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PREFACE 
 

Known as a scientific domain in which the scientist would try to extract information from 

chemical systems by data-driven means, Chemometrics is a fast spreading field, being applied 

to solve both descriptive and predictive problems in experimental life sciences, especially in 

chemistry. It is defined as a highly interfacial discipline, which employs multivariate 

statistics, applied mathematics, and computer science via using methods frequently employed 

in core data-analytic, in order to address problems in chemistry, biochemistry, medicine, 

biology and chemical engineering. Initiated by analysts, now the discipline is widened by 

other chemistry discipline researches and even those from medical and biological areas. 

Chemometric techniques are particularly heavily used in analytical chemistry and 

metabolomics, and the theoretical development of chemometric methods of analysis also 

continues to advance the state of the art in analytical instrumentation and methodology 

improvements. It is an application driven discipline, and thus while the standard chemometric 

methodologies are very widely used industrially, academic groups are dedicated to the 

continued development of chemometric theory, method and application development. My 

research interest since 2 decades ago was to connect the bench scale applications of 

chemometric methodologies to industrial level, in order to introduce its superb benefits and 

capabilities to be generalized. Thus in all my research activities, everywhere possible, 

chemical data has been processed by chemometric approaches, especially while the 

spectrometric analytical procedure were conducted. This edited collection would try to review 

current applications of chemometrics for different aims e.g., multivariate calibrations, pattern 

recognitions, curve resolution, etc. It has been tried to organize the project, considering the 

interest of chemometrics researchers for both method evaluation and technical applications. A 

wide range of distinguished researches from all around the world have prepared their 

contribution in the frame of Current Applications of Chemometrics and on behalf of all 

colleagues who have collaborated in this edited collection, I hope it would be interesting and 

useful for academic and industrial researches. Finally, I would like to express my sincere 

gratitude to all the colleagues who accepted my invitation and also to my friends and co-

workers in the SPECHEMO research group. 
 

Mohammadreza Khanmohammadi 

Chemistry Department, Faculty of Science, IKIU   

P.O. Box 34149-1-6818, Qazvin, Iran 

Tel-Fax: +98 281 3780040 

Email: m.khanmohammadi@sci.ikiu.ac.ir 

June 2014, Qazvin, Iran 
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HOW TO DETERMINE THE ADEQUATENESS 

OF MULTIPLE LINEAR REGRESSION  

AND QSAR MODELS? 
 

 

Károly Héberger

 

Research Centre for Natural Sciences, Hungarian Academy of Sciences,  

Budapest, Hungary 

 

 

ABSTRACT 
 

Performance parameters (coefficient of determination - R
2
, cross-validated 

correlation coefficients - Q
2
(external), R

2
(leave-one-out) R

2
(leave-many-out), R

2
(boot-

strap), etc.) are frequently used to test the predictive performance of models. It is 

relatively easy to check whether the performance parameters for linear fits stem from the 

same distribution or not. Tóth‘s test (J. Comput. Aided Mol. Des. (2013) 27:837–844), 

difference test (a variant of t-test) and Williams‘ t-test, show whether the difference 

between correlation coefficient (R) and cross-validated correlation coefficient (Q) are 

significantly different at a given probability level. An ordering procedure for comparison 

of models is able to rank the models as compared to the experimental values, and 

provides an easy way to test the adequacy of the splits for training and prediction sets. 

Ranking of performance parameters can be completed similarly. The variants of t-tests 

and the ranking procedure are recommended to be applied generally: they are simple and 

provide practical ways to test the adequacy of models. 

 

 

INTRODUCTION 
 

Performance parameters as coefficient of determination, R
2
; cross-validated correlation 

coefficients leave-one-out, leave-many-out (Q
2
, R

2
LOO, R

2
LMO, etc.) are frequently used to 

validate models. 
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Károly Héberger 2 

There is a general belief in the QSAR field that the difference between correlation 

coefficient (R) and cross-validated correlation coefficient (q or Q)) cannot be too high. A high 

value of the leave-one-out cross-validated statistical characteristic (q
2
 > 0.5) is generally 

considered as a proof of the high predictive ability of the model. It has already been shown 

[1] that this assumption is usually incorrect. Some authors make categories high, medium/ 

acceptable and weak correlation [2], but these groups are not usable without knowing the 

degree of freedom. Similarly, how small the mentioned difference should be (how large might 

be), whereas the fit remains acceptable is not known and generally governed by feelings of 

the modelers. Recently, it was proven in our laboratory [3] that the ratio 

 

  (1) 

 

where: 

 

 (2) 

 

 denotes the value calculated for the i-th experiment leaving out the i-th experiment in the 

parameter estimation of the model; 

and 

 

 (3) 

 

whereas 

 

 (4) 

 

and the cross-validated correlation coefficient and the coefficient of determination are defined 

in Equation 5. 

 

 and , respectively. (5) 

 

The basic assumption in the above test is that the ratio of two variances sampling from 

the same normal distribution follows F distribution with the corresponding degree of 

freedom. Both RSS and PRESS are sum of squares with dfRSS and dfPRESS degrees of 

freedom. 

𝑃𝑅𝐸𝑆𝑆 𝑑𝑓𝑃𝑅𝐸𝑆𝑆 

𝑅𝑆𝑆 𝑑𝑓𝑅𝑆𝑆 
=

1 − 𝑄2

1 − 𝑅2
≈ 𝐹 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 

𝑃𝑅𝐸𝑆𝑆 =   𝑦 𝑖/𝑖 − 𝑦  
2

𝑛

𝑖=1

 

𝑅𝑆𝑆 =   𝑦 𝑖 − 𝑦  2

𝑛

𝑖=1

 

𝑇𝑆𝑆 =   𝑦𝑖 − 𝑦  2

𝑛

𝑖=1

 

𝑄2 = 1 −
𝑃𝑅𝐸𝑆𝑆

𝑅𝑆𝑆
 𝑅2 = 1 −

𝑅𝑆𝑆

𝑇𝑆𝑆
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How to Determine the Adequateness of Multiple Linear Regression … 3 

The rapid calculation of PRESS/RSS ratio and the above F test are fast methods to pre-

estimate the presence of outliers, i.e., the internal predictive character of a model. If a model 

fails the test, it is expedient to change the training data. 

Editors and reviewers can check the submitted models easily if a model fails the above 

variance ratio test the model has little generalization ability, if at all [3]. 

As a logical continuation another test is introduced here for checking whether the training 

and test (prediction) sets stem from the same distribution. Todeschini and coworkers have 

compared three different calculation methods for performance indicators of external 

validation [4]: The methods were that of Schüürmann et al. [5]: 

 

 (6) 

 

that of Sheenan et al. [6]: 

 

 (7) 

 

and the ―hybrid‖ recommendation of Todeschini et al. [7]: 

 

 (8) 

 

It turned out that all three functions produce bias-free estimation, but  has far the least 

variability [4]. We will see later that the superiority of  is not as unambiguous as thought 

at the first glance. 

This work present a known statistical test, applied in a unique and creative way on the 

above performance parameters. The test is called difference test and has not been used for the 

given purpose till know (to my knowledge). In the second part of the paper a ranking 

procedure for checking the model consistency is shown if some assumptions are fulfilled. In 

case the calculated (modeled) values are also available not only the performance parameters, 

then, the models can be ranked together with the experimental values [8-10]. The ordering on 

the training, test and both sets allows us to compare the representative character of the splits, 

as well. 

 

 

THEORY 
 

Difference Test [11] 
 

The significance of the difference between two correlation coefficients (r1 and r2) is 

computed as follows: the test statistics is 

𝑄𝐹1
2 = 1 −

  𝑦 𝑖 − 𝑦𝑖 
2𝑛𝐸𝑋𝑇

𝑖=1

  𝑦𝑖 − 𝑦 𝑇𝑅𝐴𝐼𝑁  2𝑛𝐸𝑋𝑇
𝑖=1

 

𝑄𝐹2
2 = 1 −

  𝑦 𝑖 − 𝑦𝑖 
2𝑛𝐸𝑋𝑇

𝑖=1

  𝑦𝑖 − 𝑦 𝐸𝑋𝑇  2𝑛𝐸𝑋𝑇
𝑖=1

 

𝑄𝐹3
2 = 1 −

   𝑦 𝑖 − 𝑦𝑖 
2𝑛𝐸𝑋𝑇

𝑖=1
 𝑛𝐸𝑋𝑇 

   𝑦𝑖 − 𝑦 𝑇𝑅𝐴𝐼𝑁  2𝑛𝐸𝑋𝑇
𝑖=1  𝑛𝑇𝑅𝐴𝐼𝑁 
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Károly Héberger 4 

t=d/sd (9) 

 

where d is the difference between the two Fisher z-transformed [12] correlation coefficients: 

 

 (10) 

 

and sd is the standard error of the difference between the two normalized (Fisher z-

transformed) correlation coefficients: 

 

 (11) 

 

where n1 and n2 are the two sample sizes for r1 and r2 respectively. (It means that the test 

cannot be applied if n1 or n2 < 4). The test statistics (Equation (1)) is evaluated against the t-

distribution with degree of freedom 

 

n1 + n2 – 4. 

 

The Statistica program package [11] calculates the two sided p-values. If the probability 

is smaller than a predefined probability level, say 5 %, then the null-hypothesis is rejected: H0 

is the two correlation coefficients are not significantly different, its rejection means they are 

significantly different. The test concerns for simple correlation coefficients, but it can be 

extended for the multivariate case. The above test is well-known and textbook material. 

However, the main idea is to substitute one of the correlation coefficients with the cross-

validated correlation coefficient (Q). The test statistic is the same as above (Equations (9-11) 

just instead of r2 stands Q. (and instead of r2 stands r). 

This is equivalent with the assumption that the correlation coefficient, and the cross-

validated correlation coefficient, stem from the same distribution. The two coefficients are 

independent, i.e., their sampling from the same distribution has no common objects. With 

other words the test is applicable for external validation only. 

 

 

Two Nonindependent Correlations with a Variable in Common [13] 
 

A frequent situation commonly appears when we would like to test about significant 

difference of correlation coefficients using solely three vectors, say y, x1 and x2. We test the 

correlation coefficients of (y,x1) and (y,x2) on the condition that x1 and x2 are also correlated. 

The test is commonly known as Williams‘ t-test and the test statistic is as follows. 

 

 (12) 

 














































2

2

1

1

1

1
ln

2

1

1

1
ln

2

1

r

r

r

r
d

     335 2121  nnnnsd

𝑡𝑛−3 =  𝒓𝒚,𝒙1 − 𝒓𝒚,𝒙2  

 𝑛 − 1  1 + 𝒓𝒙1,𝒙2 

2  
𝑛 − 1
𝑛 − 3

  𝑅 +
 𝒓𝒚,𝒙1 + 𝒓𝒚,𝒙2 

2

4
 1 − 𝒓𝒙1,𝒙2 

3
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How to Determine the Adequateness of Multiple Linear Regression … 5 

where 

 

 (13) 

 

The test is especially suitable for discrimination of x1 and x2, if they are correlated with 

the same y vector [14]. Two models can also be compared, if calculated (predicted) y-s are 

used (commonly denoted as �̂�  and �̂� ). A computer code, which realizes a multivariable 

selection (and ordering) of x variables, can be downloaded for free from the following link: 

 

http://aki.ttk.mta.hu/gpcm 

 

The ordering possibilities i.e., the algorithm is described in reference [15] in detail. The 

test is applicable for leave-one-out cross-validation (LOO CV): y corresponds to experimental 

values, x1 to the modeled ones and x2 for the values calculated n times leaving out the i-th 

experiment one by one (denoted by 𝑦     in Equation (2)). 

 

 

Ranking Procedure 
 

Recently a novel procedure [8-10], called sum of ranking difference (SRD), is introduced 

for model comparison. It can be applied for performance parameters, as well. In this case, 

however, more data sets are necessary for ordering. Different models can also be compared 

(together with experimental values). The SRD procedure is based on sum of ranking 

differences, which provides an easy ordering. The average can preferably be accepted as 

reference for ranking (consensus). The smaller the SRD value for a given model the better the 

model. The models are ranked for the training, prediction sets and eventually for the overall 

data sets. If the ordering is different for the various sets, the split cannot be considered as 

representative; the models are not optimal for the training or prediction sets. If we compare 

performance parameters for the training and for the prediction sets, the results of difference 

tests (above) should be in conformity with the results of the ranking procedure. All details of 

the ranking procedure can be found in references [8-10]. An excel macro is written and is 

downloadable freely together with sample input- and output files from: 

 

http://aki.ttk.mta.hu/srd 

 

 

RESULTS AND DISCUSSION 
 

Case Study No 1 
 

Recently Haoliang Yuan et al. have published a paper about the structural optimization of 

c-Met inhibitor scaffold 5H-benzo[4,5]cyclohepta[1, 2-b]pyridin-5-one [16]. Their fragment 

based approach produced a detailed 3D-QSAR study: a comparison of CoMFA and CoMSIA 

models with experimental values (Table 3 in reference [16]). 

The data of Table 3 [16] are suitable for testing using the difference test: 

 𝑅 = 1 − 𝒓𝒚,𝒙1
𝟐 − 𝒓𝟏𝒚,𝒙2

𝟐 − 𝒓𝒙1,𝒙2
𝟐 + 2𝒓𝒚,𝒙1𝒓𝒚,𝒙2𝒓𝒙1,𝒙2  
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Károly Héberger 6 

Training set: the correlation coefficient for experimental values and modeled by CoMFA 

is 0.94201, whereas the same for experimental values and modeled by CoMSIA is 0.97476 

(n=44, training set). The two sided test gives a 0.0737 limit probability, i.e., the two models 

(CoMFA and CoMSIA) are not significantly different at the 5 % level, but IS significant at 

the 10 % level. 

Prediction set: the correlation coefficient for experimental values and modeled by 

CoMFA is 0.90073, whereas the same for experimental values and modeled by CoMSIA is 

0.96146 (n=44, prediction set). The two sided difference test gives a 0.3560 limit probability, 

i.e., the two models (CoMFA and CoMSIA) are not significantly different at the 5 % level, 

neither at the 10 % level. As the difference test cannot give a definite answer about the 

equivalency of the two models, other approaches should be considered for a decision. First 

the average of the experimental and the two calculated values are considered and used for 

Williams‘ t-test, as we know for sure that the errors (both biases and random ones) cancel 

each other at least partially (maximum likelihood principle). Table 1 shows the dramatic 

difference of the Williams‘ t-test results for the training and prediction sets. Calculated values 

by CoMSIA are significantly better correlated to the average than the calculated values by 

CoMFA (on the condition that modeled values by CoMFA and CoMSIA are also correlated). 

Even the experimental values are significantly better correlated to the average than the 

calculated values by CoMFA, whereas none of the correlations are significant for the 

prediction set. The significant differences in Table 1 should be reflected if using the ranking 

procedure. The experimental and predicted inhibitor activities (summarized in Table 3 of 

reference [16]) are suitable for an ordering between CoMFA, CoMSIA predicted and 

experimental values. 

 

Table 1. Case study No 1 (Inhibitor activity) Pearson correlation coefficients  

for the training and prediction sets 

 

Training set
a
  Prediction set

b
  

r(exp,CoMFA) 0.94201 r(exp,CoMFA) 0.90073 

r(Ave,exp) 0.98755 r(Ave,exp) 0.98491 

r(Ave,CoMFA) 0.97750 r(Ave,CoMFA) 0.95328 

Test statistic 2.49
a
 Test statistic 2.15

b
 

p (theor.) 0.01677
c
 p (theor.) 0.063577 

r(exp,CoMSIA) 0.97476 r(exp,CoMSIA) 0.96146 

r(Ave,exp) 0.98755 r(Ave,exp) 0.98491 

r(Ave,CoMSIA) 0.98960 r(Ave,CoMSIA) 0.97570 

Test statistic 0.577
a
 Test statistic 0.676

b
 

p (theor.) 0.567223 p (theor.) 0.518376 

r(CoMFA,CoMSIA) 0.94827 r(CoMFA,CoMSIA) 0.88430 

r(Ave,CoMFA) 0.97750 r(Ave,CoMFA) 0.95328 

r(Ave,CoMSIA) 0.98960 r(Ave,CoMSIA) 0.97570 

Test statistic 3.07
a
 Test statistic 1.15

b
 

p (theor.) 0.00379
c
 p (theor.) 0.282789 

a
The test statistic is to be compared with the critical value from table 2.0195; n=44. 

b
Test statistic is to be compared with the critical value from table 2.3060; n=11. 

c
significant at the predefined p = 0.05 level, indicated by bold. 
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The training set (44) and the prediction set (11) provide a reliable basis for ranking. 

Indeed, the ordering is far from being random as can be seen from the Figures 1 and 2. Sum 

of ranking differences orders the modeling methods and experimental values for the training 

and prediction sets alike as shown in Figures 1 and 2. 

Ordering of modeling methods and experimental values using sum of ranking differences 

for the training set (n=44). Row-minimums were used as a benchmark for ranking. Scaled 

SRD values (between zero and hundred) are plotted on x axis and left y axis (the smaller the 

better). Right y axis shows the relative frequencies (only for black Gaussian curve). 

Parameters of the fit are m=66.79 s=6.48. Probability levels 5 % (XX1), Median (Med), and 

95 % (XX19) are also given. 

It can be seen immediately that the rankings for training and prediction sets are not the 

same. The order of lines for CoMFA and CoMSIA are reversed from the training and 

prediction sets. However, both rankings are located in between zero and the random ranking. 

The random ordering is shown by Gaussian and Gaussian-like black curves. 

As SRD the smaller the better, we can state for sure that the experimental values 

rationalize the information present in the data better than any of the modeling methods 

CoMFA or CoMSIA. The row average was accepted as the reference for ranking similarly to 

the results of Williams‘ t-test (see above). 

It is reassuring that the CoMFA and CoMSIA models are not random ones but (much) 

better models. The ordering is different for the training and prediction set: the SRD values are 

better (somewhat smaller) for the training set than for the prediction set. 

 

 

Figure 1. Ordering of modeling methods and experimental values using sum of ranking differences for 

the training set (n=44). Row-minimums were used as a benchmark for ranking. Scaled SRD values 

(between zero and hundred) are plotted on x axis and left y axis (the smaller the better). Right y axis 

shows the relative frequencies (only for black Gaussian curve). Parameters of the fit are m=66.79 

s=6.48. Probability levels 5 % (XX1), Median (Med), and 95 % (XX19) are also given. 
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Figure 2. Ordering of modeling methods and experimental values using sum of ranking differences for 

the prediction set (n=11). Row-minimums were used as a benchmark for ranking. Scaled SRD values 

(between zero and hundred) are plotted on x axis and left y axis (the smaller the better). Right y axis 

shows the relative frequencies (only for black Gaussian-type curve). The exact theoretical distribution 

is given (triangles). Probability levels 5 % (XX1), Median (Med), and 95 % (XX19) are also given. 

The ordering is reversed for the prediction and training sets: for the prediction set the 

better one is the CoMSIA model and the worse one are CoMFA model; for the training set the 

case is just the opposite CoMFA have a bit better SRD values than CoMSIA, whereas 

experimental values were the best for both sets. 

A sevenfold cross-validation for the training set and a leave-one-out cross-validation for 

the prediction set generate uncertainties for the SRD values. 

A combination of SRD values and ANOVA provides a unique and unambiguous way of 

decomposing the effects and determine the best combination of factors [17]. 

Herewith the effect of two factors can be examined: (i) data sets – two levels (training 

and prediction) and (ii) modeling – three levels (CoMFA, CoMSIA and experimental), while 

all SRD values are united into one variable. It is interesting to know, which factors are 

significant and how they influence the SRD values. 

A constant term (intercept), the two factors and their interaction term are all (highly) 

significant. The variances for factors and the interaction term are not homogeneous, as shown 

by the highly significant Hartley, Cochran and Bartlett tests as well as by Levene test. The 

prediction set has significantly higher SRD values (recall the smaller SRD the better). 

Experimental values exert the smallest SRD values, CoMSIA models the second smallest and 

CoMFA is the highest. Figure 3 plots the most informative weighted means. 

