 1A (STX1A), frizzled 9 (Fz9D), and LIM
domain kinase 1 (LIMK1)%. CLIP2 encodes a
cytoplasmic linker protein responsible for interac-
tions of intracellular organelles and the micro-
tubule network. LIMKI1 encodes a cytoplasmic
protein kinase that plays a role as a regulator of
cofilin-actin dynamics. These two genes are possi-
ble candidates for explaining structural and func-
tional abnormalities in WS, as they both regulate

Bédizs: Sleep in Williams syndrome: a twin study

cytoskeletal processes that influence neuronal
structure, synaptic plasticity and axonal guidance.
The protein coded by STXT1A is connected to neu-
rotransmitter release by synaptic docking.
Although general transcription factor II-I repeat
domain-containing 1 (GTF2IRD1) and general
transcription factor II-1i (GTF2I) were not covered
by the assay used in this study, they should be
mentioned as genes coding transcription factors of
yet unknown functions.

Atypical deletions can help to narrow the set of
genes responsible for the neuropsychiatric alter-
ations in WS. Several cases have been described
with typical WS behavioural phenotypes but with
smaller deletions sparing STX1A and all proximal
genes®. These findings question the role of STX1A
and FZD9 in the development of the behavioural
and cognitive abnormalities. Dai et al** described a
patient with atypical deletions of the WBCR incor-
porating GTF2IRD1 but not GTF2I. Based on the
detailed cognitive and behavioural analysis of this
patient and her comparison to WS patients carrying
typical deletions the authors suggested that
GTF2IRD1 is associated with visuospatial deficits
while GTF2I may be related to the typical social
phenotype in WS. This hypothesis was backed by
the finding that the mouse model lacking one copy
of GTF2I demonstrates increased overly social
behaviour**. Conversely, in autism that is connect-
ed with decreased social behaviour, genome-wide
analysis revealed an increased prevalence of
microduplications in the WBCR®. In spite of this
marked contrasts in genetics (microdeletion vs.
duplication) and social phenotype (hyper vs.
hyposociability) of WS and autism, the sleep EEG
profiles of the two syndromes share some common-
alities, like increased WASO, decreased EEG o and
o power in the NREM phase* ¥ (see also the pres-
ent findings).

Imaging studies is WS patients showed interre-
lated structural and functional abnormalities includ-
ing grey matter reductions bilaterally in the intra-
parietal sulcus and the orbitorfrontal (OFC) cortex,
deficits in the dorsal visual stream and hippocampal
activation, and the dissociation of OFC-amygdala
interactions®. These results pointing to differential-
ly altered neural connectivity, together with find-
ings from WS animal models*, although on a sole-
ly speculative basis, might help to explain the per-
turbed sleep architecture and EEG oscillations iden-
tified in WS.

To our knowledge this is the first twin study
focusing on sleep of a subject with WS. Potential
shortcomings of our approach are the discordance
in sex of the twins. Gender differences in sleep
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EEG of adults between the ages of 20-60 years
were reported in previous studies®, thus our find-
ings are uncontrolled for this possibility. Among
the sexually dimorphic sleep EEG features higher
EEG power in females compared to males®® as well
as menstrual cycle-related fluctuations in o EEG
frequency?” were reported before. These could con-
tribute to our present results; however almost all of
the differences reported here cohere with previous
gender-matched statistical findings'*'>. Moreover,
we tested the repeatability of the results by record-
ing sleep after one year in home settings. In sum,
comparing polygraphic sleep data of the twins dis-
cordant for WS support the previously reported
sleep architectural peculiarities of 7q11.23 micro-
deletion. Among these low sleep duration, reduced
sleep efficiency, higher WASO and increased SWS
of the WS twin was evident during both recording
nights. In contrast previously reported differences
in REM sleep percent were not supported in this
twin study. Inter-twin EEG spectral differences
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