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Novel fault modelling and integration method were applied in the case when the faultless operation of the system was 
modelled by a high-level, coloured Petri net. In order to achieve realistic investigations, a timed coloured Petri net model 
of the system was constructed, where faults can occur in the manufacturing lines. The faultless and fault containing 
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via simulation and using the occurrence graph. For efficient analysis of the occurrence graph a software module called 
OGAnalyser was developed. 
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Introduction  

Models are often used for the description and 
investigation of complex systems even if they cannot 
perfectly describe the investigated system. The course 
of a manufacturing system can be split up to distinct 
steps of serial or parallel technological sub-processes. 
This enables the description of the system by a discrete 
event systems model [1] in the form of Petri nets. 
During the design process of a manufacturing system, 
often only a model of the faultless operation is created. 
The integration of possible faults into the model could 
give important information for more complex 
investigation of the system. In our previous work [2] we 
have integrated fault events with different occurring 
possibilities into low-level Petri net models of 
manufacturing systems in such a way that the size of the 
model remained almost the same.  

In our recent work, we applied the above fault 
integration method for the case when the faultless 
operation of the system was modelled by a high-level, 
coloured Petri net (abbreviated as CP-nets) [3]. In low-
level Petri nets the transitions fire instantaneously, but 
the events of a real system take place for a certain 
amount of time influencing the operation of the system. 
Therefore, a timed coloured Petri net model of the 
system is constructed in order to achieve realistic 
investigations.  

CPNTools [4] offer tools for modelling and 
analysing of CP-nets. There are two possibilities for the 
investigation of a manufacturing system in CPNTools: 
the simulation and the analysis of the occurrence graph. 
In case of fault modelling using different occurring 

possibilities; however, the standard occurrence graph 
does not give information about the probability of the 
different occurring states of the system. Therefore, a 
special software module, called the OGAnalyzer has 
been developed for solving this problem. Weights can 
be assigned to the arcs of the occurrence graph and the 
software calculates the probability of each node in the 
occurrence graph, i.e. of each operational state of the 
system. 

Petri net model of a manufacturing process 

Petri nets enable both the mathematical and the graph 
representation of a discrete event system to be 
modelled, where the signals of the system have discrete 
range space and time is also discrete [5]. Petri nets can 
be used for describing a controlled or open loop system 
for modelling the events occurring in it, and for 
analysing the resulted model. For the different 
application purposes, various modifications of the 
original Petri net were developed with the aim of 
improving the modelling capabilities. One of the 
approaches is the coloured Petri nets (CP-nets). We use 
here the CP-nets for modelling technological systems 
and their diagnosis, i.e. for the determination of faulty 
operational modes of the investigated system. 

Coloured Petri nets 

The CP-nets combine the modelling advantages of Petri 
nets and the compactness of the functional 
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programming language Standard ML [6]. A Petri net is 
bipartite graph having circles and rectangles as nodes. 
Circles refer to the ‘places’ in the net and rectangles to 
the ‘transitions’. Places represent the state of the 
elements in the modelled system, while transitions 
correspond to the actions taken place in it. There are 
‘arcs’ between places and transitions referring to logical 
relations of the system. If an arc directs from a place to 
a transition then the place acts as a precondition of the 
given transition while the arcs in the opposite direction 
represent consequences of transitions. Each place can be 
marked with one or more coloured tokens representing 
the state of the modelled element. 

Here we emphasize two important novelties of CP-
nets only. The tokens describing the state of the system 
have data value, the so-called token colour attached to 
them. In this paper these colours are used to identify 
workpieces and to describe the operation to be 
performed on them. Places, transitions and arcs can 
have ‘inscriptions’. An inscription of a place determines 
the set of colours that a token on the place can have. 
Another place inscription gives the actual number of the 
tokens on the place, i.e. the current marking of that 
place. The inscriptions of transitions can contain 
different types of functions. These functions determine 
the type of the colour set of the incoming and outgoing 
tokens and the operation performed on them. The arc 
inscriptions can be used for evaluating the result of the 
performed action at the previous transition. These 
conditional expressions define the colour of the token 
on the following place. 