Even laymen can judge that the ANOVA results of training and prediction sets are 

completely different: CoMFA and CoMSIA models are ranked differently. All groups are 

significantly different except one: the experimental values for the training and test sets 

produce the same – smallest – mean SRD values, but their variances are significant even in 

this case, as well. The smallest significance was observed between mean SRD values for 

CoMFA and CoMSIA in case of the training set: p = 0.039623. 
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Figure 3. Variance analysis for sum of ranking differences: weighted means (sigma-restricted 

parameterization, effective hypothesis decomposition). Vertical bars denote 0.95 confidence intervals. 

The figure strengthens our earlier inference: the experimental values rationalize the 

information in the data better than the models; the models behave on the training and 

prediction sets differently, i.e., the model split cannot be considered as representative. 

 

 

Case Study No 2 
 

Todeschini et al. [7] have compared different ways to evaluate the predictive ability of 

QSAR models. Three performance indicators for external validation were called predictive 

squared correlation coefficient Q
2
 and defined as given in Equations (6-8). The indicators 

behave differently as the allocations of the points are different. Their Tables 5 and 7 

summarizes performance parameters; the data are suitable for a detailed statistical analysis. 

Tóth‘s test (given by Equation (1)) shows, whether the correlation coefficients (R) and 

cross-validated correlation coefficients (Q) are derived from the same or different 

distribution. As an illustration the first line of Table 5 of reference [7] is utilized: R
2
 = 0.972; 

Q
2
(F1) = 0.873; Q

2
(F2) = 0.843; Q

2
(F3) = 0.877. As a consequence Q

2
(F1) is significantly 

different from R
2
 and several serious outliers are suspected c.f. Figure 1 in reference [3]. The 

other two indicators (Q
2
(F2), Q

2
(F3)) seem to be acceptable. 

Merging the data of Table 5 and Table 7 several difference tests can be conducted: there 

is no significant differences between R
2
 and Q

2
(F1) p = 0.1170; between R

2
 and Q

2
(F2) p = 

0.6569; and between R
2
 and Q

2
(F3) p = 0.4010. 
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Table 2. Case study No 2; Comparison of various external validation options, Equations 

(6-8) Pearson correlation coefficients (r) and their significance according to the 

Williams’ t-test 

 

r(R2,Q2(F1)) -0.28253 r(Q2(F1),Q2(F2)) 0.24936 

r(Ave,R2) -0.39074 r(Ave, Q2(F1)) 0.46365 

r(Ave,Q2(F1)) 0.46365 r(Ave,Q2(F2)) 0.96722 

Test statistic 0.21a Test statistic 3.78a 

p (theor.) 0.836793 p (theor.) 0.0043191b 

r(R2,Q2(F2)) -0.44894 r(Q2(F1),Q2(F3)) -0.35871 

r(Ave,R2) -0.39074 r(Ave, Q2(F1)) 0.46365 

r(Ave,Q2(F2)) 0.96722 r(Ave,Q2(F3)) 0.63177 

Test statistic 5.17a Test statistic 0.47937a 

p (theor.) 0.0005892b p (theor.) 0.6431031 

r(R2,Q2(F3)) -0.07516 r(Q2(F2),Q2(F3)) 0.75431 

r(Ave,R2) -0.39074 r(Ave, Q2(F2)) 0.96722 

r(Ave,Q2(F3)) 0.63177 r(Ave,Q2(F3)) 0.63177 

Test statistic 0.71a Test statistic 6.34004a 

p (theor.) 0.498172 p (theor.) 0.0001344b 
a
 The test statistic is to be compared with the critical value from table 2.26215; n=12. 

b
 significant at the predefined p = 0.05 level, indicated by bold. 

 

Therefore a more sensitive test should be applied; the results of Williams‘ t-test are 

summarized in Table 2. Here, again, the consensus approach, the mean values were used for 

data fusion. In fact, we do not know which performance indicator has the lowest random error 

and bias. However, the only reasonable assumption is that all expresses the performance with 

some error. The maximum likelihood principle suggests using the average value as the best 

estimate. Then, Q
2
(F2) is significantly correlated with the mean value of all performance 

parameters; moreover, it is superior to both other indicators (Q
2
(F1) and Q

2
(F3)). All other 

comparisons are not significant (c.f. Table 2). This finding is in conformity with Schüürmann 

et al.‘s suggestion [5]; they also argued in favor of a function given by Equation (2).  

The information in the united Tables 5 and 7 can also be utilized for ranking of 

performance parameters. Again, the average of all performance indicators (row-wise) was 

used as a benchmark for ranking. There is no doubt Q
2
(F2) has the smallest (the best) SRD 

value i.e., its ranking is the closest one to the reference ranking, even Q
2
(F1) is out of the 

error limit (first two dotted lines on the figure). On the other hand, Q
2
(F3) and R

2
 are 

comparable with the random ranking. With other words they are indistinguishable from 

chance ordering (Figure 4). The fact that R
2
 is the worst performance parameter is in 

conformity with the expectations and widely accepted beliefs. The SRD ranking results 

support the independent calculations by Williams‘ t-test and not in contradiction with the 

results of Tóth‘s test. 

SRD ranking reinforces our investigations above: Williams‘ t-test and SRD methodology 

questions the superiority of Q
2
(F3) seriously. A leave-one-out cross-validation is able to 

assign uncertainty values to the SRD ranking provided in Figure 4. 

A box and whisker plot shows unambiguously the distinction of the ranking: no 

overlapping is observed; pairwise Wilcoxon‘s matched pair tests confirm all positions in the 

ranking: They are all significantly different (Figure 5). 
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Figure 4. Ordering of squared correlation coefficient (R) and predictive squared correlation coefficient 

(Q) values using sum of ranking differences (n=12). Row-minimums were used as a benchmark for 

ranking. Scaled SRD values (between zero and hundred) are plotted on x axis and left y axis (the 

smaller the better). Right y axis shows the relative frequencies (only for black Gaussian fitted curve). 

Probability levels are also given by double dotted lines: 5 % Median, and 95 %, respectively. 

 

Figure 5. Box and whisker plot for leave-one-out cross-validation of SRD ranking. 
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CONCLUSION 
 

The difference test for correlation coefficients is too conservative; it signalizes 

differences in case of correlation coefficients (R) and externally cross-validated correlation 

coefficients (Q) only if the difference is indeed large. 

Williams‘ t-test is suitable to prove differences in correlation coefficients (R) and 

predictive squared correlation coefficient (Q) (leave-one-out cross-validated correlation 

coefficients and correlation coefficients of external validation). In general, Williams‘ t-test is 

more sensitive than the difference test. 

SRD methodology is able to testify whether the training - prediction set split is consistent 

or not. 

Any of four methods (three statistical tests and a ranking procedure) may reveal whether 

the performance parameters for validation are significantly different from each other or not as 

shown by two case studies. 

It is suggested to test the difference (ratio) between correlation coefficient and cross-

validated correlation coefficients with the above methods before publication. 
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ABSTRACT 
 

Repeated double cross validation (rdCV) is a resampling strategy for the 

development of multivariate models in calibration or classification. The basic ideas of 

rdCV are described, and application examples are discussed. rdCV consists of three 

nested loops. The outmost loop performs repetitions with different random sequences of 

the objects. The second loop performs CV by splitting the objects into calibration and test 

sets. The third (most inner) loop uses a calibration set for estimating an optimal model 

complexity by CV. Optimization of model complexity is strictly separated from the 

estimation of the model performance. Model performance is solely derived from test set 

objects. The repetition loop allows an estimation of the variability of the used 

performance measure and thus makes comparisons of models more reliable. rdCV is 

combined with PLS regression, DPLS classification, and KNN classification. Worked out 

examples with data sets from analytical chemistry demonstrate the use of rdCV for (1) 

determination of the ethanol concentration in fermentation samples using NIR data; (2) 

comparison of variable selection methods; (3) classification of synthetic organic pigments 

(relevant for artists' paints) using IR data; (4) classification of AMES mutagenicity 

(QSAR). Results are mostly presented in plots directly interpretable by the user. Software 

for rdCV has been developed in the R programming environment. 
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INTRODUCTION 
 

Prominent tasks in chemometrics and chemoinformatics are the creation of empirical 

multivariate models for calibration and classification. A multivariate calibration model 

defines a relationship between a set of numerical x-variables and a numerical continuous 

property y; a multivariate classification models between a set of x-variables and a categorical 

(discrete) property y (encoded class memberships of the objects). Mostly, the goal of such a 

model is the application to new cases to predict the unknown y from given x-variables. 

Essential topics for the creation of powerful models and successful applications are (1) Good 

estimation of the optimum complexity of the model; (2) a cautious estimation of the 

prediction performance for new cases; and (3) a reasonable estimation of the applicability 

domain of the model (this topic is not treated here). The model complexity is related to the 

degree of freedom (the number of independent parameters, more specifically, e.g., the number 

of PLS components). An optimum complexity is essential for a good compromise between 

underfitting (a too simple model) and overfitting (the model is well adapted to the calibration 

data but does not possess sufficient generalization necessary for new cases). 

Empirical models are usually derived from a data set from n reference objects (cases), 

each characterized by m x-variables (features), forming a matrix X(n × m), and a 

corresponding y-vector (containing the known properties of the n objects). Model building is 

an inductive approach, using a specific data sample, and resulting in a generalized model 

which should be capable to be successfully applied to new cases. Inductive models are 

inherently uncertain, and therefore great effort is necessary for a reasonable estimation of the 

model performance and the applicability range. In many practical situations, the number of 

reference objects is rather small and this fact limits the significance of model parameters. An 

appropriate theory for the relationships between the x-variables and the desired property y is 

often not available and the existence of a relationship is solely a hypothesis. Various 

strategies have been suggested for handling these problems; most often applied in 

chemometrics are strategies based on cross validation (CV), others use the bootstrap concept. 

This chapter focuses on CV and presents a combination of a procedure that was 

suggested 2009 [1, 2] under the name repeated double cross validation (rdCV). rdCV (and 

bootstrap techniques) are so called resampling strategies (repeated sampling within the same 

sample) which are necessary for small data sets (say 20 to 200 objects) in order to obtain a 

sufficient large number of predictions. For this purpose the n objects are repeatedly split into 

three sets: A training set for making models with different complexities, a validation set for 

estimating the optimum complexity, and a test set for getting predictions by simulating new 

cases. Training set and validation set together form the calibration set. Various strategies (for 

CV or bootstrap) have been suggested and are applied depending on data size (n), and 

accepted computational effort, but also on availability in commercial software. A too simple 

approach gives misleading, often too optimistic, result for the prediction performance. rdCV 

estimates an optimization parameter (usually the optimum model complexity) together with 

its variation, and rigorously estimates the prediction performance together with its variation. 

Variation concerns different random splits into the three mentioned sets. 

The strategy is applicable, e.g., for calibration and for classification, and requires at least 

about 15 objects. Optimization of the model complexity is separated from the estimation of 

the model performance. 
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rdCV is implemented in a group of user-friendly functions in the R programming 

environment [3], based on the R package chemometrics [4, 5]. Typical computation time  

(n = 100, m = 20) is a few seconds (3.4 GHz processor). 

Strategies similar to rdCV have been published for classification as cross model 

validation (2CV) [6, 7], and for bootstrap techniques [8], as well as for principal component 

analysis as double full cross validation [9]. Critical contributions to CV have frequently been 

published, e.g., [10-12]; and recently (2014) an almost identical strategy, named repeated 

grid-search (nested) V-fold cross-validation, has been described [13]. 

The outline of the next parts of this chapter is as follows: In the Methods' Section the 

basic principles of cross validation, double cross validation, and repeated double cross 

validation are described. In the Applications' Section, rdCV is applied to multivariate 

calibration, using PLS regression with an example from bioanalytical chemistry (including a 

comparison of variable selection methods). Then, rdCV is applied to multivariate 

classification, using KNN classification, and DPLS classification. 

 

 

METHODS 
 

Cross Validation 
 

The most used resampling strategy in chemometrics for optimization of a model 

parameter (e.g., the model complexity) is cross validation (CV) [2, 14-16]. The idea is to split 

the objects into groups, using one for making models by varying the parameter to be 

optimized, and the other to validate the models for finding the optimum value. Simple CV can 

be described as follows. The considered set of n objects is split into s segments (groups, parts, 

folds) of approximately equal size. The split is usually random, but alternatively may be (if 

reasonable) in the mode ―123123‖ (object 1 into segment 1, object 2 into segment 2, and so 

on), or in the mode ―111222333‖ (first n/s objects - rounded to integer - into segment 1, and 

so on). More sophisticated pseudo-random procedures - related to experimental design and 

sampling theory - are rarely applied. E.g., the Kennard-Stone algorithm [17, 18] covers the x-

space of the calibration set as uniformly as possible; stratified CV [13, 19] tries to have the 

same region (distribution) of y-values in each segment. 

The number of segments is typically between 2 and 10. Figure 1 demonstrates simple CV 

with three segments. Two segments form a training set, the left out segment is the validation 

set. From the training set, models (e.g., for calibration of a property y) are calculated with 

different values for the parameter to be optimized (e.g., the number of PLS components, A1, 

A2, ..., AD). The models are applied to the objects of the validation set, giving predicted 

properties, ŷ, for each object in the validation set, and each tested value of A. The procedure is 

repeated with each of the segments being a validation set. From the obtained matrix ŶCV (n × 

D) an error measure is calculated column-wise (e.g., the mean of the squared errors, MSECV). 

Typically, MSECV varies with A. In a simple approach the value of A with the smallest 

MSECV (global minimum) is used as an optimum A, AOPT. Alternatively, heuristic algorithms 

are applied for searching a value for a more parsimonious model to avoid overfitting; e.g., the 

one standard error rule [1, 20] uses a statistical concept (but requires at least four segments, 

and about at least three objects per segment). 
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Only applying a single CV may have several pitfalls: (1) Estimation of optimum model 

complexity and estimation of prediction performance are not separated and the performance 

measure obtained is usually too optimistic [21]. (2) The result may heavily depend on the 

(random) split of the objects into segments; the resulting single performance measure may be 

an outlier, and does not allow a reasonable comparison of model performances. Repeating the 

CV with different random splits is recommended to estimate the variation of the performance 

measure (and the variation of the optimum model complexity). 

A special case of simple CV uses as many segments as objects (s = n), called leave-one-

out CV or full CV. Full CV often gives too optimistic results, especially if pair-wise similar 

objects are in the data set (e.g., duplicate measurements). However, if the number of objects is 

very small (say n < 15) this strategy may be the only applicable one; the resulting 

performance has to be considered as a (crude) estimation and must not be over-interpreted. 

 

 

Double Cross Validation 
 

In a single CV the performance measure is guided by the optimum parameter, AOPT, 

(model complexity) of the model. AOPT is best for the used data but not necessarily enough 

generalized for new cases. In double cross validation (dCV) the optimization is separated 

from the model assessment. The dCV strategy can be realized by two nested loops - two 

nested CVs (Figure 2). In the outer CV all considered n objects are split into sTEST segments; 

typically sTEST = 2 to 10 (for split strategies see previous subsection.). Based on the CV idea, 

one segment constitutes a test set, which is not used for optimization of the model 

complexity. The other segments form a calibration set. First, the optimum complexity for the 

current calibration set is estimated - and the method of choice for this purpose is a single CV 

as described before, considered as the inner CV. We denote the number of segments in the 

inner CV (working with a calibration set) by sCALIB. Second, the obtained AOPT is stored, e.g., 

in a vector ACV (sTEST × 1). Note that the outer CV produces sTEST different (partly 

overlapping) calibration sets, and the resulting values for AOPT are in general not equal. 

Actually, only at the end of the outer CV a final (or several final) values for the optimum 

model complexity are selected from the obtained sTEST values. From a practical point of view 

it is therefore useful to make models from the whole current calibration set for all values of 

the optimization parameter (A1, A2, ..., AD) and to apply the models to the current test set. 

 

 

Figure 1. Simple CV with three segments for optimization of the model complexity (e.g., number of 

PLS components). 
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After the first loop of the outer CV we have a predicted value for each object of the 

current test set using models of varying complexity and made from the current calibration set. 

These predicted values are ―tests set predicted‖ results - we need for a careful estimation of 

the model performance for new cases. 

After all sTEST loops of the outer CV, the next step searches a final optimum model 

complexity, AFINAL. A convenient method is to choose the most frequent value among the 

sTEST results. Alternatively, more than one value can be considered, e.g., when working with a 

consensus approach (using several models in parallel, and combining the prediction results). 

The distribution of the obtained values for AOPT is instructive, as it often demonstrates that no 

unique optimum exists. 

Now having a final model complexity, AFINAL, the n test set predicted values for this 

complexity are used to calculate a final prediction performance. This performance measure 

refers to test set conditions and simulates new cases; it is calculated from one prediction for 

each of the n objects. Note that sTEST different calibration sets have been used (all with 

complexity AFINAL). A final model can be made from all n objects, using complexity AFINAL; a 

good estimation of the performance of this model for new cases is the final result from rdCV. 

The still present drawback is the fact that only a single number for the model performance has 

been estimated without knowing its variability; this problem can be overcome by repeated 

double cross validation (rdCV). 

 

 

Repeated Double Cross Validation (rdCV) 
 

The results from CV depend on the (usually random) split of the objects into segments, 

and therefore a single CV or dCV may be very misleading. Furthermore, a comparison of the 

performances of models requires an estimation of the variabilities of the compared measures. 

Repeated double cross validation (rdCV) repeats dCV several times with different random 

splits of the objects into segments. The number of repetitions, nREP, is typically 10 to 100. 

 

 

Figure 2. Double CV with four segments for the outer CV (creation of test sets); the optimum 

complexity (e.g., number of PLS components) is estimated for each calibration set in an inner CV. 
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The obtained nREP values of the prediction performance give a more complete picture 

than a single value; the median (or mean) can be used as a single final performance measure; 

for the comparison of models boxplots are a convenient visualization of the distributions. The 

number of estimations of the optimum complexity in rdCV is nREP × sTEST. 

Figure 3 summarizes the output data from rdCV, some results and diagnostic plots. Basic 

result is a 3-dimensional array ŶrdCV with the predicted y-properties (or predicted class 

membership codes). The dimensions of this array are the object numbers, 1, ... , n; the tested 

values for the model complexity, A1, ... , AD; and the repetitions, 1, ... , nREP. For the further 

evaluation the slice for the identified final optimum model complexity, AFINAL, is most 

relevant. A corresponding array with the residuals, y - ŷ, is relevant for regression models. 

The distribution of the residuals is often similar to a normal distribution, and then plus/minus 

twice the standard deviation of the residuals define a 95% tolerance interval for predictions; if 

the distribution significantly differs from a normal distribution, the quantiles 0.025 and 0.975 

can be used instead. A widely used measure for the prediction performance of regression 

models is the standard error of prediction (SEP), defined as the standard deviation of the 

residuals. The SEP can be calculated separately for the repetitions, giving an estimation of the 

variability (due to different random splits of the objects into CV segments). The repetitive 

predictions are also instructive in the plots ŷ versus y, and residuals versus y, as they indicate 

problematic objects. Further plots - showing the dependence of rdCV results (SEP, residuals) 

from the model complexity - have only diagnostic value, and indicate the (in)stability of the 

evaluation, but, of course must not be used to adjust the final model complexity.  

The main parameters of rdCV are: sTEST, the number of segments in the outer CV (split 

into calibration and test sets); sCALIB, the number of segments in the inner CV (split of the 

calibration set into training and validation sets for estimating an optimum model complexity); 

nREP, the number of repetitions. 

 

Figure 3. Repeated double CV (rdCV): Resulting evaluation data and a selection of plots. 
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The number of segments is usually chosen by considering the number of objects, n. If n is 

small (say <30) care has to be taken for sufficiently large calibrations sets, and therefore sTEST 

will be large, even having the maximum value n. The larger sTEST, the more resembles the 

process a leave-one-out CV; however, the random split in the inner CV keeps some 

variability in the estimation of AOPT. For a large number of objects (say n > 2000), sTEST may 

be kept small to save computing time. The restrictions for the number of segments in the 

inner CV, sCALIB, are given by the used one standard error method [1, 20] for estimating the 

optimum model complexity, AOPT, for each calibration set separately. As mentioned before. 

the error measure MSE is calculated for each segment requiring a reasonable number of 

objects per segments (in the inner CV), say ≥ 3. From the resulting sCALIB MSE values the 

standard error (standard deviation of means) is calculated which requires sCALIB ≥ 4. So we 

have two contrary effects: a large sCALIB increases the number of values used in the calculation 

of the standard error (an advantage), but decreases the number of values in each segment (a 

disadvantage). The minimum number of objects in a calibration set therefore is about 12 (3 

time 4), and consequently the minimum total number of objects for rdCV is about 15 (with 

sTEST = 5). In general, sTEST = 4, and sCALIB = 7 seems to be a good compromise between 

computational effort and stability of the validation results [1]. 

