

HUNGARIAN JOURNAL
OF INDUSTRY AND CHEMISTRY

VESZPRÉM
Vol. 41(1) pp. 17–26 (2013)

MONITORING AND DIAGNOSIS OF MANUFACTURING SYSTEMS USING
TIMED COLOURED PETRI NETS

ADRIEN LEITOLD1, BRIGITTA MÁRCZI2, ANNA IBOLYA PÓZNA2, AND MIKLÓS GERZSON2!

1 Department of Mathematics, University of Pannonia, Egyetem str. 10, HUNGARY
2 Department of Electrical Engineering and Information Systems, University of Pannonia, Egyetem str. 10, HUNGARY

!E-mail: gerzson@almos.uni-pannon.hu

Novel fault modelling and integration method were applied in the case when the faultless operation of the system was
modelled by a high-level, coloured Petri net. In order to achieve realistic investigations, a timed coloured Petri net model
of the system was constructed, where faults can occur in the manufacturing lines. The faultless and fault containing
models were implemented in CPNTools both for non-timed and timed cases. The resulted model was investigated both
via simulation and using the occurrence graph. For efficient analysis of the occurrence graph a software module called
OGAnalyser was developed.

Keywords: monitoring and diagnostics of manufacturing processes, coloured timed Petri nets, probabilistic models,
occurrence graph

Introduction

Models are often used for the description and
investigation of complex systems even if they cannot
perfectly describe the investigated system. The course
of a manufacturing system can be split up to distinct
steps of serial or parallel technological sub-processes.
This enables the description of the system by a discrete
event systems model [1] in the form of Petri nets.
During the design process of a manufacturing system,
often only a model of the faultless operation is created.
The integration of possible faults into the model could
give important information for more complex
investigation of the system. In our previous work [2] we
have integrated fault events with different occurring
possibilities into low-level Petri net models of
manufacturing systems in such a way that the size of the
model remained almost the same.

In our recent work, we applied the above fault
integration method for the case when the faultless
operation of the system was modelled by a high-level,
coloured Petri net (abbreviated as CP-nets) [3]. In low-
level Petri nets the transitions fire instantaneously, but
the events of a real system take place for a certain
amount of time influencing the operation of the system.
Therefore, a timed coloured Petri net model of the
system is constructed in order to achieve realistic
investigations.

CPNTools [4] offer tools for modelling and
analysing of CP-nets. There are two possibilities for the
investigation of a manufacturing system in CPNTools:
the simulation and the analysis of the occurrence graph.
In case of fault modelling using different occurring

possibilities; however, the standard occurrence graph
does not give information about the probability of the
different occurring states of the system. Therefore, a
special software module, called the OGAnalyzer has
been developed for solving this problem. Weights can
be assigned to the arcs of the occurrence graph and the
software calculates the probability of each node in the
occurrence graph, i.e. of each operational state of the
system.

Petri net model of a manufacturing process

Petri nets enable both the mathematical and the graph
representation of a discrete event system to be
modelled, where the signals of the system have discrete
range space and time is also discrete [5]. Petri nets can
be used for describing a controlled or open loop system
for modelling the events occurring in it, and for
analysing the resulted model. For the different
application purposes, various modifications of the
original Petri net were developed with the aim of
improving the modelling capabilities. One of the
approaches is the coloured Petri nets (CP-nets). We use
here the CP-nets for modelling technological systems
and their diagnosis, i.e. for the determination of faulty
operational modes of the investigated system.

Coloured Petri nets

The CP-nets combine the modelling advantages of Petri
nets and the compactness of the functional

18

programming language Standard ML [6]. A Petri net is
bipartite graph having circles and rectangles as nodes.
Circles refer to the ‘places’ in the net and rectangles to
the ‘transitions’. Places represent the state of the
elements in the modelled system, while transitions
correspond to the actions taken place in it. There are
‘arcs’ between places and transitions referring to logical
relations of the system. If an arc directs from a place to
a transition then the place acts as a precondition of the
given transition while the arcs in the opposite direction
represent consequences of transitions. Each place can be
marked with one or more coloured tokens representing
the state of the modelled element.