The original Petri net concept did not contain the 
time; however, the firing of transition takes place 
instantaneously. In case of real technological systems 
the time has a great role during the occurring of events. 
CP-nets also offer the possibility of adding time to the 
operation of transitions. The firing rule of a transition in 
timed Petri nets is as follows: a transition is enabled if 
all of its input places contain sufficient number coloured 
tokens defined by the arc functions and the allotted time 
has elapsed. 

One of the main advantages of modelling with Petri 
nets is the ability of describing sequences of discrete 
events that occur both in a serial and in a parallel way. 
In case of parallelism, we can distinguish two different 
situations. In the first case the two or more series of 
events can take place independently of each other. This 
situation occurs when workpieces can be elaborated in 
different manufacturing lines in parallel way. In the 
other case only one of the event sequences can take 
place because these events exclude mutually each other. 
These events have the same precondition, and the 
occurrence of any of them makes this precondition 
invalid. This kind of parallelism is called ‘conflict 
situation’. In a Petri net the conflict can be recognized 
when a place is the precondition of two or more 
transitions. In this case it is randomly selected, which 
transition takes place. The conflict can have two 
different sources in technological systems. A conflict 
occurs in a technological sense when two or more 
processes want to use the same tool or resource e.g. a 

robot. Usually it is worth to assign priority to each 
conflicting transition in order to define their sequence. 

When a fault occurs during the operation of the 
system, it also causes a conflict situation. This can be 
avoided by adding a special probability function to arc 
expression functions. By evaluating this function, the 
occurrence of the fault can be unambiguously 
determined during execution. 

Analysis of Petri nets 

There are two basic directions for the analysis of a Petri 
net: (i) the structural method, which is independent of 
the initial state of the net and (ii) the investigations 
based on a given initial state (the behavioural analysis). 
In this paper the latter is used for the investigation of 
technological system behaviour. 

Simulation is our primary tool for the checking the 
correctness of a model. Starting from a given initial 
state the user can check whether the operation of the 
system terminates in the appropriate state. It can also be 
investigated, which transitions become enabled in 
certain steps, whether there is a conflict among then. 
Simulation investigations do not give unambiguous 
answers to questions of formal analysis formulating in 
Petri net literature [7] but they complement them well. 

Another Petri net analysis method uses the 
‘occurrence graph’. The basic idea of the occurrence 
graph is to construct a graph, which contains all of the 
reachable markings from a given initial state. These 
marking are the nodes of the occurrence graph and the 
arcs connecting the nodes refer to the logical relations 
realized by the firing transition between two markings. 
Unfortunately, the occurrence graph even of a small 
Petri net may become very large. Therefore, several 
reduction methods were proposed in order to get a 
relatively small occurrence graph [7]. Most of the 
simulation tools, as the CPNTools [4] used by us, are 
able to construct the occurrence graph. 

Modelling and analysis of technological systems 

In the following, we wish to demonstrate the use of CP-
nets and their occurrence graphs for modelling and 
analysis of technological processes. Both for normal 
faultless and faulty mode operation of the technological 
system are considered in the non-timed and timed cases. 
The analysis is performed via simulation and with 
different investigations of the occurrence graph. 