The computing time is proportional to the number of repetitions, nREP. For a large number 

of objects the variations of the rdCV results (e.g., SEP) are rather small, and 10 to 30 

repetitions may be sufficient. In general, 50 to 100 repetitions have been recommended [1]. 

For a small number of objects the probability of identical random sequences increases but is 

not a practical problem. 

 

 

APPLICATIONS 
 

Multivariate Calibration with PLS-rdCV 
 

Partial least-squares (PLS) regression is a frequently applied method in chemometrics 

and chemoinformatics for linear multivariate calibration models; the various PLS methods are 

well documented elsewhere [2, 18, 22]. The complexity of a PLS model is controlled by the 

number of PLS components, A, (orthogonal latent variables with maximum covariance with y, 

defined as linear combinations of all x-variables). 

The larger A, the more complex is the model and the bigger is the chance of overfitting. 

The rdCV strategy gives a set of estimations for the optimum number of PLS components, 

from which a final value, AFINAL, is selected (Figure 2). 

The performance measure of the model used here is the standard error of prediction, SEP, 

defined as the standard deviation of prediction errors (residuals), ei = yi - ŷi, with yi for the 

given (experimental, ―true‖) value, and ŷi the predicted (modeled) value for a property of an 

object i. Note that in rdCV, all ŷi are test set predicted results, and nREP predictions are 

available for each object (for AFINAL PLS components). The single parameter SEP of the 

distribution of the residuals is usually appropriate because the distribution is mostly similar to 

a normal distribution with a mean (―bias‖) near zero. SEP is a user-oriented performance 

criterion, as it can be given in the units of y. rdCV gives a set of values for SEP demonstrating 

the variability for different splits of the objects into the sets for CV. 
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The data set ethanol (see Appendix) is used to demonstrate some aspects of rdCV. The x-

data contain n = 166 objects (fermentation samples) with m = 235 variables (first derivatives 

of NIR absorbances). The property y to be modeled is the ethanol concentration (21.7 - 88.1 

g/L). The rdCV parameters applied are: sTEST = 4; sCALIB = 7; nREP = 30; the number of PLS 

components considered 1 - 20. The computing time was 6 seconds (3.4 GHz processor). 

Figure 4a shows the distributions of the prediction errors for the 30 repetitions (thin gray 

lines) and their mean (thick black line). 95% of the errors (means) are between -2.81 and 3.80 

(dashed vertical lines). We obtain sTEST × nREP = 120 estimations of the optimum number of 

PLS components, AOPT, between 10 and 20 (Figure 4b). The highest frequencies (24 from 

120) have A = 13 and A = 14. Considering the parsimonious principle for model generation, 

AFINAL = 13 has been selected. The result demonstrates that usually more than one value for 

the optimum number of PLS components arises, and that a single CV may give a misleading, 

outlying value of this essential parameter of a PLS model. 

Figure 5a compares experimental y with the predicted y (in gray the 30 repetitions, in 

black their mean). A zoomed area is shown in Figure 5b indicating that the spread (in this 

example) is similar for all objects, however, some tend to have outliers. The distribution of 

the 30 SEP values obtained for AFINAL = 13 is shown in Figure 6a; the median is about 1.6 

(g/L ethanol), however, single values are between 1.5 and 1.8 - a rather small range for this 

obviously good relationship between x-variables and y. Figure 6b shows the dependence of 

SEP from the number of PLS components. From the used rdCV procedure AFINAL =13 PLS 

components were found to be optimal. Note that the optimum complexity must not be derived 

or adjusted from the results shown in Figure 6b, because this would introduce a model 

optimization based on test set results. 

 
a     b 

Figure 4. PLS-rdCV results for ethanol data set. (a) Distributions of the prediction errors from 30 

repetitions (thin gray lines) and their mean (thick black line). (b) Relative frequencies of the 120 

estimations of the optimum number of PLS components; final result is 13. 
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a     b 

Figure 5. PLS-rdCV results for the ethanol data set. (a) Test-set predicted y (in gray for the 30 

repetitions, in black the mean) versus y. (b) Zoom. 

 

a     b 

Figure 6. PLS-rdCV results for the ethanol data set. (a) Distribution of the 30 SEP values obtained for 

the final model complexity with 13 PLS components. (b) Distribution of the 30 SEP values for all 

investigated numbers of PLS components. 

 

Comparison of Variable Selection Methods by rdCV 
 

Data sets in chemometrics may have up to some thousands of variables (e.g., molecular 

descriptors [23, 24]), therefore a reduction of the number of variables is often useful. 

Although PLS regression can handle many (m > n), and correlating variables, a reduction may 

enhance the prediction performance. Furthermore, models with a small number of variables 

are easier to interpret. 

y

ŷ ŷ

y

SEP SEP

number of PLS componentsfor AFINAL = 13
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However, variable selection is a controversially discussed topic, for at least the following 

reasons: (1) For practical problems (say more than 30 variables) only heuristic approaches 

can be used, that have no guarantee to find a very good solution. (2) Within the variable 

selection mostly fit criteria are applied to measure the performance because test set 

approaches (like rdCV) are too laborious. (3) Performance results from variable selection are 

inappropriately considered as the final performance. 

Another undecided problem is the question whether variable selection can or should be 

done with all objects, or must be done with subsets of the objects within CV. The latter 

approach sounds very serious, however, the practical problems connected with it are not 

solved, and reservations against the first approach are often caused by mixing variable 

selection and evaluation of the model performance. We advocate here for using all objects in 

variable selection and consider this step completely independent from model assessment by 

rdCV. The strategy (Figure 7) is to apply several methods of variable selection (and varying 

their parameters). Preliminary results may consist of several variable subsets, only considered 

as suggestions, that have to be evaluated by rdCV. The resulting boxplots for SEP allow a 

clear and visual inspection of the different powers of the variable subsets [25]. 

For a demonstration of this strategy the data set ethanol is used and three different 

selection methods are applied to the original 235 variables. The methods tested are: (1) 

Selection of a preset number of variables (m = 20, 40, 60) with highest absolute Pearson 

correlation coefficient with y. (2) Stepwise variable selection in forward/backward mode 

using the criterion BIC (Bayes information criterion) [2, 25]. (3) Sequential replacement 

method [26-28] as implemented in the function regsubsets() in the R-library leaps, using the 

criterion BIC. The rdCV parameter applied are: sTEST = 4; sCALIB = 7; nREP = 30; the number of 

PLS components considered is 1 - min(m, 20). 

Figure 8 shows the distributions of the 30 SEP values for the various data sets. Selection 

of 20 - 60 variables with highest absolute Pearson correlation coefficient only slightly 

improves the model performance. The variation in the results again stresses the importance of 

repetitions with different random splits of the objects. 

Stepwise selection also gives only a minor improvement, however, only requires 6 

variables. Significantly best results have been obtained with 20 variables selected by the 

sequential replacement method. 

 

 

Multivariate Classification with KNN-rdCV and DPLS-rdCV 
 

The most used and most powerful methods for classification in chemometrics [2, 16] are 

discriminant partial least-squares (DPLS) classification, k-nearest neighbor (KNN) 

classification, and support vector machines (SVM). Like in multivariate calibration, these 

methods require an optimization of the complexity of the models, and - independently - a 

cautious estimation of the classification performance for new cases. 

Optimizing the complexity of a DPLS classifier means estimation of an optimum number 

of PLS components - similar to PLS calibration models as described above. 

In KNN classification, the number of considered neighbors (k) is the complexity 

parameter which influences the smoothness (complexity) of the decision surface between the 

object classes. Note that a small k gives a decision boundary that well fits the calibration data 

(for an example see Figure 5.13 in [2]). 
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Figure 7. Strategy for variable selection combined with rdCV. 

 

Figure 8. rdCV results for ethanol data set. Comparison of variable selection methods; m, number of 

variables. 

The smaller k, the more complex is the model and the bigger is the chance for an 

undesired overfitting. The rdCV strategy gives a set of estimations for the optimum number 

of neighbors, from which a final value, kFINAL, is selected. 

The performance of a classifier is measured here by predictive abilities, Pg, defined as the 

fraction of correctly assigned objects of a class (group) g (g = 1, ... , G, with G for the number 

of classes). An appropriate single number for the total performance, considering all classes 

equally, is the arithmetic mean, PMEAN, of all Pg. 

Complimentary Contributor Copy



Kurt Varmuza and Peter Filzmoser 26 

The sometimes used overall predictive ability, calculated by nCORR /n , with n the number 

of all tested objects, and nCORR the number of all correctly assigned objects, depends on the 

relative frequencies of the classes; therefore it may be misleading and is not used. Note that in 

rdCV, all predictive abilities are obtained from test set objects, and nREP predictions are 

available for each object (for AFINAL PLS components in DPLS, or kFINAL neighbors in KNN). 

rdCV gives a set of values, e.g., for PMEAN, demonstrating the variability for different splits of 

the objects into the sets for CV. 

The data set pigments (see Appendix) is used to demonstrate some aspects of KNN-

rdCV. The x-data contain n = 227 objects (synthetic organic pigments) with m = 526 variables 

(IR transmission data). The objects belong to G = 8 mutually exclusive classes (11 to 49 

objects per class). The rdCV parameter applied are: sTEST = 4; sCALIB = 7; nREP = 50; for KNN 

k = 1, ... , 5 neighbors have been considered. 

We obtain sTEST × nREP = 200 estimations of the optimum number of neighbors, kOPT. The 

highest frequency of 91.5% is for k = 1; k = 2, 3, 4 have 5.5, 2.5, and 0.5%, respectively. 

Thus, kFINAL = 1 is easily selected. 

Figure 9a shows the distributions of the predictive abilities, Pg, for the 8 classes 

separately, and for the mean PMEAN - as obtained in 50 repetitions with different random splits 

into segments. PMEAN has a narrow distribution with an average of 0.95. Classes 3, 4, and 7 

show almost 100% correct class assignments. Class 5 appears worst with a mean of P5 = 0.88 

and a rather large spread. Some outlying results with P < 0.8 warn from making only a single 

CV run without repetitions. Figure 9b shows PMEAN as a function of k; this diagnostic plot 

demonstrates the stability of the results, and confirms that the best result is obtained by 

considering only the first neighbor; however, these results must not be used for an adjustment 

of kFINAL. 

 

a     b 

Figure 9. KNN-rdCV results for the pigments data set. (a) Predictive abilities for the classes 1 to 8, and 

their mean (from 50 repetitions and the final number of neighbors, kFINAL. (b) Distribution of PMEAN for 

all investigated numbers of neighbors. 

 

PMEAN and P1 ... P8 PMEAN

k, number of neighborsfor kFINAL = 1
MEAN
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The data set mutagenicity (see Appendix) is used as a QSAR example for binary 

classification with DPLS-rdCV. The x-data contain n = 6458 objects (chemical structures) 

with m = 1440 variables (molecular descriptors). The objects belong to G = 2 mutually 

exclusive classes, with 2970 not mutagenic compounds (class 1), and 3488 mutagenic 

compounds (class 2). The rdCV parameters applied are: sTEST = 2; sCALIB = 7; nREP = 30; the 

number of PLS components considered 1 - 30. We obtain sTEST × nREP = 60 estimations of the 

optimum number of PLS components, AOPT, with results between 20 and 29 (Figure 10a). The 

highest frequency has A = 25 which is used as AFINAL. 

In Figure 10b the resulting distributions of the predictive abilities are shown for this 

model complexity. The large number of objects gives only small variations of the 

performance measures; the mutagenic compounds are better recognized (ca 78% correct) than 

the not mutagenic compounds (ca 68% correct). 

The rather low total prediction performance, PMEAN, of only ca 73% is not surprising for 

this very challenging classification problem and the simple approach, namely a linear 

classifier applied to chemical structures with high diversity. 

Finally, the rdCV strategy has been applied to estimate the prediction performance of 

DPLS classification for some subgroups of these very diverse structures. A comprehensive 

study of local models is out of the scope of this study, and only the applicability of rdCV is 

demonstrated.  

(1) First, subgroups with defined ranges of the molecular mass are investigated. The 

molecular masses of all 6458 chemical structures are between 26 and 1550 (median 229); the 

tested four groups have the ranges 30 - 100, 101 - 200, 201 - 300, and 301 -600, see Figure 

11. The compound set with low molecular masses (30 - 100) shows considerably lower 

prediction performance than the other subgroups, in particular caused by only random class 

assignments of the mutagenic compounds. 

 

 
a     b 

Figure 10. DPLS-rdCV results for the mutagenicity data set. (a) Histogram with relative frequencies 

obtained for the optimum number of PLS components (total 60 values). (b) Predictive abilities P1 for 

class 1 (not mutagenic), P2 for class 2 (mutagenic), and PMEAN, the mean of both, as obtained from 30 

repetitions. 
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Figure 11. DPLS-rdCV results for the mutagenicity data set for selected groups of compounds. The 

rdCV results are compared for ―all‖ compounds, compounds in four ranges of molecular mass (30-100, 

101-200, 201-300, and 301-600), and compounds containing nitrogen (N), no nitrogen (no N), 

containing oxygen (O) and no oxygen (no O). n, number of compounds; n1, number of not mutagenic 

compounds (class 1); n2, number of mutagenic compounds (class 2); for predictive abilities, P, see 

Figure 10. 

Consequently, compounds with molecular masses below 100 should be excluded from 

DPLS classification with these data.  

(2) Second, subsets of compounds have been investigated, containing a certain element or 

not. In this demonstration only nitrogen and oxygen have been considered (more detailed 

studies will apply chemical substructure searches for defining subsets). rdCV results show 

that the prediction performances for these compound subsets are not very different from those 

for all compounds. 
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CONCLUSION 
 

Repeated double cross validation (rdCV) is a general and basic strategy for the 

development and assessment of multivariate models for calibration or classification. Such 

heuristic models require an optimization of the model complexity, which is defined by a 

method specific parameter, e.g., the number of PLS components, or the number of neighbors 

in KNN classification. rdCV provides a set of estimations of this parameter from which a 

final single value or a set of values is selected. Estimation of the optimum model complexity 

is separated from the evaluation of the model performance for new cases by applying a 

double cross validation (dCV). By repeating the dCV with different random splits of the 

objects into calibration and test sets, several estimations of the performance measure are 

obtained, and its variability can be characterized. This variability may be high for small data 

sets. Knowing the variability of the performance measure (at least for different splits of the 

data during CV) is necessary for a reasonable comparison of models. 

 

 

APPENDIX 
 

(1) Data Sets 
 

Data set ethanol [29, 30]. The n = 166 objects are centrifuged samples of fermentation 

mashes, related to bioethanol production from different feedstock (corn, rye, wheat). The m = 

235 variables are first derivatives (Savitzky-Golay, 7 points, 2
nd

 order) of NIR absorbances in 

the wavelength range 1115 to 2285 nm, step 5 nm. The property y is the ethanol concentration 

(21.7 - 88.1 g/L) as determined by HPLC. 

Data set pigments [31]. For the identification of pure synthetic organic pigments FTIR 

spectroscopy has been established as a powerful analytical technique. The n = 227 objects are 

synthetic organic pigments used for artists' paints. The selected 8 classes of pigments are 

defined according to the usual classification system of organic colorants based on their 

chemical constitution. The m = 526 variables are IR transmissions (%) in the spectral range 

4000 - 580 cm
-1

. 

 

Class no. Pigment type No. of samples 

1 Monoazo yellow pigments 13 

2 Disazo yellow pigments 28 

3 s-Naphthol pigments 11 

4 Naphthol_AS pigments 28 

5 s-Naphthol Lake pigments 28 

6 BONS Lake pigments 43 

7 Benzimidazolone pigments 27 

8 Phthalocyanine pigments 49 

 

Data set mutagenicity. Data are from n = 6458 chemical structures with the mutagenicity 

determined by AMES tests as collected and provided by Katja Hansen (University of 

Technology, Berlin, Germany, 2009) [32]. 
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Class 1 contains 2970 not mutagenic compounds, class 2 contains 3488 mutagenic 

compounds. Each structure has been characterized by m = 1440 molecular descriptors 

calculated by software Dragon 6.0 [24] from approximated 3D structures and all H-atoms 

explicitly given (calculated by software Corina [33]). This data set for binary classification 

has been described and used previously [30, 34]. 

 

 

(2) Software 
 

Software used in this work has been written in the R programming environment [3], in 

particular using the R packages chemometrics [4, 5], and pls [35]. 
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ABSTRACT 
 

Cluster analysis is a large field, both within fuzzy sets and beyond it. Many 

algorithms have been developed to obtain hard clusters from a given data set. Among 

those, the c-means algorithms are probably the most widely used. Hard c-means execute 

a sharp classification, in which each object is either assigned to a class or not. The 

membership to a class of objects (samples) therefore amounts to either 1 or 0. The 

application of Fuzzy sets in a classification function causes this class membership to 

become a relative one and consequently a sample can belong to several classes at the 

same time but with different degrees. The c-means algorithms are prototype-based 

procedures, which minimize the total of the distances between the prototypes and the 

samples by the construction of a target function. Fuzzy Generalized n-Means is easy and 

well improved tool, which have been applied in many fields of science and technique. In 

this chapter, different Fuzzy clustering algorithms applied to various environmental data 

described by different characteristics (parameters) allow an objective interpretation of 

their structure concerning their similarities and differences, respectively. 

The very informative fuzzy approach namely, Fuzzy Cross-Clustering Algorithm, 

(FHCsC) allows the qualitative and quantitative identification of the characteristics 

(parameters) responsible for the observed similarities and dissimilarities between various 

environmental samples (water, soil) and related data. 

In addition, the fuzzy hierarchical characteristics clustering (FHiCC) and fuzzy 

horizontal characteristics clustering (FHoCC) procedures revealed the similarity or 

differences between considered parameters and finding out fuzzy partitions and outliers. 
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INTRODUCTION 
 

Imprecision in data and information gathered from measurements and observations about 

our universe is either statistical or nonstatistical. 

This latter type of uncertainty is called fuzziness. We all assimilate and use fuzzy data, 

vague rules, and imprecise information, just as we are able to make decisions about situations 

that seems to be governed by an element of chance. Accordingly, computational models of 

real systems should also be able to recognize, represent, manipulate, interpret, and use both 

fuzzy and statistical uncertainties. Statistical models deal with random events and outcomes; 

fuzzy models attempt to capture and quantify nonrandom imprecision. 

The mathematics of fuzzy sets theory was originated by L. A. Zadeh in 1965. It deals with 

the uncertainty and fuzziness arising from interrelated, reasoning, cognition, and perception. 

This type of uncertainty is characterized by structure that lack sharp boundaries. 

The fuzzy approach provides a way to translate a linguistic model of the human thinking 

process into a mathematical framework for developing the computer algorithms for 

computerized decision-making processes. 

A fuzzy set is a generalized set to which objects can belongs with various degrees 

(grades) of memberships over the interval [0,1]. Fuzzy systems are processes that are too 

complex to be modeled by using conventional mathematical methods (hard models). 

In general, fuzziness describes objects or processes that are not amenable to precise 

definition or precise measurement. Thus, fuzzy processes can be defined as processes that are 

vaguely defined and have some uncertainty in their description. 

The data arising from fuzzy systems are in general, soft, with no precise boundaries. 

Fuzziness of this type can often be used to represent situations in the real world better than 

the rigorous definitions of crisp set theory. For example, water is to some extent an acid, 

germanium is to some extent a metal, and pharmaceutical drugs are effective to some extent. 

Fuzzy sets can be particularly useful when dealing with imprecise statements, ill-defined data, 

incomplete observations or inexact reasoning. 

There is often fuzziness in our everyday world: varying signal heights in spectra from the 

same substance, or varying patterns in QSAR pattern recognition studies. 

Fuzzy logic is a tool that permits us to manipulate and work with uncertain data. Fuzzy 

logic differs from Boolean or classical logic in that it is many-valued rather than two-valued. 