Here we emphasize two important novelties of CP-
nets only. The tokens describing the state of the system
have data value, the so-called token colour attached to
them. In this paper these colours are used to identify
workpieces and to describe the operation to be
performed on them. Places, transitions and arcs can
have ‘inscriptions’. An inscription of a place determines
the set of colours that a token on the place can have.
Another place inscription gives the actual number of the
tokens on the place, i.e. the current marking of that
place. The inscriptions of transitions can contain
different types of functions. These functions determine
the type of the colour set of the incoming and outgoing
tokens and the operation performed on them. The arc
inscriptions can be used for evaluating the result of the
performed action at the previous transition. These
conditional expressions define the colour of the token
on the following place.

The original Petri net concept did not contain the
time; however, the firing of transition takes place
instantaneously. In case of real technological systems
the time has a great role during the occurring of events.
CP-nets also offer the possibility of adding time to the
operation of transitions. The firing rule of a transition in
timed Petri nets is as follows: a transition is enabled if
all of its input places contain sufficient number coloured
tokens defined by the arc functions and the allotted time
has elapsed.

One of the main advantages of modelling with Petri
nets is the ability of describing sequences of discrete
events that occur both in a serial and in a parallel way.
In case of parallelism, we can distinguish two different
situations. In the first case the two or more series of
events can take place independently of each other. This
situation occurs when workpieces can be elaborated in
different manufacturing lines in parallel way. In the
other case only one of the event sequences can take
place because these events exclude mutually each other.
These events have the same precondition, and the
occurrence of any of them makes this precondition
invalid. This kind of parallelism is called ‘conflict
situation’. In a Petri net the conflict can be recognized
when a place is the precondition of two or more
transitions. In this case it is randomly selected, which
transition takes place. The conflict can have two
different sources in technological systems. A conflict
occurs in a technological sense when two or more
processes want to use the same tool or resource e.g. a

robot. Usually it is worth to assign priority to each
conflicting transition in order to define their sequence.

When a fault occurs during the operation of the
system, it also causes a conflict situation. This can be
avoided by adding a special probability function to arc
expression functions. By evaluating this function, the
occurrence of the fault can be unambiguously
determined during execution.

Analysis of Petri nets

There are two basic directions for the analysis of a Petri
net: (i) the structural method, which is independent of
the initial state of the net and (ii) the investigations
based on a given initial state (the behavioural analysis).
In this paper the latter is used for the investigation of
technological system behaviour.

Simulation is our primary tool for the checking the
correctness of a model. Starting from a given initial
state the user can check whether the operation of the
system terminates in the appropriate state. It can also be
investigated, which transitions become enabled in
certain steps, whether there is a conflict among then.
Simulation investigations do not give unambiguous
answers to questions of formal analysis formulating in
Petri net literature [7] but they complement them well.

Another Petri net analysis method uses the
‘occurrence graph’. The basic idea of the occurrence
graph is to construct a graph, which contains all of the
reachable markings from a given initial state. These
marking are the nodes of the occurrence graph and the
arcs connecting the nodes refer to the logical relations
realized by the firing transition between two markings.
Unfortunately, the occurrence graph even of a small
Petri net may become very large. Therefore, several
reduction methods were proposed in order to get a
relatively small occurrence graph [7]. Most of the
simulation tools, as the CPNTools [4] used by us, are
able to construct the occurrence graph.

Modelling and analysis of technological systems

In the following, we wish to demonstrate the use of CP-
nets and their occurrence graphs for modelling and
analysis of technological processes. Both for normal
faultless and faulty mode operation of the technological
system are considered in the non-timed and timed cases.
The analysis is performed via simulation and with
different investigations of the occurrence graph.

The manufacturing system and its operating procedure

A simple case study is presented here for a
manufacturing system containing two manufacturing
lines and a robot. The arrangement of the system can be
seen in Fig.1.