The manufacturing system and its operating procedure 

A simple case study is presented here for a 
manufacturing system containing two manufacturing 
lines and a robot. The arrangement of the system can be 
seen in Fig.1. 
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The workpieces to be processed appear on the input 
place IN. The task of the robot is to put them to the 
appropriate input place of a manufacturing line M1_IN 
or M2_IN according to operational instructions. 
Assume that the two manufacturing lines perform 
different actions on the workpiece of interest. When the 
manufacturing process is over, the finished workpiece 
appears at the output end of the line either on M1_OUT 
or M2_OUT depending on the performed action. If the 
workpiece has to be modified on the other 
manufacturing line then the robot puts it onto the other 
input place. If the manufacturing process is over then 
the robot puts it into the product container OUT. Assume 
that one workpiece at a time can be on the input and 
output places of manufacturing lines. It follows that the 

robot can only transfer a workpiece from place IN to the 
input place of a manufacturing line if this place is empty 
and the precondition of the start of a manufacturing 
process is that the output place of this line should be 
empty. As a general precondition of all transfer 
processes the robot has to be free. 

The CP-net model of the normal (faultless) operation 
of the manufacturing system in the form of a screenshot 
from CPNTools can be seen in Fig.2. The process starts 
with a token at place START. The transition 
generator generates the prescribed number of tokens 
representing workpieces at place IN. The colour 
assigned to a token contains an identifier of the 
workpiece and a code referring to the manufacturing 
process or processes to be carried out. Four kinds of 
manufacturing mode are possible in this manufacturing 
system: the workpiece has to be processed on line 1 
(denoted by m1) or on line 2 (m2) only, or it has to go 
through the line 1 and then through line 2 (m12) or in 
reverse order (m21). As an example, the token (1,m12) 
refers to the workpiece having identifier '1' and this 
piece has to be processed first on line 1 then on line 2. 
The state of input and output of manufacturing lines is 
modelled with two places. The places Tin_empty, 
Tin_full refer to state of inputs and they are 
mutually exclusive. The colour of tokens referring to the 
state of these places consists of the identifier of the line 
only. If the input place of the line 1 is empty then there 
is a token having colour m1 on the place Tin_empty, 
and there has not to be a token having colour m1 on the 
place Tin_full. The same applies for the places 
(Tout_empty and Tout_full) describing the state 
of the output places of manufacturing lines. 

 
Figure 2: The CP-net model of the faultless operation of the manufacturing system 

 
Figure 1: The manufacturing system 
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The transfer processes are disintegrated into three 
steps: to transitions referring to the (i) start and (ii) end 
of the transfer and to a place representing the (ii) 
transfer itself. Transitions Transfer#_start 
correspond to the start of transfer processes from IN, if 
# = 1, from Tout_full if # = 2 or 3. The places 
Transfer# represent the transfer process 1, 2 or 3. 
The transitions Transfer#_end refer to completing 
of transfer process to the input place of a line (# = 1), 
to product container (# = 2) or to the input place to 
another manufacturing line (# = 3). The place 
Manuf_line refers to two manufacturing lines and 
the colour of token shows the line being processed. 

Assume that only a single fault can occur in the 
system during manufacturing: the identification label of 
the piece can get damaged therefore it cannot be 
identified. Workpieces with damaged label get into a 
separate container represented by place OUT_Fault. 
The repairing of the label is not handled in this example. 
The modified part of the Petri net model can be seen in 
Fig.3, where the occurring of fault is taken into account. 
The occurrence of the fault is forced by a check function 
built into arc inscriptions in the Petri net model 
randomly. This check function returns with a fault in 
predefined probability. This probability of the can be set 
in the definition part of the net and different fault 
probability values can be assigned to the two 
manufacturing lines. 

By comparing Figs.2 and 3, it can be stated that a 
new place OUT_fault appears as a consequence of 
fault modelling and integration and the arc expression 
functions of arcs starting from transition Manuf_line 
are extended with the fault checking. 

For realistic investigation of a technological system 
the timed version of the CP-net model is used as a case 
study. A time point is assigned to the transitions. The 
transition generator does not belong to the 
technological system closely, so it fires under zero time, 
i.e. instantaneously. Different time units are assigned to 
the other transitions. These time values appear as 
transition inscriptions ‘@+i’	   (where	   i is an integer 
number defining the amount of time in seconds) on the 
net as it can be seen in the Fig. 3. During the simulation 
investigations different time values have been applied in 
order to check the possibility of a deadlock.  