In classical logic, statements are either true or false - which corresponds to a one or zero 

membership function - whereas fuzzy logic the truth values are graded and lie somewhere 

between true and false. 

Many rules have been developed for dealing with fuzzy logic statements which enable 

the statements to be processed and inferences to be reached from the statements. The outcome 

of fuzzy logic processing is usually a fuzzy set. So that the final answer is one that has 

practical significance, a defuzzification of this fuzzy set is performed to yield a concrete 

single number that can be used directly. 

Such procedures are now regularly performed in a host different appliances including, 

cement kiln control, navigation system for automatic cars, a predictive fuzzy logic controller 

for automatic operation of trains, laboratory water level controllers, controllers for robot arc-

welders, feature-definition controllers for robot vision, graphics controllers for automatic 

police sketchers, and more. 
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HARD AND FUZZY CLUSTERING 
 

A basic problem that arises in a wide variety of fields, including environmental 

chemistry, is the so-called clustering problem [1-3]. Classification is useful, since it allows 

meaningful generalizations to be made about large quantities of data by recognizing among 

them a few basic patterns. It plays a key role in searching for structures in data. 

Each of these structures is called cluster or class. A class is a group of individuals (e.g., 

soil samples or pixels of a image) which resemble each other more strongly, in terms of 

particular properties, than they resemble members of other classes [4]. There are various ways 

in which classification may be carried out. Generally, two types of algorithm are 

distinguished, these being hierarchical and non-hierarchical or relocation clustering. 

Both methods require the calculation of a (dis)similarity matrix. This (dis)similarity 

which is really a measure of the proximity of the pair of objects (points) in the p-dimensional 

characteristic space, defined by the p properties measured for each individual, is usually 

expressed in terms of either the Euclidean or the Mahalanobis distance between the two 

points [1-10]. Either the number of clusters to be generated can be specified in advance (semi-

supervised learning approach), or it may be optimized by the algorithm itself according to 

certain criteria (unsupervised learning approach). 

There are two opposing approaches to hierarchical clustering, these being agglomerative 

and divisive procedures. 

In the agglomerative hierarchical methods, we begin with n items and end with a single 

cluster containing all n items. A divisive hierarchical method starts with a single cluster of n 

items and divides it into two groups. At each step thereafter, one of the groups is divided into 

two subgroups. The ultimate result of a divisive algorithm is n clusters of one item each. The 

results can be shown in a dendrogram. Divisive methods suffer from the same potential 

drawback as the agglomerative methods—namely, once a partition is made, an item cannot be 

moved into another group it does not belong to at the time of the partitioning. 

However, if larger clusters are of interest, then the divisive approach may sometimes be 

preferred over the agglomerative approach, in which the larger clusters are reached only after 

a large number of joinings of smaller groups. 

Divisive algorithms are generally of two classes: monothetic and polythetic. In a 

monothetic approach, the division of a group into two subgroups is based on a single variable, 

whereas, the polythetic approach uses all p variables to make the split. 

If the variables are binary (quantitative variables can be converted to binary variables), 

the monothetic approach can easily be applied. Division into two groups is based on presence 

or absence of an attribute. 

In classical cluster analysis (hard clustering) each object must be assigned to exactly one 

cluster. This is a source of ambiguity and error in cases of outliers or overlapping clusters and 

affords a loss of information. This kind of vagueness and uncertainty can, however, be taken 

into account by using the theory of fuzzy sets as one have already been mentioning above 

[11]. A fuzzy set or a fuzzy subset is a collection of ill-defined and not-distinct objects with 

un-sharp boundaries in which the transition from membership to non-membership in a subset 

of a reference set is gradual rather than abrupt. The theory of fuzzy set is basically a theory of 

graded concepts. It is an extreme generalization of ordinary set theory and is basically 

designed to handle the concept of partial truth. 
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A central concept of fuzzy set theory is that it is permissible for an element to belong 

partly to a fuzzy set. It provides an adequate conceptual framework as well as a mathematical 

tool to model the real world problems which are often obscure and indistinct. 

Most fuzzy clustering algorithms are objective function based [12, 14]: they determine an 

optimal classification by minimizing an objective function. In objective function based 

clustering usually each cluster is represented by a cluster prototype or cluster support. This 

prototype consists of a cluster center (whose name already indicates its meaning) and may be 

some additional information about the size and the shape of the cluster. However, the cluster 

center is computed by the clustering algorithm and may or may not appear in the dataset. The 

degrees of membership to which a given data point belongs to the different clusters are 

computed from the distances of the data point to the cluster centers. 

The closer a data point lies to the center of a cluster, the higher is its degree of 

membership to this cluster. Hence the problem to divide a data set into c clusters can be stated 

as the task to minimize the distances of the data points to the cluster centers, since, of course, 

we want to maximize the degrees of membership. 

Several fuzzy clustering algorithms can be distinguished depending on the additional size 

and shape information contained in the cluster prototypes, the way in which the distances are 

determined, and the restrictions that are placed on the membership degrees. Here we focus on 

the Generalized Fuzzy c-Means Algorithms, as an extension of the well-known Fuzzy c-

Means Algorithms [14, 15], which use only cluster centers and a Euclidean distance function. 

The Gustafson-Kessel Algorithm is also discussed and applied. 

The fuzzy set and corresponding fuzzy logic formula enhance the robustness of the fuzzy 

set clustering for pattern recognition [16-18]. Fuzzy set and fuzzy logic are principal 

constituents of soft computing. In contrast to traditional hard computing, soft computing is 

tolerant to imprecision, uncertainty and partial truth. Soft computing models utilize fuzzy 

logic, artificial neural networks, approximation reasoning, possibility theory, fuzzy clustering, 

and so on, to discover relationships in dynamic, non-linear, complex, and uncertain 

environments. These techniques often borrow the mechanics of cognitive processes and laws 

of nature to provide us with a better understanding of and solution to real world problems 

including, of course, chemistry, environment and related fields [19, 20]. 

 

 

FUZZY C-MEANS ALGORITHM 
 

Fuzzy c-means (FCM) algorithm, also known as Fuzzy ISODATA, was introduced by 

Bezdek [14, 15] as an extension to Dunn's [21] and Ruspini's algorithm [22]. The FCM-based 

algorithms are the most widely used fuzzy clustering algorithms in practice. Let, X = {x1, x2, 

..., xn}, where xiR
p
 present a given set of feature data. The aim of the FCM algorithm is to 

find an optimal fuzzy c-partition and corresponding prototypes minimizing the objective 

(dissimilarity) function formulated usually as 
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where L = {L1, L2, ..., Lc} are the cluster centers and P = (Aij)nxc is a fuzzy partition matrix, in 

which each member indicates the degree of membership between the data vector and the 

cluster j. The values of matrix P should satisfy the following conditions 

 

Aij  [0,1], i = 1, 2, ..., n, j = 1, 2, ..., c (2) 
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,1 i = 1, 2, ..., n (3) 

 

The weighting exponent m (so-called ―fuzzifier‖) is any real number in [1, ∞], which 

determines the fuzziness of the clusters; for m1 the Aij approach 0 or 1, for m the 

memberships tend to be ―totally fuzzy‖ Aij1/c. The most commonly used distance norm is 

the Euclidean distance,
jiij Lxd  , although other distance norms, expressing the similarity 

between any measured data and the prototype, could produce better results [23]. Minimization 

of the objective function J(P,L) is a nonlinear optimization problem, which can be minimized 

with respect to P (assuming the prototypes L to be constant), a fuzzy c-partition of the data 

set, and to L (assuming the memberships P to be constant), a set of c prototypes (2  c < n), 

by applying the following iterative algorithm: 

Step 1: Initialize the membership matrix P with random values so that the conditions (2) 

and (3) are satisfied. Choose appropriate exponent m and the termination criteria. 

Step 2: Calculate the cluster centers L according to the equation: 
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Step 3: Calculate the new distance norms: 

 

jiij Lxd  , i =1,2,...,n, j = 1, 2, ..., c (5) 

 

Step 4: Update the fuzzy partition matrix P: 

 

If ijd  > 0 (indicating that xi  Lj) 
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Else 
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Aij = 1 

 

Step 5: If the termination criterion has been met, stop 

Else go to Step 2 

 

A suitable termination criterion could be to evaluate the objective function (Equation 1) 

and to see whether it is below a certain tolerance value or if its improvement compared to the 

previous iteration is below a certain threshold between 0 and 1 [24]. Also the maximum 

number of iteration cycles can be used as a termination criterion. 

 

 

GENERALIZED FUZZY C-MEANS ALGORITHM 
 

In this section we will recall the so-called Generalized Fuzzy c-Means Algorithm 

(GFCM) [25-28]. This algorithm is a generalization of the Fuzzy c-Means Algorithm 

discussed above. 

In the most general way, a fuzzy clustering algorithm with objective function can be 

formulated as follows: let X = { x
1
, ..., x

n
}   R

p
 be a finite set of feature vectors, where n is 

the number of objects (measurements) and p is the number of the original variables, x
j
 = [x1

j
, 

x2
j
, ..., xp

j
]
T
 and L = (L

1
, L

2
, ... , L

c
) be a c-tuple of prototypes (supports) each of which 

characterizes one of the c clusters composing the cluster substructure of the data set; a 

partition of X into c fuzzy clusters will be performed by minimizing the objective function 

[25-28]. 
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where P = {A1, ..., Ac } is the fuzzy partition, Ai(x
j
)  [0,1] represents the membership degree 

of feature point x
j
 to cluster Ai, d(x

j
, L

i
) is the distance from a feature point x

j
 to the prototype 

of cluster Ai, defined by the Euclidean distance norm 
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The optimal fuzzy set will be determined by using an iterative method where J is 

successively minimized with respect to A and L. 

Supposing that L is given, the minimum of the function J(•,L) is obtained for: 
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where C is a fuzzy set from X and 
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It is easy to observe that C(x
j
) ≤ 1, j = 1, 2, …, n. 

For a given P, the minimum of the function J(P,•) is obtained for: 
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 (11) 

 

The above formula allows one to compute each of the p components of L
i
 (the center of 

the cluster i). Elements with a high degree of membership in cluster i (i.e., close to cluster i'c 

center) will contribute significantly to this weighted average, while elements with a low 

degree of membership (far from the center) will contribute almost nothing. 

A cluster can have different shapes, depending on the choice of prototypes. The 

calculation of the membership values is dependent on the definition of the distance measure. 

According to the choice of prototypes and the definition of the distance measure, different 

fuzzy clustering algorithms are obtained. If the prototype of a cluster is a point – the cluster 

center – it will give spherical clusters, if the prototype is a line it will give tubular clusters 

[25-35], and so on. 

The clusters are generally of unequal size. If we consider that a small cluster is in then 

neighbourhood of a greater one, than some points of the greater cluster would be ―captured‖ 

by its smaller neighbour. This situation may be avoided if a data dependent metric is used. An 

adaptive may be induced by the radius or by the diameter of every fuzzy class Ai. The radius 

ri of the fuzzy class Ai is defined by 

 

ri = max di (x, L
i
) = max Ai(x)d(x,L

i
) (12) 

 

Now, we may define the local adaptive distance, dia, where 
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CLUSTER VALIDITY 
 

Cluster validation refers to procedures that evaluate the clustering results in a quantitative 

and objective function. Some kinds of validity indices are usually adopted to measure the 

adequacy of a structure recovered through cluster analysis [35]. 

Complimentary Contributor Copy



Costel Sârbu 40 

Determining the correct number of clusters in a data set has been, by far, the most 

common application of cluster validity. 

There are two approaches: The use of validity functionals, which is a post factum 

method, and the use of hierarchical algorithms, which produce not only the optimal number of 

classes (based on the needed granularity) but also a binary hierarchy that shows the existing 

relationships between the classes. 

In the case of fuzzy clustering algorithms, some validity indices such as partition 

coefficient, partition entropy and Backer-Jain Index use only the information of fuzzy 

membership degrees to evaluate clustering results [35, 36]. Another category consists of 

validity indices (separation index, hypervolume and average partition density) that make use 

of not only the fuzzy membership degrees but also the structure of the data [35]. 

Considering the results obtained in our studies we appreciate that the four validity indices 

defined below are quite enough to characterize and compare the quality of the partition 

produced by the used fuzzy clustering methods. 

Bezdek designed the partition coefficient (PC) to measure the amount of ―overlap‖ 

between clusters. He defined the partition coefficient (PC) as follows [37]: 
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where Ai(x
j
) is the membership of data point j in cluster i. 

If there is a choice between several partitions, the maximum partition coefficient yields 

the partition with the ―most unambiguous assignment‖ [35]. 

The next validity measure is based on Shannon‘s information theory and is very similar 

to the partition coefficient. The partition entropy (PE) about the clustering of data is estimated 

by the well-known relation: 
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It is easy to observe that a good partition corresponds to small entropy and vice-versa. 

Backer-Jain Index (IBJ) is based also only on membership degrees and can be computed 

with the following relation 
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with IBJ = 0 for a uniform fuzzy partition and IBJ = 1 for a crisp partition. 

The last index used in our studies, namely fuzzy hypervolume (FHV), is simply defined 

by 

 





c

i

iCFHV
1

)det(

, (17) 

Complimentary Contributor Copy



Fuzzy Clustering of Environmental Data 41 

where Ci is the fuzzy covariance matrix of cluster Ai (see below Equation 23). 

 

 

FUZZY DIVISIVE HIERARCHICAL CLUSTERING 
 

Using the FCM algorithm we may determine a binary fuzzy partition {A1, A2} of the data 

set X. If this partition describes real clusters, we denote P
1
 = {A1, A2}. Using the GFCM 

algorithm for two subclusters (n = 2) we may determine a binary fuzzy partition for each Ai of 

P
1
. If this partition of Ai describes real clusters, these clusters will be attached to a new fuzzy 

partition, P
2
. Otherwise, Ai will remain undivided. The cluster Ai will be marked and will be 

allocated to the partition P
2
. The unmarked cluster members of P

2
 will follow the same 

procedure. The divisive procedure will stop when all the clusters of the current partition P
l
 are 

marked, that is there are no more real clusters. This procedure is a divisive one and affords us 

a tool to perform a fuzzy hierarchy. A polarization measure of a fuzzy partition is used to 

appreciate the quality of the partition [26, 28]. We will consider that the binary fuzzy partition 

P = {C1,C2) of C describes real clusters if the polarization degree R(P) of P is greater than a 

prescribed threshold t and for every Ci exists an x from X that Ci(x) > 0.5. The polarization 

degree of P may be defined by 
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If the membership degree C1(x
j
) and C2(x

j
) are polarized towards the extreme values 0 

and C(x
j
) then the R(P) value is high. If the membership degree C1(x

j
) and C2(x

j
) are near 

equal then R(P) is low. The polarization is associated with the possibility to have a cluster 

structure in data set. 

In conclusion the binary divisive algorithm is an unsupervised procedure and may be 

used to obtain the cluster structure of the data set when the number of cluster is unknown. 

 

 

THE GUSTAFSON-KESSEL ALGORITHM 
 

The Gustafson-Kessel Algorithm (GK) generates a fuzzy partition that provides a degree 

of membership of each data point to a given cluster [38, 39]. To detect clusters of different 

geometrical shapes in a dataset, this method introduces an adaptive distance norm for each 

cluster. Each cluster Ai has its own
 
norm-inducing matrix Mi, which affects the distance norm 

which takes the following expression. 
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Use of the matrix Mi makes it possible for each cluster to adapt the distance norm to the 

geometrical structure of the data at each iteration. Based on the norm-inducing matrices, the 

objective of the GK method is obtained by minimizing the function J, 
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where M = (M1, M2, …, Mc) is a c-tuple of the norm-inducing matrices. 

To obtain a feasible solution by minimizing Equation (20), the additional constraint is 

required for Mi. 

 

det (Mi) = ρi, ρi > 0, 1 ≤ i ≤ c (21) 

 

where Pi is a cluster volume for each cluster. Equation (21) guarantees that Mi is positive-

definite, indicating that Mi can be varied
 
to find the optimal shape of cluster with its volume 

fixed. Using the iterative method, minimization of Equation (20) with respect to Mi produces 

the following equation: 

 

Mi = [ρidet (Ci)]
1/p

Ci
-1

, (22) 

 

where 
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is the fuzzy covariance matrix of cluster Ai. The set of fuzzy covariance matrices is 

represented as a c-tuple of C = (C1, C2, ..., Cc). There is no general agreement on what value 

to use for Pi; without any prior knowledge, a rule of thumb that many investigators use is Pi = 

1 in practice [40]. 

 

 

ASSOCIATIVE SIMULTANEOUS FUZZY C-MEANS ALGORITHM 
 

Let X = {x
1
, ..., x

n
}   R

d
 be the set of objects to be classified. A characteristic may be 

specified by its values corresponded to the n objects. 

So, we may say that Y = {y
1
, ..., y

d
}   R

n
 is the set of characteristics. y j

k
 is the value of 

the characteristic k with respect to the object j, so we may write y xj

k

k

j .  
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Let P be a fuzzy partition of the fuzzy set C of objects and Q be a fuzzy partition of the 

fuzzy set D of characteristics. The problem of the cross-classification (or simultaneous 

classification) is to determine the pair (P, Q) which optimizes a certain criterion function. 

By starting with an initial partition P
0
 of C and an initial partition Q

0
 of D, we will obtain 

a new partition P
1
. 

The pair (P
1
, Q

0
) allows us to determine a new partition Q

1
 of the characteristics. The 

algorithm consists in producing a sequence (P
k
, Q

k
) of pairs of partitions, starting from the 

initial pair (P
0
, Q

0
), in the following steps: 

 

(P
k
, Q

k
)   (P

k+1
, Q

k
) 

(P
k+1

, Q
k
)   (P

k+1
, Q

k+1
) 

 

The rationale of the hierarchical cross-classification method essentially supposes the 

splitting of the sets X and Y in two subclasses. The obtained classes are alternatively divided 

in two subclasses, and so on. 

The two hierarchies may be represented by the same tree, having in each node a pair (C, 

D), where C is a fuzzy set of objects and D is a fuzzy set of characteristics. 

As a first step we propose ourselves to simultaneously determine the fuzzy partitions (as 

a particular case, the binary fuzzy partitions) of the classes C and D, so that the two partitions 

should be highly correlated. With the GFCM algorithm, we will determine a fuzzy partition P 

= {A1, ..., An} of the class C, using the original characteristics. 

In order to classify the characteristics, we will compute their values for the classes Ai, i = 

1, ..., c. The value y i
k

 of the characteristic k with respect to the class Ai is defined as: 
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Thus, from the original dn-dimensional characteristics we computed d new c-dimensional 

characteristics which are conditioned by the classes Ai, i = 1, ..., c. We may admit that these 

new characteristics do not describe objects, but they characterize the classes Ai. 

Let us consider now the set Y y y d { , }1   of the modified characteristics. We define 

the fuzzy set D  on Y  given by 

 

D y D y k dk k( ) ( ), , , .  1
 (25) 

 

The way the set Y  has been obtained lets us to conclude that if we will obtain an optimal 

partition of the fuzzy set D, this partition will be highly correlated to the optimal partition of 

the class C. With the GFCM algorithm we will determine a fuzzy partition Q = {B1, ..., Bc} of 

the class D, by using the characteristics given by the relation (24). We may now characterize 

the objects in X with respect to the classes of properties Bi, i = 1, ..., c. The value xi
j
 of the 

object j with respect to the class Bi is defined as: 

 

Complimentary Contributor Copy



Costel Sârbu 44 





d

k

j

k

k

i

j

i .n,,j;c,,i,x)y(Bx
1

11 
 (26) 

 

Thus, from the original nd-dimensional objects we have computed n new c-dimensional 

objects, which correspond to the classes of characteristics Bi, i = 1, ..., c. 

Let us consider now the set }x,x{X n1  of the modified characteristics. We define 

the fuzzy set C  on X  given by 

 

.n,,j),x(C)x(C jj 1
 (27) 

 

With the GFCM algorithm we will determine a fuzzy partition P' = {A'1, ..., A'c}, of the 

class C by using the objects given by the relation (26). The process continues until two 

successive partitions of objects (or characteristics) are closed enough to each other. 

Considering P = {A1, ..., Ac} is the fuzzy c-partition of X and Q = {B1, ..., Bc} is the fuzzy 

c-partition of Y produced after this step of our algorithm. Let us remark that we made no 

explicit association of a fuzzy set Ai on X with a fuzzy set Bj on Y, i.e., what is the fuzzy set Bj 

that best describes the essential characteristics corresponding to the fuzzy set Ai. It only 

supposes that Ai is to be associated with Bi, and this is not always true. 