19

The workpieces to be processed appear on the input
place IN. The task of the robot is to put them to the
appropriate input place of a manufacturing line M1_IN
or M2_IN according to operational instructions.
Assume that the two manufacturing lines perform
different actions on the workpiece of interest. When the
manufacturing process is over, the finished workpiece
appears at the output end of the line either on M1_OUT
or M2_OUT depending on the performed action. If the
workpiece has to be modified on the other
manufacturing line then the robot puts it onto the other
input place. If the manufacturing process is over then
the robot puts it into the product container OUT. Assume
that one workpiece at a time can be on the input and
output places of manufacturing lines. It follows that the

robot can only transfer a workpiece from place IN to the
input place of a manufacturing line if this place is empty
and the precondition of the start of a manufacturing
process is that the output place of this line should be
empty. As a general precondition of all transfer
processes the robot has to be free.

The CP-net model of the normal (faultless) operation
of the manufacturing system in the form of a screenshot
from CPNTools can be seen in Fig.2. The process starts
with a token at place START. The transition
generator generates the prescribed number of tokens
representing workpieces at place IN. The colour
assigned to a token contains an identifier of the
workpiece and a code referring to the manufacturing
process or processes to be carried out. Four kinds of
manufacturing mode are possible in this manufacturing
system: the workpiece has to be processed on line 1
(denoted by m1) or on line 2 (m2) only, or it has to go
through the line 1 and then through line 2 (m12) or in
reverse order (m21). As an example, the token (1,m12)
refers to the workpiece having identifier '1' and this
piece has to be processed first on line 1 then on line 2.
The state of input and output of manufacturing lines is
modelled with two places. The places Tin_empty,
Tin_full refer to state of inputs and they are
mutually exclusive. The colour of tokens referring to the
state of these places consists of the identifier of the line
only. If the input place of the line 1 is empty then there
is a token having colour m1 on the place Tin_empty,
and there has not to be a token having colour m1 on the
place Tin_full. The same applies for the places
(Tout_empty and Tout_full) describing the state
of the output places of manufacturing lines.

Figure 2: The CP-net model of the faultless operation of the manufacturing system

Figure 1: The manufacturing system

20

The transfer processes are disintegrated into three
steps: to transitions referring to the (i) start and (ii) end
of the transfer and to a place representing the (ii)
transfer itself. Transitions Transfer#_start
correspond to the start of transfer processes from IN, if
= 1, from Tout_full if # = 2 or 3. The places
Transfer# represent the transfer process 1, 2 or 3.
The transitions Transfer#_end refer to completing
of transfer process to the input place of a line (# = 1),
to product container (# = 2) or to the input place to
another manufacturing line (# = 3). The place
Manuf_line refers to two manufacturing lines and
the colour of token shows the line being processed.

Assume that only a single fault can occur in the
system during manufacturing: the identification label of
the piece can get damaged therefore it cannot be
identified. Workpieces with damaged label get into a
separate container represented by place OUT_Fault.
The repairing of the label is not handled in this example.
The modified part of the Petri net model can be seen in
Fig.3, where the occurring of fault is taken into account.
The occurrence of the fault is forced by a check function
built into arc inscriptions in the Petri net model
randomly. This check function returns with a fault in
predefined probability. This probability of the can be set
in the definition part of the net and different fault
probability values can be assigned to the two
manufacturing lines.

By comparing Figs.2 and 3, it can be stated that a
new place OUT_fault appears as a consequence of
fault modelling and integration and the arc expression
functions of arcs starting from transition Manuf_line
are extended with the fault checking.

For realistic investigation of a technological system
the timed version of the CP-net model is used as a case
study. A time point is assigned to the transitions. The
transition generator does not belong to the
technological system closely, so it fires under zero time,
i.e. instantaneously. Different time units are assigned to
the other transitions. These time values appear as
transition inscriptions ‘@+i’	 (where	 i is an integer
number defining the amount of time in seconds) on the
net as it can be seen in the Fig. 3. During the simulation
investigations different time values have been applied in
order to check the possibility of a deadlock.