Preliminary analysis by simulation 

As a first step, simulation is applied for the investigation 
of the developed Petri net model of the manufacturing 
system. These were carried out assuming both faultless 
system operation and when fault can occur during the 
manufacturing. Both non-timed and timed operational 
modes were considered. 

The short description of the simulation is as follows. 
The simulation starts with the generation of tokens 
representing workpieces. The number of these tokens 
i.e. the number of workpieces to be processed can be 
modified in the arc expression function belonging to the 
transition generator. The type of processes to be 

performed i.e. the label referring to the manufacturing 
line(s) of the tokens can be set in the definition part of 
the CP-net. As a result, the colour of generated tokens 
refers to the identifier and to the process(es) to be 
carried out. Because of the highest priority of transition 
generator the transition Transfer1_start can 
only fire after the prescribed number of token appears at 
the place IN. As mentioned above, the transition 
Transfer1_end refers to the completion of the 
transfer of the workpiece to the input place of a 
manufacturing line. As a next step, the firing of 
transition Manuf_line corresponds to the completion 
of manufacturing process. The only fault in the system 
can occur during this process. If it happens then the 
token gets into the place OUT_fault, which represents 
the fault container. If the fault does not occur then the 
system checks whether the manufacturing process is 
over or the workpiece has to be also processed on the 
other line. In the first case the robot puts it to the place 
OUT representing the product container, while in other 
case it transfers the token representing the piece into the 
input place of another line. The modelling of the other 
two transfer processes (transfer of a workpiece from the 
output place of a manufacturing line either to the 
product container or to the input place of the other line) 
is similar to the transfer from place IN to place 
Tin_full. If the appropriate input place and the robot 
are free, another transfer process can start. 

The primary goal of the simulation is to check the 
correct operation of the model. Another aim is the 
investigation of possible deadlock situations. In case of 
deadlock, the process stops without completing all the 
prescribed technological actions. It can happen in case 
of timed simulation of our investigated system and it 
refers to the wrong determination of the timing of 
actions. 

 
Figure 3: The Petri net model after integration of fault 
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Simulation cannot ensure the thorough investigation 
of the modelled system, but it complements well the 
further analysis. For the detailed investigations we 
applied the analysis of occurrence graph. 

Analysis based on the occurrence graph 

The thorough analysis of the behavioural properties of a 
CP-net can be performed using its occurrence graph. 
The concept of the occurrence graph was introduced 
above. 

The CPNTools generates automatically the 
occurrence graph, but the check functions used for the 
fault generation have to be removed from the arc 
expressions otherwise the occurrence graph is generated 
only for the normal mode or for the faulty mode. 

For the illustration of generation and analysis of the 
occurrence graph let us assume that there are two 
workpieces to be processed, one of them has to go 
through manufacturing line 2, while the other has to go 
first through manufacturing line 1 then through line 2. 
Let the operation of the system be faultless and let the 
firing of all transition be instantaneous, i.e. the net is 
non-timed. The resulted occurrence graph can be seen in 
Fig.4. The explanation of numbers in the occurrence 
graph can be seen in Fig.5. The frames in the upper part 
of boxes are the identifiers of system states. The 
expression x:y in lower part shows the number of 
preceding and succeeding states. The token distribution 
belonging to a node can be obtained by selecting the 
triangle in left low corner. The opening window 
contains the name of places and the number and colour 
of tokens. 

All the branches on the graph are explained by 
technological reasons, as there is no built in rule for the 
robot to start the transfer with any particular workpiece. 
The graph has only one terminal node (highlighted by 
green) and it refers to the normal termination of the 
process i.e. all the prescribed manufacturing processes 
terminated properly. 

Now we can repeat the simulation with the same 
initial condition relating to workpieces but assuming 
that faults can occur during manufacturing process. The 
resulted occurrence graph can be seen in Fig.6. 