Let us denote by Sc the set of all permutations on {1, ..., c}. We wish to build that 

permutation s  Sc which best associates the fuzzy set Ai with the fuzzy set Bs(i), for every i 

= 1, ..., c. Our aim is to build some function J: Sc   R so that the optimal permutation s is 

that which maximizes this function. Let us consider the matrix Z  R
c,c

 given by 
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Let us remark the similarity between the way we compute the matrix Z in (28) and the 

way we computed the new objects and characteristics in relations (26) and (27). 

The experience enables us to consider the function J as given by 
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 (29) 

 

Thus, supposing that the permutation s maximizes the function J defined above, we will 

be able to associate the fuzzy set Ai with the fuzzy set Bs(i), i = 1, ..., c. As we will see in the 

comparative study below, this association is more natural than the association of Ai with Bi, i 

= 1, ..., c. Based on these considerations we are able to introduce the following algorithm, that 

we have called the Associative Simultaneous Fuzzy c-Means Algorithm (ASF) [41, 42]: 

 

 S1: Set l = 0. With the GFCM algorithm we determine a fuzzy c-partition P
(l)

 of the 

class C by using the initial objects. 
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 S2: With the GFCM algorithm we determine a fuzzy c-partition Q
(l)

 of the class D by 

using the characteristics defined in (26). 

 S3: With the GFCM algorithm we determine a fuzzy c-partition P
(l+1)

 of the class C 

by using the objects defined in (26). 

 S4: If the partitions P
(l)

 and P
(l+1)

 are close enough, that is if 

 

||P
(l+1)

 - P
(l)

 || < , 

 

where  is a preset value, then go to S5, else increase l by 1 and go to S2. 

 

 S5: Compute the permutation s that maximizes the function J given in relation (29). 

 S6: Assign the fuzzy sets Bi, so that Bs(i) becomes Bi, i = 1, ..., c. 

 

Let us remark now that, after the steps S5 and S6, we are able to associate the fuzzy set Ai 

with the fuzzy set Bi, i = 1, ..., c. 

 

 

FUZZY MODELING OF ENVIRONMENTAL DATA 
 

Different fuzzy clustering algorithms mentioned above were successfully applied to the 

study of several German and Romanian natural mineral waters using data obtained from 

samples collected from different sampling sites covering, for example, a large percentage of 

the Romanian natural mineral waters. The characteristic clustering technique produces fuzzy 

partitions of the mineral water properties involved and thus is a useful tool for studying 

(dis)similarities between different ions (i.e., speciation). 

The cross-classification algorithm provided not only a fuzzy partition of the mineral 

waters analysed, but also a fuzzy partition of the characteristics considered. In this way it is 

possible to identify which ions and other physico-chemical features are responsible for the 

similarities or differences observed between different groups of mineral waters [43]. 

Various clustering procedures, - hierarchical and non-hierarchical crisp and fuzzy 

clustering, fuzzy cross-clustering and PCA (varimax rotation) - combined with receptor 

modeling were applied to a data set consisting of wet deposition loads of major ions from five 

sampling sites in Central Austria collected in a period of 10 years (1984-1993). 

The data classification with respect to the sampling sites as objects has shown that a 

distinct separation between the northern Alpine rim and in the inner Alpine region is 

achieved. This indicates the role of geographical disposition of the sampling sites [44]. 

In a similar way fuzzy cluster analysis and fuzzy recognition were successfully used to 

model a large set of data from the Min River (China) [45]. 

The fuzzy analysis was employed as graphical tool to compare ecosystems with respect 

to their pollution [46], to identify individual aerosol particles containing Cr, Pb, and Zn above 

the North Sea [47] and at a rural site in Central Europe during winter [48], characterisation of 

particulate matter from the Kara Sea using electron probe X-ray micro analysis [49], 

correlation between element concentrations in basal till and the uppermost layers of mineral 

soil at forest sites in Finland [50] or heavy metals in urban soil [51], qualitative identification 

of trace elements in clinker [52], for the prediction of petrophysical rock parameters [53] and 
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to process on-line data streaming from five monitoring stations in Chile for forecasting SO2 

levels [54] or data processing in on-line laser mass spectrometry of inorganic, organic or 

biological airborne particles [55] and, finally, also for evaluation of PCDD/F emissions 

during solid waste combustion [56]. 

 

 

CHARACTERIZATION AND CLUSTERING OF SOIL DATA 
 

The soil data collection was performed in the northern part of Romanian Carpathians 

Mountains: the western part of Bistrita Mountains (b; 1,..., 36), the north-western part of 

Ignis-Oas Mountains (i; 37,...,86) and Maramures (m; 87,...,125) area, according to the 

standardized methods for sampling, sample preparation and chemical analysis of soils. 

Thirteen different soil metal ions were checked (lead, copper, manganese, zinc, nickel, 

cobalt, chromium, cadmium, calcium, magnesium, potassium, iron and aluminum). The 

standardized flame absorption spectrophotometric method for the following chemical 

elements Fe, Al, Ca, Mg, K, Cu, Pb, Mn, Zn and spectrophotometry with atomization in the 

graphite owen for Cd and Cr were used. The statistical results (central location and spread of 

data) obtained from the initial data set (125 samples and 13 ion concentrations) are presented 

Table 1. The hard partition corresponding to the fuzzy successive partition of the 125 soil 

samples produced by using fuzzy divisive hierarchical cross-clustering algorithm (autoscaled 

data) are presented in Figure 1. 

 

Table 1. Table of statistics concerning the concentration (mg/kg) of samples 

 

Metal Mean Median Minimum Maximum S. D. Skewness Kurtosis 

Pb 68.15 41.01 12.38 830.2 104.31 4.89 28.61 

Cu 10.07 8.88 1.22 29.1 5.41 1.19 1.38 

Mn 472 299 13.23 1506 386 0.74 -0.56 

Zn 69.03 63.78 1.08 252.1 43.68 1.10 2.54 

Ni 24.38 17.08 1.32 118.5 24.04 2.43 5.90 

Co 10.10 8.99 0.30 39.9 8.43 1.47 2.19 

Cr 14.28 10.97 1.89 62.3 11.32 2.57 7.47 

Cd 0.36 0.10 0.10 2.4 0.42 2.22 5.76 

Ca 929 262 34.71 6040 1396 2.17 4.26 

Mg 5094 2703 100 29447 6546 2.58 6.20 

K 1286 906 259 9860 1469 3.85 15.81 

Fe 39836 30282 100 533359 49092 8.33 83.47 

Al 30022 24926 1461 87807 19694 1.14 1.09 

 

The hard partition is obtained by defuzzification of fuzzy partition. The samples, in our 

case, are assigned to the cluster with the highest membership degree. In Figure 2 are depicted 

the results obtained by applying horizontal fuzzy clustering with a predefined number of three 

clusters according to the location of samples. 

Comparing the partitions in Figure 1 and 2 and the membership degrees (MDs) to the 

final fuzzy partition obtained by both fuzzy procedures one can observe that the results are 

unsatisfactory i.e., the partitions obtained are not in a good agreement with the nature of 
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samples. However, the samples from Ignis-Oas area better separated by fuzzy hierarchical 

cross-clustering (cluster A11) and the samples from Maramures and Bistrita area form two 

clusters and seem to be the most heterogeneous group. 

By applying the fuzzy Gustafson-Kessel algorithms different and interesting results were 

obtained. The results are shown in Figure 3 and 4 and illustrate a better separation of samples 

especially in the case of fuzzy hierarchical clustering, in a very good agreement to the 

location of sampling scenario. 

 

 

Figure 1. The hard partition tree corresponding to the fuzzy hierarchical cross-clustering of the 125 soil 

samples (Hierarchical GFCM). 

 

Figure 2. The hard partition tree corresponding to the fuzzy horizontal clustering of the 125 soil 

samples (FCM). 

 

A 

1,...,36, 

37,...,86, 

A1 

1, ...,13, 17, ...,19, 23, ..., 25, 31, ... 

35, 

37, ..., 63, 68, ..., 72, 83, ..., 86  

97, 98, 103, ..., 112, 114, 

..., 117 121 122

A2 

14, ..., 16, 20, ..., 22, 26, ..., 30, 36, 

64, ..., 67, 73, ..., 82, 87, ..., 

96, 99, ..., 102, 108, 113, 

118, ..., 120, 124, 125 

A11 

25, 37, ..., 48, 52, 
..., 56, 58, ..., 63, 

68, ..., 72 83, ..., 86 

98, 107 

A12 

1, ..., 13, 17, ..., 

19, 23, 24, 31, ..., 

35, 49, ..., 51, 
57, 97, 103 , 

..., 106, 109, 

..., 112, 114, 

..., 117 121 

122 

Al 

A21 

14, ..., 16, 20, ..., 22, 

26, 36, 64, ...,  67, 
73, ..., 82, 87, ..., 

90, 99, 100, ..., 

102, 108, 113, 

118, 119 

A22 

27, ..., 30, 

 91, ..., 96 

120, 124, 

125 

 

A 

1,...,36, 

37,...,86, 

A2 

1, ..., 17, ..., 23, 24, 31, ..., 

35, 43, 45, 48, ..., 52, 
57, ..., 59, 61, 62, 68, 
..., 71, 97, 103, ..., 

106, 109, ...., 112, 

114, ..., 117, 121, 

..., 123 

A3 

29, 30, 91, ..., 

96, 125 

A1 

14, ..., 16, 20, ..., 22, 25, ..., 

28, 36, 37, ...,  42, 44, 46, 
47, 53, ..., 56, 60, 63, ..., 
67, 72, ..., 90, 98, ..., 

102, 107, 108, 113, 

118, ..., 120, 124 
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Figure 3. The hard partition tree corresponding to the fuzzy horizontal clustering of the 125 soil 

samples (GK). 

 

Table 2. The cluster validity indices values 

 

Cluster 

Validity 

Index 

Horizontal 

(three defined 

clusters) 

Hierarchical 

GFCM GK GFCM GK 

PC 0.530 0.561 0.371 0.372 

PE 0.768 0.730 1.15 1.29 

IBJ 0.570 0.595 0.444 0.588 

FHV 8.8x10
25 

4.6x10
24 

2.27x10
27 

1.47x10
24 

 

This statement is well supported by a two dimensional and a three dimensional 

representations of the membership degrees and by the values of cluster validity indices 

depicted in Table 2; higher values for partition coefficient and Backer-Jain Index, and lower 

values for partition entropy and fuzzy hypervolume in the case of the two both GK 

procedures (horizontal and hierarchical) by comparing to GFCM counterparts. 

In addition, the coordinates of the prototypes (fuzzy means of each ion concentration and 

each partition) permit the identification of the most characteristic concentrations of chemical 

elements for each fuzzy partition, namely the sampling location. 

By comparison of results presented in Table 3 it is easy to observe, for example, that the 

concentration of lead and cadmium is highest for the samples originated from Ignis-Oas area, 

(the closest to the metallurgical plant) and lowest concentrations characterize the soil samples 

originated from Maramures and Bistrita areas (more or less close to the point source). 

 

 

 

 

A 

1,...,36, 

37,...,86, 

A2 

2, 4, ..., 6, 9, ..., 11, 23, 24, 

31, ..., 35, 37, ..., 63, 68, 
..., 74,81, ..., 86, 104, 

105, 121, 122 

A3 

27, ..., 30, 

91, ..., 

96, 120, 

124, 125 

A1 

1, 3, 7, 8, 12, ..., 22, 25, 

26,36, 56, 64, ..., 67, 
75, ...,80, 87, ..., 90, 

97, ..., 103, 106, ..., 

119, 123 
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Figure 4. The hard partition corresponding to the fuzzy hierarchical clustering of the 125 soil  

samples (GK). 

 

FUZZY CLUSTERING OF THE GRASS AND SOIL SAMPLES 
 

In this example we will analyze a set of 35 grass and soil samples discussed in [57] and 

depicted in Table 4. In order to apply the fuzzy algorithms presented above to classify the 

grass and soil samples, we used the concentration of 37 chemical elements (Na, Mg, Al, K, 

Sc, Ca, Cr, Ti, V, Mn, Ni, Fe, Co, Zn, Se, As, Br, Sr, Rb, Mo, Ag, Sb, I, Ba, Cs, La, Ce, Eu, 

Sm, Tb, Dy, Yb, Hf, Ta, W, Th and U) determined by conventional and epithermal neutron 

activation analysis at IBR-2 pulsed fast reactor FLNP JINR (Dubna, Russia) [58]. 

The hard partition corresponding to the fuzzy successive partition of the 35 grass and soil 

samples produced by using the autoscaled data are presented in Table 5. 

Comparing the partitions in Table 5 and the membership degrees (MDs) to the final fuzzy 

partition obtained using the hierarchical and horizontal fuzzy clustering algorithms (Table 6), 

we can observe that the results are in a good agreement with the nature and the protocol of 

samples in Table 4. 
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Table 3. Fuzzy mean of metal ions concentration corresponding  

to each fuzzy partition 

 

Fuzzy 

partition 
Pb Cu Mn Zn Ni Co Cr Cd Ca Mg K Fe Al 

A111 83.05 5.73 124.06 28.21 8.17 2.74 8.12 0.41 472 2026 1054 22862 14510 

A112 46.13 10.07 269.13 41.26 16.02 4.61 12.64 0.19 316 2835 1146 120977 19046 

A121 245.6 9.44 361.73 86.92 15.99 7.43 10.06 0.95 672 2500 742 30340 36433 

A122 44.87 7.97 606.08 72.04 16.95 10.78 9.41 0.35 822 2566 697 35044 47481 

A21 40.24 14.98 590.57 85.03 33.96 12.96 18.71 0.19 770 6830 1267 45406 26112 

A22 28.69 16.20 900.59 134.35 98.45 32.37 46.58 0.16 3031 25854 5967 61290 39473 

 

Table 4. Legend to the tables and figures - sample number and description (distance 

from the point source) 

 

Nr. 

crit. 
Location

1 Nr. 

crit. 
Location

1 Nr. 

crit. 
Location

1 Nr. 

crit. 
Location

1 Nr. 

crit. 
Location

1 

1 200mP 8 500mS 15 1300mE 22 200mP 29 300mE 

2 200mP 9 800mS 16 grass blank
2 

23 200mP 30 400mE 

3 200mP 10 1300mS 17 0mP 24 300mS 31 500mE 

4 200mP 11 300mE 18 0mP 25 400mS 32 800mE 

5 200mP 12 400mE 19 200mP 26 500mS 33 1300mE 

6 300mS 13 500mE 20 200mP 27 800mS 34 soil blank
2 

7 400mS 14 800mE 21 200mP 28 1300mS 35 industrial mean 
1
P - plant; S - Southern direction; E - Eastern direction; industrial mean- mean of all industrial samples. 

2
blank values provided from grass and soil samples collected in Ustka clean region, Poland. 

 

Table 5. The hard partition corresponding to the fuzzy  

hierarchical and horizontal partition of the  

35 grass and soil samples 

 

Final 

hierarchical 

fuzzy partition 

Grass and soil samples 

Fuzzy horizontal 

clustering with 

four predefined 

classes 

Grass and soil samples 

A11 20 21 26 27 31 32 34 A1 17 18 19 29 30 33 

A1211 1 2 5 7 A2 20 21 26 27 28 31 32 

A1212 3 4 6 13 14 15 A3 

1 2 3 4 5 6 7 8 9 10 11 12 

13 14 15 16 

A22 8 9 10 11 12 16 A4 22 23 24 25 35 

A21 17 18 19 28 29 30 33   

A22 22 23 24 25 35   

 

Thus, for example, it appears clear that the majority of the grass samples form a well 

defined group. Also, it is interesting to observe that grass blank is very similar with grass 

samples having a membership degree higher than 0.5 (0.612) to the well-defined class of 

grass samples obtained by fuzzy horizontal clustering with four predefined classes.  
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This finding supports the idea that the concentrations of the considered chemical 

elements are very similar in both grass samples and ―grass blank‖. Much more, the 

membership degrees in Table 6 illustrates a large dissimilarity between the grass samples and 

soil samples and also between the soil samples.  

In addition we have to observe that ―soil blank‖ sample belong to the grass samples class 

(MD = 0.416) in the case of fuzzy horizontal clustering, and with a lower membership degree 

(0.351) to soil class in the case of fuzzy hierarchical clustering. 

In order to develop a classification of characteristics (element concentrations) we applied 

the FHiCC procedure to the 37 chemical elements concentrations obtained for grass and soil 

samples. The characteristics clustering with the 37 elements concentrations and the 35 grass 

and soil samples, with autoscaling of data, gave the final partition presented in Table 7. The 

first chemical elements separated from the others are Al and Ca, followed by K and Fe, and 

then by Na, Mg, Zn and Ba. 

The cluster containing the other elements (Sc, Cr, Ti, V, Mn, Ni, Co, Se, As, Br, Sr, Rb, 

Mo, Ag, Sb, I, Cs, La, Ce, Eu, Sm, Tb, Dy, Yb, Hf, Ta, W, Th and U) is not subjected to any 

more splitting (their membership degrees, MD, to this cluster are all near 1). 

The horizontal characteristics clustering also with autoscaling of data, (see also Table 7) 

illustrates the same aspect i.e., the high similarity of the last chemical elements and a large 

dissimilarity among the first eight chemical elements (Al, Ca, K, fe, Na, Mg, Zn, and Ba). It 

is interesting to remark that all the divisions in Table 7 are clear-cut, the membership degrees 

to the different final partition are in the large majority of cases near 1 or 0. 