Preliminary analysis by simulation

As a first step, simulation is applied for the investigation
of the developed Petri net model of the manufacturing
system. These were carried out assuming both faultless
system operation and when fault can occur during the
manufacturing. Both non-timed and timed operational
modes were considered.

The short description of the simulation is as follows.
The simulation starts with the generation of tokens
representing workpieces. The number of these tokens
i.e. the number of workpieces to be processed can be
modified in the arc expression function belonging to the
transition generator. The type of processes to be

performed i.e. the label referring to the manufacturing
line(s) of the tokens can be set in the definition part of
the CP-net. As a result, the colour of generated tokens
refers to the identifier and to the process(es) to be
carried out. Because of the highest priority of transition
generator the transition Transfer1_start can
only fire after the prescribed number of token appears at
the place IN. As mentioned above, the transition
Transfer1_end refers to the completion of the
transfer of the workpiece to the input place of a
manufacturing line. As a next step, the firing of
transition Manuf_line corresponds to the completion
of manufacturing process. The only fault in the system
can occur during this process. If it happens then the
token gets into the place OUT_fault, which represents
the fault container. If the fault does not occur then the
system checks whether the manufacturing process is
over or the workpiece has to be also processed on the
other line. In the first case the robot puts it to the place
OUT representing the product container, while in other
case it transfers the token representing the piece into the
input place of another line. The modelling of the other
two transfer processes (transfer of a workpiece from the
output place of a manufacturing line either to the
product container or to the input place of the other line)
is similar to the transfer from place IN to place
Tin_full. If the appropriate input place and the robot
are free, another transfer process can start.

The primary goal of the simulation is to check the
correct operation of the model. Another aim is the
investigation of possible deadlock situations. In case of
deadlock, the process stops without completing all the
prescribed technological actions. It can happen in case
of timed simulation of our investigated system and it
refers to the wrong determination of the timing of
actions.

Figure 3: The Petri net model after integration of fault

21

Simulation cannot ensure the thorough investigation
of the modelled system, but it complements well the
further analysis. For the detailed investigations we
applied the analysis of occurrence graph.

Analysis based on the occurrence graph

The thorough analysis of the behavioural properties of a
CP-net can be performed using its occurrence graph.
The concept of the occurrence graph was introduced
above.

The CPNTools generates automatically the
occurrence graph, but the check functions used for the
fault generation have to be removed from the arc
expressions otherwise the occurrence graph is generated
only for the normal mode or for the faulty mode.

For the illustration of generation and analysis of the
occurrence graph let us assume that there are two
workpieces to be processed, one of them has to go
through manufacturing line 2, while the other has to go
first through manufacturing line 1 then through line 2.
Let the operation of the system be faultless and let the
firing of all transition be instantaneous, i.e. the net is
non-timed. The resulted occurrence graph can be seen in
Fig.4. The explanation of numbers in the occurrence
graph can be seen in Fig.5. The frames in the upper part
of boxes are the identifiers of system states. The
expression x:y in lower part shows the number of
preceding and succeeding states. The token distribution
belonging to a node can be obtained by selecting the
triangle in left low corner. The opening window
contains the name of places and the number and colour
of tokens.

All the branches on the graph are explained by
technological reasons, as there is no built in rule for the
robot to start the transfer with any particular workpiece.
The graph has only one terminal node (highlighted by
green) and it refers to the normal termination of the
process i.e. all the prescribed manufacturing processes
terminated properly.

Now we can repeat the simulation with the same
initial condition relating to workpieces but assuming
that faults can occur during manufacturing process. The
resulted occurrence graph can be seen in Fig.6.