 
Figure 4: The occurrence graph - no fault, no timing 

 
Figure 6: The occurrence graph - with fault, no timing 

 
Figure 5: Key for the occurrence graph 
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It can be stated that the occurrence graph has 
become larger and the number of terminal nodes has 
increased due the effect of the possible faults. The 
reason of branches on the graph can be either 
technological (at the nodes 3, 9, 28, 51 and 54) or due to 
the fault. Only one of the terminal nodes refers to the 
normal termination of the process (highlighted by green, 
node 62), the others belong to the faulty cases 
(highlighted by red, nodes 22, 37, 43, 56 and 57). In 
case of faulty operation the identification tag of at least 
one workpiece get damaged during the manufacturing 
process.  

Next we repeat the simulation again but adding the 
timing information to the net and assuming faultless 
operation. Let the time duration of transfer processes be 
equal to unit time, and the time of manufacturing 
processes is equal to 5 time units. The resulted 
occurrence graph can be seen in Fig.7. 

The resulted occurrence graph is a tree and its two 
terminal nodes (nodes 28 and 29) differ only in time 

stamp of the tokens (the time stamp can be seen only in 
CPNTools with a detailed label for each node). 
Comparing this graph with the occurrence graph in 
Fig.4, it can be stated that the number of parallel 
branches is less and they have different terminal states. 
Adding timing information to the model reduces the 
number of the possible different technological variants. 

As the fourth case, let the simulation be performed 
with both timing and faults. The resulted occurrence 
graph (see Fig.8) is a tree again, the number of nodes is 
almost the same but the number of terminal nodes has 
doubled comparing to the occurrence graph in Fig.6.  

It can be stated based on Figs.4 and 6–8 that the 
occurrence graph is relatively simple in case of small 
number of workpieces and the analysis of nodes can be 
done manually. Thus, it is easily to find the terminal 
node or nodes referring to normal, faultless termination 
of the process, and those terminal nodes where the 
manufacturing of one piece or of both pieces ends with 
fault. However, the size of the occurrence graph grows 

 
Figure 8: The occurrence graph - with fault and timing 

 
Figure 9: The node numbers in occurrence graph 

 
Figure 7: The occurrence graph - no fault, with timing 
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exponentially if the number of pieces becomes larger, as 
it can be seen in the left part of Fig.9 assuming faultless 
or faulty operational mode, and non-timed or timed net.  

In case of large number of simpler workpieces when 
the identification is not necessary for each item, the 
identification tag can be omitted from the colour of the 
token. Assuming this situation all the simulation 
investigations (with and without fault, with and without 
timing) is repeated. The size of the resulted occurrence 
graphs is less than an order of magnitude simpler 
compared to the equivalent case with identifier as it can 
be seen in the right part of Fig.9. Since the workpieces 
have to be processed on the same manufacturing line, 
they have the same colour, thus they are 
indistinguishable. Since the robot selects among 
workpieces having the same colour, there will be no 
technological branches on the occurrence graph. This 
results in a much simpler occurrence graph especially 
when there are large number of workpieces and the 
processes to be performed is one or two kind of sorts. 

As an example, let us investigate the structure of 
occurrence graphs in case when there is no timing in the 
system, the token colour contains the identification tag 
and both faultless and faulty operational mode is 
assumed. According to data in Table 1, the size of the 
occurrence graph depends on the number of workpieces, 
the number of manufacturing procedures to be 
processed, and the presence of fault. If fault can occur 
during the manufacturing process both the number of 
nodes and the arcs increases dramatically. There are 
several terminal nodes, too, but only one refers to 
normal termination of manufacturing processes the 
others belong to different faulty situations. The labelling 
of workpieces has also a significant effect on the 
complexity of the occurrence graph. If there are one or 
more workpieces, which should be processed on both 
manufacturing lines then the number of nodes and arcs 
is doubled as it can be seen in the corresponding rows in 
Table 1. 