 

Table 6. The results of the hierarchical and horizontal (four predefined classes) fuzzy 

clustering of the grass and soil samples 

 

Sample Final hierarchical fuzzy partition 
Fuzzy horizontal clustering with 

four predefined classes 

 A11 A1211 A1212 A122 A21 A22 A1 A2 A3 A4 

1 0.058 0.636 0.128 0.149 0.019 0.008 0.025 0.050 0.913 0.011 

2 0.043 0.643 0.167 0.118 0.019 0.008 0.019 0.037 0.934 0.008 

3 0.031 0.421 0.425 0.090 0.021 0.010 0.014 0.027 0.951 0.006 

4 0.016 0.327 0.550 0.082 0.016 0.007 0.007 0.014 0.975 0.003 

5 0.073 0.353 0.265 0.265 0.029 0.014 0.034 0.065 0.884 0.016 

6 0.028 0.209 0.596 0.132 0.023 0.011 0.013 0.024 0.955 0.006 

7 0.078 0.381 0.230 0.296 0.010 0.004 0.028 0.064 0.895 0.011 

8 0.071 0.229 0.236 0.426 0.024 0.011 0.031 0.063 0.889 0.014 

9 0.084 0.055 0.076 0.746 0.025 0.012 0.035 0.075 0.872 0.016 

10 0.054 0.073 0.125 0.712 0.023 0.010 0.023 0.049 0.915 0.010 

11 0.064 0.120 0.230 0.537 0.032 0.015 0.030 0.058 0.896 0.014 

12 0.291 0.101 0.105 0.381 0.082 0.038 0.125 0.252 0.563 0.057 

13 0.024 0.129 0.436 0.384 0.020 0.009 0.010 0.022 0.961 0.005 

14 0.045 0.144 0.377 0.388 0.029 0.014 0.021 0.041 0.926 0.010 

15 0.032 0.139 0.529 0.261 0.025 0.012 0.015 0.029 0.947 0.007 
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Table 6. (Continued) 

 

Sample Final hierarchical fuzzy partition 
Fuzzy horizontal clustering with 

four predefined classes 

 A11 A1211 A1212 A122 A21 A22 A1 A2 A3 A4 

16 0.256 0.109 0.115 0.413 0.071 0.033 0.111 0.222 0.612 0.052 

17 0.244 0.032 0.028 0.058 0.426 0.210 0.400 0.286 0.138 0.174 

18 0.274 0.049 0.044 0.088 0.343 0.200 0.343 0.280 0.191 0.184 

19 0.217 0.022 0.020 0.042 0.506 0.191 0.444 0.285 0.105 0.164 

20 0.606 0.019 0.017 0.039 0.247 0.068 0.114 0.763 0.089 0.032 

21 0.494 0.039 0.037 0.087 0.247 0.094 0.196 0.545 0.181 0.075 

22 0.119 0.019 0.017 0.035 0.202 0.606 0.195 0.113 0.065 0.625 

23 0.123 0.019 0.017 0.035 0.222 0.581 0.219 0.130 0.074 0.576 

24 0.066 0.008 0.007 0.015 0.123 0.778 0.117 0.054 0.024 0.804 

25 0.159 0.024 0.022 0.044 0.339 0.410 0.317 0.210 0.115 0.356 

26 0.446 0.035 0.030 0.066 0.326 0.095 0.273 0.498 0.147 0.080 

27 0.528 0.035 0.031 0.070 0.250 0.083 0.183 0.597 0.157 0.061 

28 0.292 0.047 0.043 0.089 0.332 0.194 0.312 0.317 0.195 0.175 

29 0.199 0.031 0.029 0.060 0.354 0.325 0.324 0.246 0.142 0.285 

30 0.188 0.014 0.012 0.025 0.631 0.128 0.542 0.275 0.069 0.113 

31 0.578 0.048 0.043 0.100 0.170 0.058 0.154 0.578 0.213 0.053 

32 0.348 0.040 0.038 0.080 0.335 0.157 0.286 0.400 0.178 0.133 

33 0.170 0.022 0.021 0.043 0.379 0.363 0.340 0.236 0.114 0.308 

34 0.351 0.109 0.106 0.215 0.146 0.070 0.187 0.308 0.416 0.087 

35 0.217 0.048 0.046 0.092 0.262 0.332 0.259 0.217 0.188 0.333 

 

Table 7. The results of the hierarchical and horizontal (three predefined classes) fuzzy 

clustering of characteristics (element concentrations) 

 

E Hierarchical clustering of characteristics (element concentrations) Horizontal clustering 

 A11 A12 A21 A2211 A2212 A22211 A222112 A22212 A2222 A1 A2 A3 

Na 0.032 0.013 0.186 0.713 0.000 0.007 0.007 0.015 0.025 0.111 0.018 0.871 

Mg 0.059 0.022 0.310 0.000 0.542 0.009 0.008 0.017 0.030 0.196 0.027 0.776 

Al 0.404 0.117 0.403 0.022 0.025 0.004 0.003 0.007 0.013 0.828 0.044 0.128 

K 0.001 0.746 0.140 0.029 0.031 0.007 0.006 0.013 0.025 0.002 0.996 0.002 

Sc 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.996 0.000 0.000 0.999 

Ca  0.749 0.042 0.132 0.020 0.023 0.004 0.004 0.008 0.017 0.560 0.203 0.237 

Cr 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.001 0.993 0.000 0.000 0.999 

Ti 0.001 0.000 0.005 0.023 0.014 0.000 0.000 0.606 0.348 0.003 0.001 0.996 

V 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.007 0.992 0.000 0.000 0.999 

Mn 0.000 0.000 0.000 0.003 0.002 0.091 0.406 0.049 0.446 0.000 0.000 0.999 

Ni 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.998 0.000 0.000 0.999 

Fe 0.317 0.079 0.558 0.013 0.016 0.002 0.002 0.004 0.008 0.805 0.032 0.162 

Co 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.997 0.000 0.000 0.999 

Zn 0.000 0.000 0.002 0.011 0.007 0.666 0.000 0.044 0.269 0.001 0.000 0.999 

Se 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.997 0.000 0.000 0.999 

As 0.000 0.000 0.000 0.000 0.000 0.001 0.006 0.001 0.990 0.000 0.000 0.999 
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E Hierarchical clustering of characteristics (element concentrations) Horizontal clustering 

 A11 A12 A21 A2211 A2212 A22211 A222112 A22212 A2222 A1 A2 A3 

Br 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.997 0.000 0.000 0.999 

Sr 0.000 0.000 0.000 0.000 0.000 0.019 0.095 0.017 0.866 0.000 0.000 0.999 

Rb 0.000 0.000 0.000 0.000 0.000 0.002 0.007 0.002 0.989 0.000 0.000 0.999 

Mo 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.997 0.000 0.000 0.999 

Ag 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.997 0.000 0.000 0.999 

Sb 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.997 0.000 0.000 0.999 

I 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.997 0.000 0.000 0.999 

Ba 0.000 0.000 0.000 0.003 0.002 0.043 0.536 0.052 0.363 0.000 0.000 0.999 

Cs 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.997 0.000 0.000 0.999 

La 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.998 0.000 0.000 0.999 

Ce 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.998 0.000 0.000 0.999 

Eu 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.996 0.000 0.000 0.999 

Sm 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.997 0.000 0.000 0.999 

Tb 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.997 0.000 0.000 0.999 

Dy 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.997 0.000 0.000 0.999 

Yb 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.996 0.000 0.000 0.999 

Hf 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.997 0.000 0.000 0.999 

Ta 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.996 0.000 0.000 0.999 

W 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.997 0.000 0.000 0.999 

Th 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.997 0.000 0.000 0.999 

U 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.997 0.000 0.000 0.999 

 

Table 8. The cross-clustering of the grass and soil samples (a) and chemical elements 

determined (b) produced with autoscaled data 

 

Fuzzy class Grass and soil sample (a) and elements associated (b) 

A11 
(a) 20 21 26 27 31 32 

(b) Mg, Sc, Cr, V, Mn, Ni, Fe, Sr, Sb, Cs, La, Ce, Sm, Tb, Dy, Yb, Ta, Th 

A12 
(a) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 34 

(b) Na, Al, Ba 

A21 
(a) 17 18 19 28 29 30 33 

(b) Ca, Ti, Co, Zn, Se, As, Rb, Mo, I, Eu, Hf, W, U 

A22 
22 23 24 25 35 

(b) K, Br, Ag 

 

The clustering hierarchy produced by applying cross-clustering algorithm for objects (35 

grass and soil samples (a)) and for characteristics (37 elements concentrations (b)) using 

again autoscaled data is presented in Table 8. The partitioning of the grass and soil samples in 

different classes is very similar with those obtained above by the usual fuzzy clustering 

algorithm. What is different is the partitioning of the chemical elements and their association 

with different grass and soil samples. The majority of chemical elements are associated to the 

class A11 which includes only a part of soil samples namely 20, 21, 26, 27, 31 and 32. The 

fuzzy class A12 contains all the grass samples including also the grass and soil blank samples 

(16 and 34) and the chemical elements associated are Na, Al and barium. This is a very 

interesting finding because it appears clearly that grass is mainly much lower contaminated 
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by the phosphatic fertilizer plant. The third class A21 including the other soil samples (17, 18, 

19, 28, 29, 30 and 33) have similar concentrations for the following chemical elements: Ca, 

Ti, Co, Zn, Se, As, Rb, Mo, I, Eu, Hf, W and uranium. The soil samples 22, 23, 24, 25 and 35 

from class A22 appear to have similar concentrations for K, Br and silver. Again, a good 

agreement with the nature and the protocol of the samples can be observed. 

 

 

CONCLUSION 
 

Fuzzy sets and fuzzy logic represent a useful and powerful tool in chemistry and related 

fields. Cluster analysis is a large field, both within fuzzy sets and beyond it. Many algorithms 

have been developed to obtain hard clusters from a given data set. Among those, the c-means 

algorithms are probably the most widely used. Hard c-means execute a sharp classification, in 

which each object is either assigned to a class or not. The membership to a class of objects 

therefore amounts to either 1 or 0. The application of Fuzzy sets in a classification function 

causes this class membership to become a relative one and consequently an object can belong 

to several classes at the same time but with different degrees. The c-means algorithms are 

prototype-based procedures, which minimize the total of the distances between the prototypes 

and the objects by the construction of a target function. Both methods, sharp and fuzzy 

clustering, determine class centers and minimize, e.g., the sum of squared distances between 

these centers and the objects, which are characterized by their features. Fuzzy Generalized c-

Means and Fuzzy Gustafson-Kessel algorithms are easy and well improved tools, which have 

been applied more or less in fields of chemistry and other fields. The applications section of 

this chapter demonstrates advantages of fuzzy clustering with respect to clustering and 

characterization of different soil samples. Although several applications of fuzzy clustering 

and classification have already been reported in the field of chemistry and other fields, many 

potential chemometric relevant applications are still waiting to be exploited. 
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ABSTRACT 
 

Self Modeling Curve Resolution (SMCR) or Multivariate Curve Resolution (MCR) 

is a powerful tool in qualitative and quantitative analysis of miscellaneous mixtures. The 

ability of analyte determination in presence of unknown interferences is one of the most 

exploited aspects of some of SMCR methods. However the rotational ambiguity is the 

intrinsic problem of all these methods which leads to a band of the feasible solutions 

instead of one specific answer. This problem can affect the accuracy of both qualitative 

and quantitative results. Lots of struggles are made to find ways at least to decrease or at 

last to eliminate this phenomenon in order to have more accurate results in analysis of a 

system. 

In this chapter, a brief description about the MCR methods and conditions to obtain 

unique solutions is offered. Quantitative analysis with the help of MCR methods in two-

way data sets are explained in details. The effects of the rotational ambiguity on the 

accuracy of quantitative results are discussed in details. A simulated example helps to 

better understanding the situation. 

 

 

INTRODUCTION 
 

Nowadays, in most cases, mixtures are multi-component natural samples in which 

analyte signals are hidden by strong interferents and matrix effects [1-8]. 
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To deal with these problems chemometric methods and multivariate data analysis 

techniques in different branches of analytical chemistry have been developed during the last 

two decades [9, 10]. 

Mathematical resolution of analyte signals by chemometric methods is much cheaper, 

faster and environmentally friendly, than any kind of chemical or physical separation 

analytical method. 

Among chemometric methods, model free multivariate curve resolution (MCR), known 

as soft-modeling methods [11] in combination with hyphenated systems, offer the possibility 

of resolution, analysis and quantitation of multiple components in unknown mixtures without 

their previous chemical or physical separations. The principles of it are astonishingly simple: 

the analysis is based on the decomposition of a matrix of data into the product of two smaller 

matrices which are interpretable in chemical terms. 

Generally, one resulting matrix is related to the concentrations of the species involved in 

the process and the other matrix contains their response vectors [12]. 

MCR was first introduced by Lawton and Silvestre with the denomination of Self 

Modeling Curve Resolution, (SMCR) [13]. In that work a mixture analysis resolution 

problem was described in mathematical terms for the case of a simple two-component 

spectral mixture. By introducing several precious concepts such as ―subspace spanned by true 

solutions‖ and ―feasible solutions‖, this pioneering work provided a landscape for the most of 

the struggles done in that field afterwards. 

These methods can generally be grouped as non-iterative and iterative algorithms. 

Most non-iterative resolution methods rely on combining information of small sections of 

a data set (subspaces) constructed from global and local rank information to obtain the pure 

component profiles. Window Factor Analysis (WFA) [14], Sub-window Factor Analysis 

(SFA) [15], or Heuristic Evolving Latent Projections (HELP) [16] are among the first and 

most significant approaches within this category. Most recent algorithms are usually 

evolutions of the parent approaches, such as Orthogonal Projection Resolution (OPR) from 

WFA [17] or Parallel Vector Analysis (PVA) from SFA [18]. 

These methods are based on the correct definition of the concentration windows. 

Iterative resolution approaches are currently considered the most popular MCR methods 

due to the flexibility to cope with many kinds of data structures and chemical problems and to 

the ability to accommodate external information in the resolution process. Iterative Target 

Transformation Factor Analysis, ITTFA, [19, 20] and Multivariate Curve Resolution-

Alternating Least Squares, MCR-ALS [21-24] and Resolving Factor Analysis, RFA [25] are 

some of the approaches of this category. All of these methodologies share a common step of 

optimization (of C and/or S
T
 matrices) that starts from initial estimates of C or S

T
 that evolve 

to yield profiles with chemically meaningful shapes, tailored according to chemical or 

mathematical information included in the optimization process under the form of constraints. 

 

 

KEY CONCEPTS 
 

MCR techniques are based on the bilinear decomposition of a measured mixed signal into 

their pure contributions according to the following equation: 
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D=CS
T
 + EMCR (1) 

 

D (I,J) is the measured data matrix with I different samples and J different variables. C 

(I,N) is a matrix which contains the contribution of N species in I samples of the data set and 

S
T
 (N,J) is the matrix of pure responses of N components at J measured variables. Residuals 

or non-modeled part of D are collected in EMCR which has the dimension the same as D. 

In a bilinear model the contributions of the components in the two orders of the 

measurements are additive. 

To clarify this decomposition problem, let us consider a chemical example. D can be a 

chromatographic system with DAD detection. This data set is the collection of the signals 

obtained from an n-component mixture by a detector during the elution process as a function 

of time. Each row contains the full spectra in a specific time and each column is the elution 

profiles at each channel of the response detector. Base on the additive of the absorbance in 

Beer-Lambert‘s law, the total raw signal is the sum of the signals related to each one of the 

compounds (see Figure X_1a). Each one of these pure contributions (Di) can be expressed by 

a pure spectral profile (si), which is weighted according to the concentration of the related 

compound along the elution direction. The column of weights or concentration values (ci) is 

actually the elution profile or chromatographic peak of the compound. Thus, the signal 

contribution of each eluting compound is described by a dyad of profiles, ci and si, which are 

the chromatographic peak and the related pure spectrum, respectively (see Figure X_1b). This 

additive model of individual contributions is equivalent to the representation of the bilinearity 

concept which was introduced above (figure X_1c). 

Another bilinear decomposition of the D matrix can be performed based on mathematical 

factors by applying PCA [26]: 

 

D=UV
T
+EPCA (2) 

 

 
a 

 
b 

 
c 

Figure 1. The measurement model of a chromatographic system. (a) Described as an additive model of 

pure signal contributions, (b) described as a model of additive dyads of pure concentration profile and 

spectrum, (c) described as a bilinear model of concentration profiles and spectra. 
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U and V
T
 are respectively the scores and loadings of matrix D and EPCA is the matrix of 

residuals. The solutions obtained with this mode of decomposition are not physically 

meaningful, but U and V
T
, can be then used as estimations of the basis set of the column and 

row spaces of data matrix D, respectively. 

The operations which decompose a matrix into bilinear model of factors are generally 

famed as ―Factor Analysis‖ methodologies [27]. 

 

 

AMBIGUITIES 
 

The main drawback of all MCR methods is the presence of ambiguities in the solutions 

obtained by these methods. This is known and well documented since the very beginning of 

their development in chemometrics [13]. There are two classes of ambiguities associated with 

curve resolution methods: Intensity and Rotational ambiguities. 

 

 

Rotational Ambiguity 
 

Going back to MCR model, for any non-singular matrix T, which is called 

―transformation matrix‖, the identity matrix I=T
-1

T can be inserted in equation 1 and it can be 

rewritten as: 

 

D=CS
T
=C (TT

-1
) S

T
 (3) 

 

This gives: 

 

D=CnewS
T

new + E (4) 

 

where Cnew=CT and Snew=T
-1

S
T
 

In this equation, by linear combination of C and S
T
 (initial solutions) using a 

transformation matrix T, a new set of solutions Cnew and S
T

new will be obtained. It is clear that 

any nonsingular invertible matrix T can do the transformation in Equation (3). The sentences 

above are the mathematical formulation of the rotational ambiguity [28]. In the other words, 

an infinite number of solutions (C, S
T
) can be created; all of them are different in shape but 

resulting in the same matrix D. It is usually possible to reduce considerably this infinite 

number of possible solutions by means of constraints derived from the physical nature and 

previous knowledge of the problem under study. By implementation of different natural 

constraints such as non-negativity [13], local rank, selectivity [29], unimodality [30], various 

hard constraints based on physicochemical models [31] (i.e., equilibrium or kinetic) or etc., 

the number of the T matrices can significantly be reduced. If the incorporated constraints 

make not unique solutions for the profiles of all components in the system, a range of 

solutions for concentration and/or spectral profiles of each component are obtained, each of 

them fit the data equally well, although only one of them is the true one. The obtained ranges 

are called feasible solutions [13, 28]. There have been numerous attempts to reduce the 

rotational ambiguity with the ultimate goal to arrive at a unique solution [29, 32]. 
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Intensity Ambiguity 
 

Even if there is a unique matrix T, there can still be another form of ambiguity in the C 

and S matrices, known as intensity ambiguity, illustrated by the following equation: 

 

 

(5) 

 

 

For a particular species N the concentration profile cN can be arbitrarily increased in an 

unlimited way by multiplying it by an arbitrary scalar number k if at the same time its 

spectrum s
T

N is decreased by the same amount by dividing it by the same number k. However, 

multiplication of any concentration profile with a scalar and the corresponding spectrum with 

the inverse of the scalar has no net effect on the shape of the profiles. By applying a 

normalization or closure constraints this problem can be solved [28]. 

 

 

RESOLUTION THEOREMS 
 

Getting more initial information about a system and applying them in a suitable way will 

result in less ambiguity and under certain circumstances even unique answers will attain. 

Among all the constraints, the most important ones are the selectivity and the local rank 

constraints that considerably limit or even eliminate the rotational ambiguity. Tauler et al. 

studied rotational and intensity ambiguities as well as the effect of the selectivity and the local 

rank constraints on successful applications of MCR methods [29]. They suggested that the 

presence and detection of the selectivity and appropriate use of constraints are the 

cornerstones of the individual MCR analyses. In 1995, Manne proposed the general 

conditions for the correct resolution of concentration and spectral profiles by three theorems 

namely ―Resolution Theorems‖ [32]. These theorems can be used for predicting the 

uniqueness of any resolved profile obtained from every MCR method. 

To achieve this goal, it is essential to have local rank information. There are several 

methods to detect the local rank and selectivity based mostly on evolving factor analysis 

(EFA) [33] and also heuristic evolving latent projection type of approaches [34-36]. 

The theorems has been proven by Window Factor Analysis (WFA) and Subwindow 

Factor Analysis (SWFA) methods which are non-iterative self-modeling methods for 

extracting the concentration profiles of individual components from evolutionary processes. 

 

Theorem 1: 

If all interfering compounds that appear inside the concentration window of a given 

analyte also appear outside this window, it is possible to calculate the concentration profile of 

the analyte. 

It is attempted to describe this theorem by figure X_2a. 

As it is shown in the figure, the solid window shows a concentration region that contains 

the hypothetical analyte A (labeled by green color) and two interferences B and C (labeled by 

blue and red colors). 

D =   kN  𝐂𝐍 (
1

kN

𝑁

𝑛=1

𝐒𝐍
T) 
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a     b 

Figure 2. the concentration window of each component is displayed by a continuous line in each case; 

in (a) the absence window of the analyte is shown by a dashed line rectangle. In (b) the absence 

subwindows for each interferent, within the analyte concentration window, are displayed by dashed line 

rectangles. 

Further the second window, dashed line, enfolds a region where all the interferences of 

the analyte (the blue and red components) are present. Clearly, the green component is 

qualified for all conditions that are required by Theorem 1. 

Therefore, it is possible to calculate the concentration profile of the green component 

uniquely assuming this theorem. 

 

Theorem 2: 

If for every interferent the concentration window of the analyte has a subwindow where 

the interferent is absent, then it is possible to calculate the spectrum of the analyte. This 

theorem gives an instruction for unique calculation of the spectral profiles without first 

resolving the concentration profiles. 

Consider the component B (blue component) as a hypothetical analyte. The concentration 

window of the analyte has two subwindows where in one of them the green component (A) 

and in another one the red component (C) is absent. This is represented graphically in figure 

X_2b. Therefore, it is possible to calculate the spectrum of the blue component based on 

Theorem 2. 

 

Theorem 3: 

For a resolution based only upon rank information in the concentration direction the 

conditions of Theorems 1 and 2 are not only sufficient but also necessary. In accordance to 

this theorem the complete resolution of a specific data set occurs when all components satisfy 

the all conditions of Theorems 1 and 2. 

An important consideration in utilizing the concept of resolution theorems in analyses is 

the correct determination of the rank of the data and its local ranks. It is also important to 

implement zero concentration regions constraint during iterative soft-modeling methods [37]. 