Figure 4: The occurrence graph - no fault, no timing

Figure 6: The occurrence graph - with fault, no timing

Figure 5: Key for the occurrence graph

22

It can be stated that the occurrence graph has
become larger and the number of terminal nodes has
increased due the effect of the possible faults. The
reason of branches on the graph can be either
technological (at the nodes 3, 9, 28, 51 and 54) or due to
the fault. Only one of the terminal nodes refers to the
normal termination of the process (highlighted by green,
node 62), the others belong to the faulty cases
(highlighted by red, nodes 22, 37, 43, 56 and 57). In
case of faulty operation the identification tag of at least
one workpiece get damaged during the manufacturing
process.

Next we repeat the simulation again but adding the
timing information to the net and assuming faultless
operation. Let the time duration of transfer processes be
equal to unit time, and the time of manufacturing
processes is equal to 5 time units. The resulted
occurrence graph can be seen in Fig.7.

The resulted occurrence graph is a tree and its two
terminal nodes (nodes 28 and 29) differ only in time

stamp of the tokens (the time stamp can be seen only in
CPNTools with a detailed label for each node).
Comparing this graph with the occurrence graph in
Fig.4, it can be stated that the number of parallel
branches is less and they have different terminal states.
Adding timing information to the model reduces the
number of the possible different technological variants.

As the fourth case, let the simulation be performed
with both timing and faults. The resulted occurrence
graph (see Fig.8) is a tree again, the number of nodes is
almost the same but the number of terminal nodes has
doubled comparing to the occurrence graph in Fig.6.

It can be stated based on Figs.4 and 6–8 that the
occurrence graph is relatively simple in case of small
number of workpieces and the analysis of nodes can be
done manually. Thus, it is easily to find the terminal
node or nodes referring to normal, faultless termination
of the process, and those terminal nodes where the
manufacturing of one piece or of both pieces ends with
fault. However, the size of the occurrence graph grows

Figure 8: The occurrence graph - with fault and timing

Figure 9: The node numbers in occurrence graph

Figure 7: The occurrence graph - no fault, with timing

23

exponentially if the number of pieces becomes larger, as
it can be seen in the left part of Fig.9 assuming faultless
or faulty operational mode, and non-timed or timed net.

In case of large number of simpler workpieces when
the identification is not necessary for each item, the
identification tag can be omitted from the colour of the
token. Assuming this situation all the simulation
investigations (with and without fault, with and without
timing) is repeated. The size of the resulted occurrence
graphs is less than an order of magnitude simpler
compared to the equivalent case with identifier as it can
be seen in the right part of Fig.9. Since the workpieces
have to be processed on the same manufacturing line,
they have the same colour, thus they are
indistinguishable. Since the robot selects among
workpieces having the same colour, there will be no
technological branches on the occurrence graph. This
results in a much simpler occurrence graph especially
when there are large number of workpieces and the
processes to be performed is one or two kind of sorts.

As an example, let us investigate the structure of
occurrence graphs in case when there is no timing in the
system, the token colour contains the identification tag
and both faultless and faulty operational mode is
assumed. According to data in Table 1, the size of the
occurrence graph depends on the number of workpieces,
the number of manufacturing procedures to be
processed, and the presence of fault. If fault can occur
during the manufacturing process both the number of
nodes and the arcs increases dramatically. There are
several terminal nodes, too, but only one refers to
normal termination of manufacturing processes the
others belong to different faulty situations. The labelling
of workpieces has also a significant effect on the
complexity of the occurrence graph. If there are one or
more workpieces, which should be processed on both
manufacturing lines then the number of nodes and arcs
is doubled as it can be seen in the corresponding rows in
Table 1.

The results of an investigation with timing
information can be seen in Table 2. If the number of
workpieces is less than four or the workpieces have to
be processed on only one manufacturing line, then the
size of the occurrence graph depends on the number of
workpieces and the presence of fault. On the other hand
if there are at least four workpieces and at least two of
them have to be processed on both manufacturing lines,
but in reverse order then a deadlock situation can occur.
A further condition of a deadlock that the manufacturing
time should be longer than the transfer time but it is true
in general.

In case of a deadlock, the process stops because the
precondition of transfer processes cannot be fulfilled.
There are workpieces on input and output places of both
manufacturing lines and therefore no further steps are
enabled. If all the workpieces have to be processed on
both manufacturing lines and there is no fault then all of
terminal nodes refer to a deadlock as it can be seen in
the rows marked by a footnote in the Table 2.