The results of an investigation with timing 
information can be seen in Table 2. If the number of 
workpieces is less than four or the workpieces have to 
be processed on only one manufacturing line, then the 
size of the occurrence graph depends on the number of 
workpieces and the presence of fault. On the other hand 
if there are at least four workpieces and at least two of 
them have to be processed on both manufacturing lines, 
but in reverse order then a deadlock situation can occur. 
A further condition of a deadlock that the manufacturing 
time should be longer than the transfer time but it is true 
in general. 

In case of a deadlock, the process stops because the 
precondition of transfer processes cannot be fulfilled. 
There are workpieces on input and output places of both 
manufacturing lines and therefore no further steps are 
enabled. If all the workpieces have to be processed on 
both manufacturing lines and there is no fault then all of 
terminal nodes refer to a deadlock as it can be seen in 
the rows marked by a footnote in the Table 2.  

The identification tag can be omitted from the colour 
of token in certain cases. If the number of workpieces is 
small and they have to be processed in different ways 
then there is a significant change in the occurrence 
graph. On the other hand in case of large number of 
workpieces, the structure of occurrence graph becomes 
much simpler if the identification tag is removed from 
the colour.  

Analysis of the occurrence graph using the OGAnalyzer 

As mentioned above, CPNTools cannot use the 
information about the probability of faults at the 
generation of occurrence graph. However, assigning this 
value to the appropriate edges, the probability of each 
node of the occurrence graph, i.e. of each system state 
can be determined. For this purpose, software called 

Table 1: Comparing the structure of occurrence graphs – no timing 

No. of 
work-
pieces 

label 
(identifier, manufacturing information) 

faultless 
operational mode 

faulty  
operational mode 

nodes arcs TNa nodes arcs TNa 
1 (1,m1) 7 6 1 8 7 2 
1 (1,m12) 10 9 1 12 11 3 
2 (1,m1)++(2,m2) 29 32 1 42 50 4 
2 (1,m1)++(2,m12) 37 40 1 60 70 6 
2 (1,m2)++(2,m12) 39 41 1 62 72 6 
2 (1,m12)++(2,m21) 42 44 1 82 95 9 
3 (1,m1)++(2,m2)++(3,m12) 145 173 1 306 409 12 
3 (1,m2)++(2,m12)++(3,m21) 165 189 1 414 536 18 
3 (1,m1)++(2,m1)++(3,m1) 107 123 1 210 273 8 
4 (1,m1)++(2,m2)++(3,m12)++(4,m21) 631 772 1 2063 2900 36 
4 (1,m1)++(2,m1)++(3,m1)++(4,m1) 340 404 1 949 1300 16 
5 (1,m2)++(2,m12)++(3,m21)++(4,m1)++(5,m2) 2208 2797 1 9813 14420 72 
5 (1,m21)++(2,m12)++(3,m21)++(4,m12)++(5,m21) 3259 3839 1 23709 32939 243 
5 (1,m2)++(2,m1)++(3,m2)++(4,m1)++(5,m2) 1621 2165 1 5252 8051 32 
6 (1,m2)++(2,m12)++(3,m21)++(4,m1)++(5,m2)++(6,m12) 8698 10980 1 62751 93323 216 
6 (1,m21)++(2,m12)++(3,m21)++(4,m12)++(5,m21)++(6,m12) 12184 14562 1 146992 208602 729 
6 (1,m2)++(2,m1)++(3,m2)++(4,m1)++(5,m2)++(6,m1)  5638 7686 1 21630 38886 64 
a terminal nodes 
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OGAnalyzer has been developed. We assumed that the 
occurrence graph belonging to a given initial state of a 
CP-net model is finite and acyclic. The occurrence 
graphs of Petri nets modelling manufacturing systems 
fulfil this assumption in general. 