 

 

CHARACTERIZATION AND VISUALIZATION 

OF THE ROTATIONAL AMBIGUITY 
 

As it was pointed out (sec. X_3), rotational ambiguity is the intrinsic problem of all soft-

modeling methods regardless of the algorithm used. While the conditions of the resolution 

theorems are not fulfilled in a data set, the sets of the feasible solutions exist instead of unique 

solutions. In these cases the iterative methods converge to any of the feasible solutions, and 

many users will take it as a ‗fact‘ without realizing that it is only one of a possibly wide range 

of solutions. 
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So, Detection of rotational ambiguity and appropriate warning is of great importance. 

The main interests in calculation and analysis of the rotational ambiguity are evaluation 

of the accuracy of the results of the model-free methods and investigation of experimental 

noise effects on the results. In addition the effect of different constraints to decrease the 

ambiguity can be discussed. 

The first approach of SMCR introduced by Lawton and Sylvestre represents a good 

visualization of the inner and the outer bounds of the estimated profiles in the abstract 

eigenvector space [13]. After that many efforts have been made to calculate the feasible band 

boundaries that surround all the feasible solutions [28, 38-40]. 

Visualization is the process of transforming information into a visual display, allowing 

users to observe the unseen features for better understanding the information. In scientific 

visualization, computer graphics are applied to scientific data for getting insight, examining 

hypothesis, and general elucidation [41]. The resulting graphs or visual displays enable the 

scientists to identify the hidden structures of data, which are needed for further data analysis. 

In the following subsections with respect to all valuable pioneering works done for 

calculation and analysis of the rotational ambiguity, some improved algorithms for the 

complete computation and visualization of the rotational ambiguity will be discussed. 

 

 

Grid Search Minimization Algorithm and Error Maps 
 

I. Two-Component Systems [42] 

Considering D matrix with signals related to a simple two-component mixture problem, 

its bilinear decomposition based on Equation (1) will provide C matrix with two columns and 

S
T
 matrix with two rows. In the other hand by performing a principal component analysis 

(PCA) [26] on the data matrix D, another bilinear decomposition similar to what is given in 

Equation (2) is obtained. Based on resolving factor analysis (RFA) [25], by ignoring small 

differences in the error matrices E of Equations (1) and (2), columns of C and S can be 

written as a particular linear combination of U and V columns, respectively: 

 

D=U(T
-1

T)V
T
 = (UT

-1
)(TV

T
) = CS

T
 (6) 

 

So that: 

 

S
T
=TV

T
 (6a) 

 

and 

 

C=UT
-1

 (6b) 

 

The goal in RFA is to determine the T matrix for which the correct concentration and 

spectra are obtained. Note that the identity matrix can also be inserted in Equation (6) such 

that S=T
−1

V
T
 and C=UT. 

In two-component systems the transformation matrix T is a 2×2 matrix. The introduced 

grid search minimization approach takes advantage of the fact that there is a set of 
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transformation matrix T instead of one which fully defines set of feasible solutions of the 

system. 

By normalizing the diagonal elements of 2×2 T matrix to one, it is not only defined with 

two off-diagonal elements instead of four, but also the intensity ambiguity is eliminated. 

 

      [
      
      

]                                 Tn =   [
     

     
]                             (7) 

 

Note that, there are different possible options for normalization; the one chosen here is to 

normalize the diagonal elements to one. The inverse of Tn is then: 

 

Tn
-1

 =  (8) 

 

Considering Equations 6a and b, the first row of Tn multiplied with V
T
, defines the first 

row of S
T
, so tn12 defines the first spectrum. Similarly, tn21 defines the second spectrum. tn12, 

the element of Tn that defines the first spectrum, delineates the second concentration profile 

and also tn21 which defines the second spectrum, identifies the first concentration profile. 

Practically this procedure starts by selecting a random selection of a pair of T (tn12, tn21). 

By arranging the values in a normalized 2×2 matrix, C and S
T
 are calculated based on 

Equations 6a and b. non-negativity and any other constraints are imposed and the new 

profiles are used to reproducing the data set. 

The main goal of the grid search minimization procedure is to find all the T matrices for 

which all the constraints are fulfilled and the residuals between the original data and the data 

set reproduced by the calculated C and S is the minimum value within the error limit of the 

data set: 

 

 (9) 

 

             (10) 

 

The sum of squares (ssq) distribution as a function of the two relevant elements of T may 

be visualized as a three-dimensional contour or surface plot. Rotational ambiguity is indicated 

as the minimal flat area within the t12 and t21 landscape where ssq is constant. These contour 

or mesh plots will be referred to as error maps. These error maps are schematically shown in 

figures X_3a and b. 

There are notes on these maps that can be referred to: 

As there is no inherent order in the rows of S
T
 and the corresponding columns of C, there 

is a general ‘symmetry’ in the figure (it is not shown here). 

So by expanding the range of the grid search, two minima, for example two rectangular 

regions with identical minimal ssq can be observed. 

If there is a unique solution, the minimal areas are reduced to sharp minima which will be 

observed as a point in the two dimensional plot. 

In some instances, one of the elements, tn12 or tn21, is uniquely defined whereas the other 

is not; then the rectangular area is reduced to a linear range. 
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a 

 
b 

Figure 3. Representation of: ssq vs (t12 and t21) (a) and two-dimensional contour plot (t12 vs t21) (b). 

II. Three-Component Systems 

The idea of the grid search minimization procedure can be generalized to three 

component systems [43]. 

In three components systems a normalized T matrix with the first column equal to one is 

defined for which only 6 remained elements is going to be calculated instead of 9: 
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 (11) 

 

This kind of normalization provide the possibility of visualizing the rows of T and hence 

the related spectra in a 2-D plane, in addition to eliminating intensity ambiguity. 

At the first step, C and A are estimated by the normalized transformation matrix 

according to equations (4a) and (4b). In the next step all the physical constraints are imposed 

on the C and A profiles which results in new matrices  ̂ and �̂�. 

Finally, the sum of the square of the residual is computed by equation (6) as the 

difference between the reconstructed data (from  ̂and �̂�) and the original data set (D). This 

value will be the minimum for the accurate matrices T (equation 12) 
 

 (12) 
 

The procedure of finding the minimum values of the sum of squares (ssq) is performed 

by scanning of two parameters of each row of T matrix while the other four elements are 

calculated independently by using a fitting algorithm such as simplex. The feasible range of 

tk2 and tk3 is the range in which the values obtained for ssq are the minimal. Outside the 

feasible range, the fitting results in large ssq. 

 

 

 

k=1, 2 and 3 

 

(13) 

The ssq can be plotted in a 3-D graph as a function of the tk2 and tk3. Three clusters of 

points as the Area of Feasible solutions (AFS) of three components with irregular and convex 

shapes exhibit the boundaries between feasible and infeasible solutions. A three and two-

dimensional plot are shown schematically for this procedure. 

The procedure above can be performed by an alternative algorithm by calculating only 

the border of the AFSs. As points inside and outside the AFS do not convey any additional 

useful information the latter algorithm is quicker since a substantial amount of irrelevant 

information is calculated. 

By inspiring from the algorithm above a new fast algorithm is suggested that is based on 

the inflation of polygons. Starting with an initial triangle located in a topologically connected 

subset of the AFS, an automatic extrusion algorithm is used to form a sequence of growing 

polygons that approximate the AFS from the interior. The polygon inflation algorithm can be 

generalized to systems with more than three components [44]. 

 

 

MCR-Band Method 
 

For more complex multi-component mixtures, different optimization strategies have been 

proposed [38, 40, 45, 46]. Among them, a new strategy based on the optimization of an 

objective function has been introduced [28, 38]. 
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Gemperline and Tauler introduced a new objective function with the intention of 

calculation the boundaries of feasible bands, and evaluation of the rotation ambiguity 

associated with MCR solutions. 

 

       

 

 

 

 

 a b 

 

Figure 4. Representation of a) mesh and b)contour plot of a three component system. 

The function to be optimized based on definition at Reference [28] is defined in equation 

(14): 

 

( )

T

k k

k T

c s
f T

CS
     k=1,2,…,N (14) 

 

 

This function which depends on the transformation matrix is defined as the Frobenius 

norm of the signal contribution of a particular species (k) with respect to the Frobenius norm 

of the whole signal of all the considered species. The optimization of this objective function 

allows the calculation of the maximum and minimum band boundaries of the feasible 

solutions. It should be mentioned this method can be applied to any number of components. 

 

 

Geometrical Calculation of Feasible Solution 
 

Although most of the references for visualization and characterization of the rotational 

ambiguity are based on algebraic definitions [28, 38, 42-44], computational geometry 

provides a more understandable concept of this intrinsic phenomenon. This concept contains 

approaches to find inner and outer polygons (abstract spaces) which form the basis for 

analytically finding the feasible regions [40]. These approaches provide new possibilities to 

compare different methodologies in literature of multivariate curve resolution. This outlook to 

the feasible solutions was instituted with Lawton-sylvestre‘s work in a simple two-component 

system at 1971 [13] and was developed to three component systems by Borgen and his co-

worker which is now famed as Borgen plot [47]. However, because of the complexity of the 

demonstrated concepts the method was disregarded by chemometricians for two decades. The 

interesting sight of the concerning of the abstract space geometry is to discover new 

information about structure of data set, for example local rank. Applying knowledge that 
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revealed from data structure may increase the accuracy of resolution of data set by soft 

methods. Consideration of the abstract space geometry aids to provide approaches for 

imposing constraints and to detect presence of the unique solution for a data set. 

 

 

QUANTITATIVE ANALYSIS AND CHEMOMETRICS 
 

Chemometric methods coupled with modern analytical instruments have been widely 

used for the rapid quantitative analysis of target analytes in complicated systems. Analyte 

determination in the presence of unexpected sample constituents, i.e., those not taken into 

account in the calibration phase, is one of the important subjects in the field of chemometrics. 

In most cases, the mixtures are multi-component natural samples in which analyte signals are 

hidden by strong interferents and matrix effects. To deal with these problems chemometric 

methods and multivariate data analysis techniques in different branches of analytical 

chemistry have been developed during the last two decades [48-54]. 

One of the main challenges in analytical chemistry is to design and developing of the 

affordable procedures which produce more correct and reliable results. 

 

 

Data Structures 
 

In 1990s, Booksh and Kowalski used tensor algebra to classify instrumental data as 

zeroth-order, first-order, second-order, and higher-order according to the type of data, which 

analytical instruments provide [55]. ―Order‖ is usually employed to denote the number of data 

dimensions for a single sample. Scalars are zeroth-order tensors, vectors are first-order 

tensors, a matrix for which the elements obey certain relationships is a second-order tensor, 

etc. ―Ways‖ is reserved for the number of dimensions of a number of joined data arrays, 

measured for a group of samples. Zero-order sample data lead to one-way data sets. 

Correspondingly, First-order sample data (vectors) lead to two-way data sets, second-order 

sample data (matrices) to three-way data sets, third-order sample data (three-dimensional 

arrays) to four-way data sets, etc. A representation of data of increasing complexity, with 

order and number of ways is shown in figure X_5. 

This framework is general and permits to classify not only the data, but also the 

instruments that deliver them and the calibration methods for their analysis. 

When the aim of the analytical process is to determine the concentration of some of the 

species present in the sample, a calibration must be tuned. Zero-order data are usually fitted to 

a straight line by least squares. This is known as univariate or zero-order calibration and 

requires full selectivity for the analyte of interest. 

When the order of the data increases, mathematical data processing becomes more 

complex. However, some special properties such as first- and second-order advantage will be 

provided. 

The ability of simultaneous analysis of more than one component with overlapping 

signals is the first advantage of multivariate data sets. 

In first-order calibration methodologies there is the possibility of extracting useful 

analytical information from intrinsically unselective data. First-order calibration is able to flag 
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unknown interferences (those not taken into account in calibraton samples) as outliers, 

because it cannot be modeled with a given calibration data set, warning that analyte 

prediction is not recommended. This property is known as the first-order advantage. 

However, in these calibrations a high number of samples are required and they must be of the 

same constitution of the unknown sample. 

 

 

Figure 5. Orders and ways of different kind of the data sets for samples. 

Principal component regression (PCR) [56] and Partial Least Square (PLS) [57] are two 

well-established algorithms in first-order multivariate calibrations. 

Second- and higher-order calibration methodologies allow for analyte quantification even 

in the presence of unexpected sample constituents; those are not included in the calibration 

set. This is universally recognized as the second-order advantage. Second-order calibrations 

can be done using a few standard samples. GRAM [58], RAFA [59], PARAFAC [60], N-PLS 

[61], MCR-ALS [24], etc. are some of different algorithm used in second-order calibrations 

practices. 

 

 

Extended Multivariate Curve Resolution 
 

Second-order data sets are natural type of data to be analyzed with soft-modeling 

methods. When a single data set is analyzed with a soft-modeling method the qualitative 

information linked to the present components may be extracted. By applying more restrictions 

it is tried to obtain the results with less or even no ambiguities at all. However, there are limits 

in the quality of the profiles resolved that do not depend on the resolution method applied, but 

rather on the overlap among compounds profiles in both directions. 

Simultaneous analysis of several data sets with MCR methods known as ―Extended 

MCR‖ brings multiple advantages [29, 62]. The possibility to obtain quantitative information 

of the analyte(s) of interest is one of most exploited achievement of this form of the analysis 

which is due to the inherent property of second-order advantage in second-order data sets. 
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A single data matrix can be row-wise, column-wise, or row- and column-wise augmented 

to form a multi-set structure when other matrices with the same number of rows, columns, or 

both are appended in the appropriate direction. To have a new meaningful data structure, all 

individual data matrices (slices) in this type of data set should share some information with 

the other appended matrices; otherwise it does not make sense to produce such a new data 

arrangement. All types of matrix augmentation are explained below: 

Suppose that k data matrices (D1, D2, D3, …, Dk) are obtained for a system by 

spectroscopic monitoring of a kinetic process analyzed under various initial conditions (e.g., 

different initial concentrations of the chemical constituents). 

In column-wise augmentation the different data matrices are supposed to share their 

column vector space. This can be written simply as: 

 

1 1 1

2 2 2T T

aug aug

K K K

D C E

D C E
S C S E

D C E

     
     
        
     
     
     

 (15) 

 

This data arrangement makes no assumption about how the concentration profiles of the 

species (C1, C2, C3, …, Ck) change in various matrices analyzed, but they have or share the 

same pure spectra (S
T
). This extended bilinear model is valid for data sets formed by matrices 

with equal or unequal number of rows. Because of the freedom in shape of the concentration 

profiles, matrices with different chemical nature in row spaces can also be appended. 

The notation for row-wise augmentation is: 

 

   1 2 1 2 1 2

T T T T

k k k aug augD D D C S S S E E E CS E     
 (16) 

 

In this data arrangement, the different matrices are supposed to share their row vector 

(concentration) space. This is the case for example when a chemical reaction is monitored 

with different spectral instruments. In this case the species have the same pure concentration 

profiles in all sub-matrices, but their spectral responses will be completely different (in shape) 

depending on the considered spectroscopy. In this case, it is not necessary that the different 

appended data matrices have the same number of columns; only the same number of rows 

(samples) is needed to allow for the row-wise matrix augmentation strategy. 

The mathematical notation of column- and row-wise augmentation is: 

 

11 12 1 1 11 12 1

21 22 2 2 21 22 2

1 2

1 2 1 2

L L

L LT T T T

L aug aug aug

K K KL K K K KL

D D D C E E E

D D D C E E E
S S S C S E

D D D C E E E

     
     
               
     
     

         (17) 

 

This means that some of the matrices are supposed to share the same column (spectra) 

vector space and some others their row vector (concentration) space. Going back to matrix 

notation above (17), it can be understood that sub-matrices with identical indices k share the 
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common row space and submatrices with identical indices L share the common column space. 

This bilinear model is usually applied in the analysis of different complex samples such as 

biological systems with complex matrix effects [63, 64]. 

 

Multi-set data analysis with MCR methods provides some valuable aspects: 

 

 In case of one dimension in common, even when there is no selectivity, the 

simultaneous analysis of different matrices will still be better because it forces the 

profiles of the species in the common dimension to be the same for the different data 

matrices. This works as a strong restriction which decreases freedom of the rotations 

of the profiles in the relevant dimension. 

 Multi-set data analysis is one of the possible ways to complete resolution of some of 

the component‘s profiles. Let us consider a chromatographic data set, containing two 

components (A and B), one of them embedded under the major one. By appending a 

run of a standard of the major compound (for example A) to the original data set, 

elution profile of B and consequently the spectral profile of A can be resolved 

uniquely. This happens because the conditions of the resolution theorems are 

fulfilled. As it is shown on the figure X_6a, component A which can be considered 

as interference for B is present outside the concentration window of B too (the 

presence of A outside the concentration window of B is shown with dashed line). By 

setting zero for the elements of elution profile of component B in the C matrix 

(figure X_6b), this region is introduced to the algorithm used and unique 

concentration profile of B can be obtained based on first resolution theorem. 

Correspondingly, second resolution theorem will be valid for A and unique spectral 

profile of A will be obtained. Setting zero for the elements of some components in a 

multi-set data analysis is known as ‗corresponding among species‘ which fixes the 

sequence and the presence or absence of components in a particular Ck and/or Sl
T
 

matrices when Equations (15)–(17) are solved. This presence/absence information is 

coded in binary format and introduced into the MCR algorithm. As a consequence, 

when a particular component does not exist in a particular Ck and/or Sl
T
, the elements 

in the related profile are set to zero. 
 

 
a)           b) 

Figure 6. Representation of augmentation of calibration set of A to the mixture in a) elution window 

form and b) matrix form. 
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 Breaking rank deficiencies by matrix augmentation is another problem that could be 

solved in multi-set data analysis [65]. 

 Although the improvement in the qualitative information in a multi-set data analysis, 

the possibility to obtain quantitative information is the most important achievements 

of the issue. The main reason is the so-called second-order advantage, which allows 

for the quantification of the analytes in the presence of unknown interferences. 

 

 

Quantitative Estimations Using Two-Way Soft-Modeling Methods 
 

Suppose a data set obtained from a sample containing an analyte of interest and several 

unknown interferences. Preparing pure standard data of the analyte enable us to estimate the 

concentration of the desired components. The unknown and the calibration set can be 

augmented in one direction and be analyzed by a soft-model such as MCR-ALS. Once 

augmented data set resolving is achieved, the information linked to the analyte(s) of interest 

can be separated from the information associated with the interferents. The quantitative 

information is hidden in the augmented mode of the data set. For example, if the spectral 

profiles are common among the sub-matrices, quantitative information can be extracted from 

the augmented concentration profiles. Taking only the resolved elution profiles of the analyte 

in the different sub-matrices and estimating a quantitative parameter (peak area (A) or peak 

height (h)), we may construct a classical calibration line with the pure standards and derive 

the concentration of the analyte in the unknown sample, as it is shown in figure X_7. 

In the extreme case, quantitative estimations can be performed with one standard sample. 

Relative quantitative information of one particular compound can be derived easily by 

comparing the area or height of the resolved profiles of standard and unknown sample: 

 

u
u k

k

A
C C

A
                (18) 

 

where Cu and Ck are the concentrations of the analyte in the unknown and standard samples, 

and Au and Ak are the areas below the resolved profiles in the unknown and standard sample 

respectively. Au and Ak can be replaced by hu and hk when using peak height in calculations. 

 

 

Soft-Modeling Calibration of First-Order Data Sets 
 

Methods such as Partial Least Square (PLS) [57], Multivariate Linear Regression (MLR) 

[66], Classical Least Square (CLS) [67] and etc. are regularly used as standard first-order 

calibration methodologies. 

Recently two-way soft-modeling methods especially MCR-ALS are applied for 

quantitative analysis of first-order data although second-order data sets are natural type of the 

data presented to these techniques [68-71]. 

In order to explain the methodology, the iterative MCR-ALS method is chosen as widely 

used soft-modeling method in data analysis. 
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Figure 7. Calibration procedure for component A with soft-modeling methods; column-wise 

augmentation of unknown sample and calibration set. B and C are considered interferences not 

considered in calibration set. hs are the peak heights. 