The identification tag can be omitted from the colour
of token in certain cases. If the number of workpieces is
small and they have to be processed in different ways
then there is a significant change in the occurrence
graph. On the other hand in case of large number of
workpieces, the structure of occurrence graph becomes
much simpler if the identification tag is removed from
the colour.

Analysis of the occurrence graph using the OGAnalyzer

As mentioned above, CPNTools cannot use the
information about the probability of faults at the
generation of occurrence graph. However, assigning this
value to the appropriate edges, the probability of each
node of the occurrence graph, i.e. of each system state
can be determined. For this purpose, software called

Table 1: Comparing the structure of occurrence graphs – no timing

No. of
work-
pieces

label
(identifier, manufacturing information)

faultless
operational mode

faulty
operational mode

nodes arcs TNa nodes arcs TNa
1 (1,m1) 7 6 1 8 7 2
1 (1,m12) 10 9 1 12 11 3
2 (1,m1)++(2,m2) 29 32 1 42 50 4
2 (1,m1)++(2,m12) 37 40 1 60 70 6
2 (1,m2)++(2,m12) 39 41 1 62 72 6
2 (1,m12)++(2,m21) 42 44 1 82 95 9
3 (1,m1)++(2,m2)++(3,m12) 145 173 1 306 409 12
3 (1,m2)++(2,m12)++(3,m21) 165 189 1 414 536 18
3 (1,m1)++(2,m1)++(3,m1) 107 123 1 210 273 8
4 (1,m1)++(2,m2)++(3,m12)++(4,m21) 631 772 1 2063 2900 36
4 (1,m1)++(2,m1)++(3,m1)++(4,m1) 340 404 1 949 1300 16
5 (1,m2)++(2,m12)++(3,m21)++(4,m1)++(5,m2) 2208 2797 1 9813 14420 72
5 (1,m21)++(2,m12)++(3,m21)++(4,m12)++(5,m21) 3259 3839 1 23709 32939 243
5 (1,m2)++(2,m1)++(3,m2)++(4,m1)++(5,m2) 1621 2165 1 5252 8051 32
6 (1,m2)++(2,m12)++(3,m21)++(4,m1)++(5,m2)++(6,m12) 8698 10980 1 62751 93323 216
6 (1,m21)++(2,m12)++(3,m21)++(4,m12)++(5,m21)++(6,m12) 12184 14562 1 146992 208602 729
6 (1,m2)++(2,m1)++(3,m2)++(4,m1)++(5,m2)++(6,m1) 5638 7686 1 21630 38886 64
a terminal nodes

24

OGAnalyzer has been developed. We assumed that the
occurrence graph belonging to a given initial state of a
CP-net model is finite and acyclic. The occurrence
graphs of Petri nets modelling manufacturing systems
fulfil this assumption in general.

Let the probability of faults be known from
technological consideration and let the first step of the
analysis be the assignment of the arc weights to the
edges of occurrence graph as follows.
1. If a node on the occurrence graph has only one

outgoing arc, then the next state follows
unambiguously, thus the arc weight is equal to 1.

2. If there is more than one outgoing arcs from a given
node then it means that different states can follow
from it. These states come into existence with
different probabilities depending on whether this
branch has technological or fault related reason.
a. If there is no fault in the system then every

branch has a technological reason, because there
is no built-in priority rule for the robot to the
selection among the workpieces. It means that
every selection that is every arc has the same
probability so all of the arcs starting form this
node have to get the same arc weight, which is
equal to the reciprocal value of the number of
outgoing arcs.

b. The introduction of the fault into the model
causes the appearance of another type of
branching in the occurrence graph. Let us assume
that only one type of fault can occur in a given
system state. It results in 2 new system states:
one for the normal operation and one for the
faulty mode. Let the probability of fault be equal
to Pf. Then the weight of arc leading to faulty
mode is equal to the probability of the fault while
the arc leading to the normal operational mode
gets the value 1-Pf.