Let the probability of faults be known from 
technological consideration and let the first step of the 
analysis be the assignment of the arc weights to the 
edges of occurrence graph as follows. 
1. If a node on the occurrence graph has only one 

outgoing arc, then the next state follows 
unambiguously, thus the arc weight is equal to 1. 

2. If there is more than one outgoing arcs from a given 
node then it means that different states can follow 
from it. These states come into existence with 
different probabilities depending on whether this 
branch has technological or fault related reason. 
a. If there is no fault in the system then every 

branch has a technological reason, because there 
is no built-in priority rule for the robot to the 
selection among the workpieces. It means that 
every selection that is every arc has the same 
probability so all of the arcs starting form this 
node have to get the same arc weight, which is 
equal to the reciprocal value of the number of 
outgoing arcs. 

b. The introduction of the fault into the model 
causes the appearance of another type of 
branching in the occurrence graph. Let us assume 
that only one type of fault can occur in a given 
system state. It results in 2 new system states: 
one for the normal operation and one for the 
faulty mode. Let the probability of fault be equal 
to Pf. Then the weight of arc leading to faulty 
mode is equal to the probability of the fault while 
the arc leading to the normal operational mode 
gets the value 1-Pf. 

Assigning these arc weights to the edges of the 
occurrence graph the probability of a given state on the 
graph can be determined in the following way if the 

faults occurring one after the other in the system are 
independent: 
1. If the graph is a tree or only one route leads to the 

given node then the probability of the state 
representing by this node is equal to the product of 
arc weights along the route leading from the node 
representing the initial state to the given node. 

2. If there are more than one route leading to the given 
node from the initial node then the probability value 
of each route has to be determined with the 
production of arc weights along the route as in the 
first step, then to sum these resulted values. 

3. If the faults are not independent from each other, 
then the probability of nodes can be calculated in a 
similar way but using conditional probability values. 
As described above, this determination method and 

the operation of OGAnalyzer has been illustrated using 
the example of two workpieces to be processed and one 
of them has to go through manufacturing line 2, while 
the other has to go first through line 1 then trough line 
2. Faults can occur during the manufacturing process 
and let the fault probability be equal to 0.3 in case of 
line 1 and 0.1 in case of line 2. As before, we consider 
the timed case, when the transfer transitions have the 
same transition time of 1 time unit, while the 
manufacturing time is equal to 5 for both lines. After the 
simulation CPNTools generates the occurrence graph, 
the structure of, which is the input of OGAnalyzer.  

As a first step OGAnalyzer reads the structure of the 
generated occurrence graph from the data file generated 
by CPNTools and visualizes it in its own window as it is 
shown in Fig.10. The user can get the token distribution 
belonging to nodes as it is shown at node 1 in Fig.10. 
The next step is the identification of branches. The 
software can distinguish between the two different types 
of branches on the occurrence graph (that are 
technological and fault caused branches). For this the 
user has to define the fault colour for the appropriate 
branches in a separate window.  

Table 2: Comparing the structure of occurrence graphs – with timing 

No. of 
work-
pieces 

label 
(identifier, manufacturing information) 