Assigning these arc weights to the edges of the
occurrence graph the probability of a given state on the
graph can be determined in the following way if the

faults occurring one after the other in the system are
independent:
1. If the graph is a tree or only one route leads to the

given node then the probability of the state
representing by this node is equal to the product of
arc weights along the route leading from the node
representing the initial state to the given node.

2. If there are more than one route leading to the given
node from the initial node then the probability value
of each route has to be determined with the
production of arc weights along the route as in the
first step, then to sum these resulted values.

3. If the faults are not independent from each other,
then the probability of nodes can be calculated in a
similar way but using conditional probability values.
As described above, this determination method and

the operation of OGAnalyzer has been illustrated using
the example of two workpieces to be processed and one
of them has to go through manufacturing line 2, while
the other has to go first through line 1 then trough line
2. Faults can occur during the manufacturing process
and let the fault probability be equal to 0.3 in case of
line 1 and 0.1 in case of line 2. As before, we consider
the timed case, when the transfer transitions have the
same transition time of 1 time unit, while the
manufacturing time is equal to 5 for both lines. After the
simulation CPNTools generates the occurrence graph,
the structure of, which is the input of OGAnalyzer.

As a first step OGAnalyzer reads the structure of the
generated occurrence graph from the data file generated
by CPNTools and visualizes it in its own window as it is
shown in Fig.10. The user can get the token distribution
belonging to nodes as it is shown at node 1 in Fig.10.
The next step is the identification of branches. The
software can distinguish between the two different types
of branches on the occurrence graph (that are
technological and fault caused branches). For this the
user has to define the fault colour for the appropriate
branches in a separate window.

Table 2: Comparing the structure of occurrence graphs – with timing

No. of
work-
pieces

label
(identifier, manufacturing information)

faultless
operational mode

faulty
operational mode

nodes arcs TN/Da nodes arcs TN/Da
1 (1,m1) 7 6 1/0 8 7 2/0
1 (1,m12) 10 9 1/0 12 11 3/0
2 (1,m1)++(2,m2) 23 22 2/0 41 40 8/0
2 (1,m1)++(2,m12) 29 28 2/0 59 58 12/0
2 (1,m2)++(2,m12) 29 28 2/0 58 57 12/0
2 (1,m12)++(2,m21) 35 34 2/0 87 86 18/0
3 (1,m1)++(2,m2)++(3,m12) 73 74 4/0 264 263 48/0
3 (1,m2)++(2,m12)++(3,m21) 86 85 4/0 392 391 72/0
3 (1,m1)++(2,m1)++(3,m1) 85 84 6/0 262 261 48/0
4 (1,m1)++(2,m2)++(3,m12)++(4,m21) 173 172 8/2 1473 1472 258/2
4 (1,m1)++(2,m1)++(3,m1)++(4,m1) 365 364 24/0 2121 2120 384/0
5 (1,m2)++(2,m12)++(3,m21)++(4,m1)++(5,m2) 574 573 24/4 9320 9375 1582/8
5b (1,m21)++(2,m12)++(3,m21)++(4,m12)++(5,m21) 154 153 24/24 12076 12075 2196/60
5 (1,m2)++(2,m1)++(3,m2)++(4,m1)++(5,m2) 514 513 24/0 5152 5247 780/0
6 (1,m2)++(2,m12)++(3,m21)++(4,m1)++(5,m2)++(6,m12) 1725 1732 80/40 71817 72336 12300/116
6b (1,m21)++(2,m12)++(3,m21)++(4,m12)++(5,m21)++(6,m12) 325 324 72/72 45541 45540 8280/432
6 (1,m2)++(2,m1)++(3,m2)++(4,m1)++(5,m2)++(6,m1) 2341 2412 72/0 39349 41076 5760/0
a terminal nodes/deadlocks, b labels where all terminal nodes refer to deadlocks

25

 It is assumed that the technological branches have
the same probability, so OGAnalyzer assigns the
reciprocal of the number of branches to these edges. The
fault caused branches are collected into a table and the
user has to define the probability of faulty and normal
modes as it can be seen in Fig.11. The occurrence graph
with arc weights depicted in OGAnalyzer can be seen in
Fig.12. The black numbers attached to the arcs are the
arc weights. Values equal to 1 were not depicted.

Using these probability values the OGAnalyzer
calculates automatically the probability of a node by
multiplying arc weights along the path leading from the
node representing the initial state to that node. If two or
more paths lead to the node then the probability values
belonging to these paths are summed. The calculated
probability values can be also seen in Fig.12 as red
numbers assigned to nodes.

In this manner the probability of all system states in
the investigated system can be calculated. For example,
the probability of faultless completing of both
workpieces is 0.28 + 0.28 = 0.56, which is equal to the
sum of the probabilities belonging to the nodes 55 and
57. The probability of that case when the first workpiece
is manufactured without fault, but the label of the other
piece gets damaged during the second manufacturing
process is 0.03 + 0.03 = 0.06 (sum of the probabilities
belonging to the nodes 46 and 48).

In case of timed nets the occurrence graph is often a
tree and the same token distribution belongs to different
nodes because of the different time stamp. For the
determination of probability of a given system state, the
probability values belonging to different nodes have to
be summed up.

Figure 11: Defining the probabilities values of faults

Figure 12: The occurrence graph with arc weights and probability values

Figure 10: The occurrence graph of the example in the window of OGAnalyzer

26

Conclusion

A novel occurrence graph investigation procedure for
discrete event systems described by Petri nets was
proposed in this paper for model-based diagnostic
purposes that utilize the knowledge of the occurrence
probability of faults. The model of the investigated
system was defined in timed coloured Petri net form.
The colours of tokens representing the workpieces were
used to distinguish them and to assign a label of the
processes to be carried out. The arc inscriptions and
built-in probability functions were used for the fault
modelling and integration.

The operation of the system was investigated via
simulation both in timed and non-timed cases and in
faultless and possible fault operational modes with
given number pieces and prescribed manufacturing
lines.

For the behavioural analysis of the model the
occurrence graph method was used. A special software
module, called OGAnalyzer has been developed for the
handling of the probabilities on the occurrence graph
and for calculating the occurrence probability of system
states.

Acknowledgements

This research is partially supported by the Hungarian
Research Fund through grant No. K-83440. We also
acknowledge the financial support of the Hungarian

State and the European Union under the TAMOP-
4.2.2.A- 11/1/ KONV-2012-0072.

REFERENCES

[1] CASSANDRAS C.G., LAFORTUNE S.: Introduction to
Discrete Event Systems, Kluwer Academic
Publishers, 1999

[2] GERZSON M., MÁRCZI B., LEITOLD A.: Diagnosis
of Technological Systems based on their Coloured
Petri Net Model, ARGESIM Report no. S38 (Eds.
TROCH I., BREITENECKER F.) 2012, p. 358/1–6

[3] JENSEN K.: Coloured Petri Nets: Basic Concepts,
Analysis Methods and Practical Use, Springer-
Verlag, 1997

[4] CPN GROUP, University of Aarhus, Denmark:
CPNTools 2.2.0 http://wiki.daimi.au.dk/cpntools/
(last accessed: May 25, 2014)

[5] FANTI M.P., SEATZU C.: Fault diagnosis and
identification of discrete event systems using Petri
nets, Proc. 9th International Workshop on Discrete
Event Systems, WODES, 2008, 432–435

[6] JENSEN K., KRISTENSEN L.M., WELLS L.: Coloured
Petri Nets and CPN Tools for Modelling and
Validation of Concurrent Systems, Int. J. of
Software Tools for Technology Transfer, 2007,
9(3–4), 213–254

[7] MURATA T.: Petri Nets: Properties, Analysis and
Applications, Proceedings of the IEEE, 1989,
77(4), 541–580