faultless 
operational mode 

faulty  
operational mode 

nodes arcs TN/Da nodes arcs TN/Da 
1 (1,m1) 7 6 1/0 8 7 2/0 
1 (1,m12) 10 9 1/0 12 11 3/0 
2 (1,m1)++(2,m2) 23 22 2/0 41 40 8/0 
2 (1,m1)++(2,m12) 29 28 2/0 59 58 12/0 
2 (1,m2)++(2,m12) 29 28 2/0 58 57 12/0 
2 (1,m12)++(2,m21) 35 34 2/0 87 86 18/0 
3 (1,m1)++(2,m2)++(3,m12) 73 74 4/0 264 263 48/0 
3 (1,m2)++(2,m12)++(3,m21) 86 85 4/0 392 391 72/0 
3 (1,m1)++(2,m1)++(3,m1) 85 84 6/0 262 261 48/0 
4 (1,m1)++(2,m2)++(3,m12)++(4,m21) 173 172 8/2 1473 1472 258/2 
4 (1,m1)++(2,m1)++(3,m1)++(4,m1) 365 364 24/0 2121 2120 384/0 
5 (1,m2)++(2,m12)++(3,m21)++(4,m1)++(5,m2) 574 573 24/4 9320 9375 1582/8 
5b (1,m21)++(2,m12)++(3,m21)++(4,m12)++(5,m21) 154 153 24/24 12076 12075 2196/60 
5 (1,m2)++(2,m1)++(3,m2)++(4,m1)++(5,m2) 514 513 24/0 5152 5247 780/0 
6 (1,m2)++(2,m12)++(3,m21)++(4,m1)++(5,m2)++(6,m12) 1725 1732 80/40 71817 72336 12300/116 
6b (1,m21)++(2,m12)++(3,m21)++(4,m12)++(5,m21)++(6,m12) 325 324 72/72 45541 45540 8280/432 
6 (1,m2)++(2,m1)++(3,m2)++(4,m1)++(5,m2)++(6,m1)  2341 2412 72/0 39349 41076 5760/0 
a terminal nodes/deadlocks, b labels where all terminal nodes refer to deadlocks  
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 It is assumed that the technological branches have 
the same probability, so OGAnalyzer assigns the 
reciprocal of the number of branches to these edges. The 
fault caused branches are collected into a table and the 
user has to define the probability of faulty and normal 
modes as it can be seen in Fig.11. The occurrence graph 
with arc weights depicted in OGAnalyzer can be seen in 
Fig.12.  The black numbers attached to the arcs are the 
arc weights. Values equal to 1 were not depicted. 

Using these probability values the OGAnalyzer 
calculates automatically the probability of a node by 
multiplying arc weights along the path leading from the 
node representing the initial state to that node. If two or 
more paths lead to the node then the probability values 
belonging to these paths are summed. The calculated 
probability values can be also seen in Fig.12 as red 
numbers assigned to nodes. 

In this manner the probability of all system states in 
the investigated system can be calculated. For example, 
the probability of faultless completing of both 
workpieces is 0.28 + 0.28 = 0.56, which is equal to the 
sum of the probabilities belonging to the nodes 55 and 
57. The probability of that case when the first workpiece 
is manufactured without fault, but the label of the other 
piece gets damaged during the second manufacturing 
process is 0.03 + 0.03 = 0.06 (sum of the probabilities 
belonging to the nodes 46 and 48).  

In case of timed nets the occurrence graph is often a 
tree and the same token distribution belongs to different 
nodes because of the different time stamp. For the 
determination of probability of a given system state, the 
probability values belonging to different nodes have to 
be summed up.  

Figure 11: Defining the probabilities values of faults 

 
Figure 12: The occurrence graph with arc weights and probability values 

 

 
Figure 10: The occurrence graph of the example in the window of OGAnalyzer 
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Conclusion 

A novel occurrence graph investigation procedure for 
discrete event systems described by Petri nets was 
proposed in this paper for model-based diagnostic 
purposes that utilize the knowledge of the occurrence 
probability of faults. The model of the investigated 
system was defined in timed coloured Petri net form. 
The colours of tokens representing the workpieces were 
used to distinguish them and to assign a label of the 
processes to be carried out. The arc inscriptions and 
built-in probability functions were used for the fault 
modelling and integration. 

The operation of the system was investigated via 
simulation both in timed and non-timed cases and in 
faultless and possible fault operational modes with 
given number pieces and prescribed manufacturing 
lines. 

For the behavioural analysis of the model the 
occurrence graph method was used. A special software 
module, called OGAnalyzer has been developed for the 
handling of the probabilities on the occurrence graph 
and for calculating the occurrence probability of system 
states. 
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