This optimization algorithm to perform the mathematical decomposition of Equation 1 

has been described in details elsewhere [21-24]. The correlation constraint previously 

developed and used in different works [68-71] is applied during the MCR-ALS analysis, to 

establish calibration models for the quantitative determination of analytes in first-order data 

sets. In order to perform these analysis a number of samples with different concentrations of 

the analytes (usually random values) are used as calibration samples and another set of 

samples are used as the unknown set for which the amounts of the analytes are unknown and 

also may contain interferences. Similar to other first-order calibration methodologies, 

calibration set should contain all the interferences of the unknown set. The signals obtained 

from all samples are arranged in a single data matrix with rows equal to the total number of 

samples (calibrations and unknowns) and columns equal to recorded instrumental signals 

(wavelengths, channels…). Concentration values of the analyte in calibration samples 

obtained at each ALS iteration are then correlated with their known true concentration values 

(reference values) by a linear regression. Using the obtained linear equation, all concentration 

values of the particular analyte in calibration and unknown samples can be updated for the 

next ALS optimization step until the convergence is achieved. This constraint may be applied 

for any number of calibrated analytes. The known values of the analyte in calibration samples 

can be either implemented directly as an equality constraint during each iteration or by 

sequential regression procedures named as correlation constraint. In both cases concentration 

values of the analyte in unknown set are predicted at the end of the iterations but in the latter 

case the effect of the errors in reference values are also considered. 

 

 

ACCURACY OF CHEMICAL QUANTITATIVE 

ANALYSIS USING SOFT-MODELING METHODS 
 

In performing an analyte quantitation, the accuracy of the obtained result is one of the 

important issues [72]. The main source of inaccuracy in the quantitative results obtained by 

soft-modeling methods is rotational ambiguity problem. 
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The presence of rotation ambiguities and of non-unique solutions in MCR results 

decreases their reliability and makes their assessment difficult. There is, therefore, an urgent 

need for a deeper investigation of this topic and for the quality assessment of MCR results. In 

most cases when soft-modeling methods are used for a chemical analysis, rotational 

ambiguity is reduced or eliminated by imposing as many constraints as possible for the 

system. Resolution theorems [32] indicate clearly the conditions needed to recover uniquely 

the pure concentration and signal profiles of a compound in a data set. 

These conditions depend mainly on the degree of selectivity in the column mode or row 

mode of the measurements. So, in the same system, some profiles can be recovered uniquely, 

and some others will necessarily be affected by a certain ambiguity. When ambiguity exists, a 

compound is represented by a band of feasible solutions instead of a unique profile. Here, the 

main question is to determine the accuracy of the obtained quantitative results in the presence 

of the non-eliminated part of rotational ambiguity. 

To answer this question let us simulate an experimental situation without any random 

error and Consider a multivariate second-order chromatographic data set corresponding to a 

mixture of two co-eluting compounds (see figure X_8). 

Also we suppose a calibration set of second-order signals is built with one of the 

constituents with different concentrations. The created data matrices were joined together 

with one matrix on top of the other, keeping in common the column space. Further 

investigations are performed on the augmented data matrix. 

Since the strategy of column-wise augmentation of the data matrices forces common 

species to have the same spectrum in all data matrices, the quantitative information of the 

systems can be found in the C-matrix of the augmented data set. In order to evaluate the effect 

of the rotational ambiguity on the quantitative estimation, we need to calculate the feasible 

band of the present components. By conducting grid search minimization procedure [42] (sec. 

X_5a_I) in the U-subspace of the augmented data set, the ranges of the feasible solutions for 

the C-matrix or elution profiles are obtained. In the calculations, the following constraints are 

imposed on the model: non-negativity of spectra and concentration profiles and 

correspondence among species (see section X_6_b). In this example, this constraint supplies 

the information on the absence of interference in all the calibration samples and is allowing it 

to only appear in the test sample.figures X_9a and b shows the mesh and contour plots of the 

log of the sum of squares of the residuals as a function of t12 and t21, respectively, where t12 

and t21 are the normalized coordinates of two components in the U-subspace. The whole 

range of t12 values in the minimum region of figure X_9b produces the whole set of feasible 

solutions of the analyte elution profile as the first species, also the spectra of the interference 

as the second one. As can be seen, minimal region became a line in this example which 

means that coordinate t21 is uniquely obtained. This coordinate produces the elution profile of 

the interference as well as the spectrum of the analyte. 

The obtained results are in accordance with the first and second resolution theorems. 

Although the applied constraints, in particular correspondence among species, provide a 

unique solution for the elution profile of the interferent, it can be seen (from Figure X_9) that 

the situation is not restricting enough for the analyte elution profile to be uniquely 

determined. 

In order to validate the quantitative results of the analyte, all the feasible solutions for that 

component have to be recovered. To do this, each t12 value belonging to the minimum region 

is translated to the elution profile as illustrated in figure X_10a. 
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 a 

 
b 

 
c 

Blue: analyte, green: interference. 

Figure 8. Simulated a) elution profiles b) spectral profile of two components, c) augmented created  

data set. 
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a 

 
b 

Figure 9. a) mesh b) contour plot obtained by grid search minimization procedure in U-space of the  

data set. 

This means that when the solutions are not unique due to the presence of the rotational 

ambiguity, a linear combination of the soft-modeling solutions fulfilling the constraints can 

be obtained, and unfortunately the true solution cannot be recognized, unless more 

information is provided to the system. Note that all profiles are normalized to a maximum of 

one and for better visualization a part of the feasible solutions related to the analyte profile in 

the unknown sample is magnified. For better understanding the system, the t21 value of the 

interference can be translated. Unique elution profile of this component (figure X_10b) 

confirms the unique spectra of the analyte (figure X_10c) (based on the cross-relationship of 

the elements of T matrix). Also, the range of the interference spectral profile is demonstrated 

in figure X_10d. The results are completely in accordance with resolution theorems. 

As was explained in sec. X_6c, taking the resolved elution profiles of the analyte in the 

different sub-matrices (unknown and calibration set), quantitative estimations can be 

performed. As there is a feasible range for the analyte of interest, these calculations may be 

repeated for each of the profiles of the band respectively. 

Distinct calibration line can be calculated corresponding to each of the profiles related to 

pure standard samples and the concentration of the analyte in the unknown sample 

corresponding to that profile can be derived. 

So, different concentration value will be obtained for the analyte of interest. 
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Based on the mentioned procedure, the concentrations related to each of the profiles can 

be estimated separately and sorted in a range from their minimum to maximum amount. 

 

Figure 10. (Continued). 
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c     d 

Figure 10. a) Feasible solutions of the analyte‘s elution profile b) unique elution profile of the 

interference c) unique spectrum of the analyte d) feasible range of the analyt‘s spectra. Analyte‘s 

feasible range is magnified and the true solution is shown with red dots. 

Table 1. Percentage of quantitation error for upper and lower level of concentration  

in feasible region 

 

Quantitative Results 
Upper Level Concentration Lower Level Concentration 

5.26×10
-4

 3.87×10
-4

 

% Error 31.50 -3.25 

% quantitation error = [(Cobtained – Ctrue) /Ctrue×100]. 

Ctrue is the theoretical value of the analyte in the simulated data, which is considered 4×10
-4

 (a.u). 

 

As we know the real amount of the analyte in this simulated case, the relative error 

prediction corresponding to upper and lower amount of predicted concentrations of the 

analyte can be obtained. The results are reported in Table X_1. 

Since the data set are noise free, the magnitude of the concentration range depends on the 

extent of the rotational ambiguity which still has remained in the system after applying all 

possible constraints. 

The obtained concentration range can be accepted as a criterion for quantitative 

evaluation of the rotational ambiguity. In addition, the calculated range expresses the 

reliability of the results for the system when it is resolved by a soft-modeling method. 

Generally, iterative soft-modeling methods will converge towards one particular solution 

within the region of feasible solutions. 

Accurate concentrations will be obtained if and only if the applied method converges to 

the true solution of the system; on the other hand, the unavoidable problem of rotational 

ambiguity will lead to an inaccurate result. The calculated range for the relative error proves 

that the quantitative result generated by soft-modeling method may be affected considerably 

due to a systematic error of rotational ambiguity. 

Obviously, in real systems, when quantitative analysis is an important aspect of the 

investigation, deviation of the final results from the true quantity may be troublesome for the 

analyst. 

The strategy used for calibration here, offers a way to evaluate the accuracy of the 

quantitative results obtained by a soft-modeling method. 
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Thus, when a soft-modeling method is used as a quantitative tool in analyzing a system, 

checking the range of the feasible solution and evaluating the error prediction range is highly 

recommended. As a suggestion, calculating the concentration range based on profiles of the 

feasible region can be considered as a criterion for evaluating the extent of the rotational 

ambiguity. In the case where this range is large, introducing more restrictions to the system 

should be tried in order to decrease the feasible region. 

 

 

Uncertainty in the Results 
 

In the previous section we talked about the reliability of the quantitative results in 

presence of the rotational ambiguity. Even in absence of the rotational ambiguity 

experimental errors and noise are propagated from experimental data to parameter estimations 

when a soft-modeling method is used in data analysis. Providing methodologies to evaluation 

of error estimates and of propagation of experimental errors is a necessary requirement to 

enable the use of resolution methods in standard analytical procedures [73]. 

Because of the non-linear nature of the most curve resolution methods, finding analytical 

expressions to assess the error associated with resolution results is an extremely complex 

problem [74]. 

Different statistical procedures have been proposed to provide error parameter 

estimations and propagation of experimental errors for those cases where formulae for 

analytical evaluation of errors are not available owing to the strong non-linear behavior of the 

proposed model. These procedures are known under the general name of resampling methods, 

such as noise-added method [75, 76], Monte Carlo simulations [77] and jackknife [78]. 

Although ambiguity and noise are two distinct sources of uncertainty in resolution, their 

effect on the resolution results cannot be considered independently. The boundaries of 

feasible solutions can be affected, being unclear in presence of the noise. Interaction of the 

experimental error and rotational ambiguity on the area of the feasible solutions and feasible 

range of components is one of the interesting topics for investigation in chemometric fields. 

 

 

CONCLUSION 
 

In this chapter the conditions of obtaining unique solutions in analysis of different 

systems was discussed. In analysis of a chemical mixture with a soft-modeling method, it is 

important to find or provide situations (considering resolution theorems and constraining the 

system) to get unique solutions. However, the effect of the rotational ambiguity on the 

accuracy of qualitative and quantitative results is unavoidable. 

Specifically, reliability of quantitative results strongly depends on non-eliminated 

rotational ambiguity of the system under study. In real systems where the random error is 

unavoidable, the deviation of the quantitative calculations from the true value can be quite 

large. Evaluating the extent of the rotational ambiguity is one of the interesting subjects in 

MCR field. This can help when the accuracy of the quantitative results is highly regarded. 

As a suggestion, calculating the concentration range (as was explained in the chapter) can 

be considered as a criterion for evaluating the extent of the rotational ambiguity. 
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In the case where this range is large, introducing more restrictions to the system can be 

tried in order to decrease the feasible region. 
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ABSTRACT 
 

The analysis of compounds in complex samples is challenging and often requires the 

use of chromatographic techniques in combination with appropriate detectors. The 

obtained data quality can be influenced by background changes due to instrumental drifts 

or the selected chromatographic conditions. Therefore chemometric tools for the 

compensation of such effects have been developed. This chapter is focused on 

chemometric background correction from data obtained from on-line hyphenated LC 

systems with spectrophotometric detectors, because in those systems changes in the 

background are frequently observed. A selection of univariate and multivariate 

approaches that have been described in the literature including Cubic Smoothing Splines 

(CSS), background correction based on the use of a Reference Spectra Matrix (RSM), 

Principal Component Analysis (PCA), Simple-to-use Interactive Self-modeling Mixture 

Analysis (SIMPLISMA), Multivariate Curve Resolution – Alternating Least Squares 

(MCR-ALS), Eluent Background spectrum Subtraction (EBS) and Science Based 

Calibration (SBC) among others, are briefly introduced including examples of 

applications. Finally, in the conclusion a brief guide for selecting the most appropriate 

tool for each situation is provided. 

 

 

INTRODUCTION 
 

Spectroscopic methods are versatile tools in research as well as in dedicated systems due 

to the molecular specific information provided. Under certain circumstances, direct analysis 
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of complex samples is feasible employing spectroscopic detectors often in combination with 

chemometric tools [1]. 

Yet, dealing with complex samples, the separation of the target analytes prior to detection 

is unavoidable for achieving accurate and precise results. Consequently, numerous 

applications can be found that still require a separation step prior to spectroscopic detection. 

The most common chromatographic techniques employed in modern analytical laboratories 

are gas chromatography (GC) and liquid chromatography (LC).  

Both techniques require the use of an appropriate detection system. Liquid phase 

separation systems, i.e., LC and also, capillary electrophoresis (CE) may additionally require 

the elimination of unwanted background signal variation due to the solvent absorption. 

During the past years, a number of chemometric tools for improving the outcome of 

chromatographic results have been developed and applied.  

Especially in the field of comprehensive two-dimensional chromatography, a variety of 

chemometric methods are employed to the resolution of highly complex sample mixtures as 

well as for the analysis of the information rich data obtained during their analysis [2, 3, 4, 5, 

6]. 

Spectroscopic detection should be compatible with LC systems providing appropriate 

data acquisition frequency, selectivity and sensitivity levels. Besides, the use of multichannel 

detectors increases the accessible qualitative and quantitative information. The most 

commonly employed spectroscopic detection systems in LC are ultraviolet (UV), diode array 

detection (DAD) and molecular fluorescence detection (FLD). Alternative detection methods 

that can be used are infrared (IR) and Raman spectroscopy as well as nuclear magnetic 

resonance (NMR).  

Two fundamentally different approaches for hyphenating liquid phase separation systems 

and spectroscopic detectors can be identified: i) off-line coupling, involving the physical 

elimination of the mobile phase before spectral acquisition, and ii) on-line coupling, where 

detection is carried out without effluent elimination, e.g., by using flow-cells [7]. 

The need for chemometric background correction depends on both, the detection and the 

chromatographic conditions employed for sample analysis. Under isocratic conditions the 

mobile phase composition is maintained constant during the chromatographic run, and minor 

changes in the background signal deriving from e.g., instrumental drifts can be easily 

corrected by direct subtraction of a spectrum of the mobile phase measured at the beginning 

of the chromatographic run or directly before the elution of the analytes of interest. In 

contrast, under gradient conditions the changing mobile phase composition can have a strong 

effect if the mobile phase components or additives contribute to the signal.  

For example, in LC-IR, typical mobile phases employed in reversed and normal phase 

LC strongly absorb infrared radiation and hence, changes in the absorption caused by the 

mobile phase can be up to several orders of magnitude more intense than the signal derived 

from the analyte [8, 9]. 

This chapter is focused on chemometric background correction from data obtained from 

on-line hyphenated LC systems with spectrophotometric detectors such as UV, DAD and IR, 

because those detection techniques are considered to be prone to interferences from unstable 

or changing background signals.  

However, many of the described principles can be extrapolated to other separation and 

detection systems where similar effects can be observed. 
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CHEMOMETRIC BACKGROUND CORRECTION IN LIQUID 

CHROMATOGRAPHY 
 

Hyphenated LC instruments provide data that can be written as D = CS
T
 + E, where D (z 

x c) is the data matrix with the overall spectral information of all absorbing species, C (z x k) 

is the vector of the concentration profiles of the k absorbing species, S
T
 (k x c) is a matrix 

containing the pure spectra of the k components, E (z x c) is the error matrix and, c and z are 

the number of detected variables and spectra, respectively. 

Under isocratic conditions, the eluent composition and spectrum is constant. 

Accordingly, direct subtraction of the solvent spectrum in the raw data matrix D allows 

reducing the complexity of the system, remaining the spectroscopic active eluting analytes 

and matrix compounds as the only components in the background corrected data matrix. In 

practice this approach has some important limitations: minor changes instrumental conditions 

(e.g., temperature, changes in the mobile phase composition delivered by the LC pump) might 

lead to changes in intensity and shape of the eluent absorbance spectrum. Therefore, the direct 

subtraction of the reference spectrum might lead to inaccurate background compensation 

obtaining noisy chromatograms and distorted analyte spectra. On the other hand, under 

gradient conditions, chemometric background correction is not straightforward, because 

eluent composition during the run changes and the changes in the background absorbance 

intensity can be combined with shifts in the eluent band shapes [10]. 

 

 

Univariate Methods for Chemometric Background Correction 
 

A number of univariate approaches aiming at on the fly chemometric background 

correction have been proposed. Using cubic smoothing splines (CSS) based approach [11] 

spectra measured in the region before and after chromatographic peak clusters were used as 

knots to model the variation of the eluent absorption intensity with time.  

The approach can be divided into two steps: i) peak detection and ii) calculation of the 

background signal. The first step can be carried out either manually, or employing peak 

detection algorithms described in literature or in commercial chromatographic software 

packages. In the second step using the selected knots, cubic smoothing splines are fitted to 

model eluent absorption. Then, background correction is accomplished by subtracting the 

interpolated eluent absorption from the raw data. Cubic smoothing splines were calculated 

using the MATLAB
®
 csaps function, where a smoothing parameter, that determines how 

closely the spline follows the given data, has to be defined. The csap function is very sensitive 

to the choice of p, which influences the accuracy of the achieved correction and has to be 

optimized. In this approach, accuracy of the chemometric correction depends in a great extent 

on the selection of the knots which and it can be troublesome when the peaks are not baseline 

resolved, as it frequently occurs in the analysis of complex samples. 

To circumvent this limitation, an alternative strategy based on the use of a reference-

spectra matrix (RSM) was proposed [12]. 

As shown in Figure 1, this is a straightforward strategy that exploits the spectral 

information obtained during the equilibration of the LC system or a blank gradient run to 

perform background correction during the LC run. 
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Figure 1. Step-by-step description of the workflow employing RSM based background correction. 

The RSM consists of a set of spectra of different mobile phase compositions within the 

same composition range as that employed during the sample analysis. Then, for each 

spectrum measured during the sample analysis, a reference spectrum of matching composition 

is identified in the RSM and used as reference for background correction. Based on this 

simple strategy, a number of identification parameter (IP) characteristics of the mobile phase 

composition can be used. The usefulness of the IP depends on the ability of the statistic to 

discriminate subtle differences in set of spectra. Besides, the identification and correction 

process must be fast in order to be used on the fly. Different IPs have been evaluated 

including the absorbance ratio (AR) [12] and the relative absorbance (RW) [13] at two 

defined wavenumbers r1 and r2 calculated for each spectrum s in the SM and RSM as shown 

in equations 1 and 2, respectively: 

 

𝐴𝑅  
   

 

   
  (1) 

𝑅𝑊  𝑦  
 − 𝑦  

  (2) 

 

Similarity or distance methods based on point-to-point matching can also be used as IPs. 

The correlation coefficient on the mean centered absorbance has been proposed as spectral 

similarity index [14]. The similarity index COR between two spectra sA and sB can be 

calculated as described in equation 3: 

 

  𝑅  
  
   

‖  ‖ ‖  ‖
, where    𝑠 − 𝑠 ̅ (3) 

 

The usefulness of the different proposed IPs has been assessed under different 

chromatographic conditions using different reversed and normal mobile phase systems and 

under both, isocratic and gradient conditions (see Table 1).  
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Table 1. Examples of applications employing univariate BGC methods 

 

BGC Approach Application Chromatography Detection Reference 

 
 

Column System 

Organic 

modifier [%] 

v/v 
  

CSS Polymers (PEG) C4 (150x2.1 mm, 4 µm) Methanol:H2O 30-90 FTIR, flow-cell 10 µm [11] 

CSS Polymers (PEG) C4 (150x2.1 mm, 4 µm) 2-Propanol:H2O 10-25 FTIR, flow-cell 10 µm [11] 

CSS Polymers (PEG) C4 (150x2.1 mm, 4 µm) Ethanol:H2O 10-40 FTIR, flow-cell 10 µm [11] 

AR-RSM Pesticides C18 (150×2.1 mm, 3 µm) Acetonitrile:H2O 40-99 FTIR, flow-cell 25 µm [12] 

AR-RSM Polymers (PEG) C18 (250x2 mm, 5 µm) Methanol:H2O 5-100 FTIR, flow-cell 10 µm [15] 

AR-RSM Carbohydrates NH2 (250x2 mm, 5 µm) Acetonitrile:H2O 75-55 FTIR, flow-cell 10 µm [16] 

RW-RSM Nitrophenols C18 (150x0.3 mm, 3 μm) Acetonitrile:H2O 50-65 
FTIR, micromachined nL 

flow-cell 25 µm 
[13] 

p2p-RSM Nitrophenols C18 (150x2 mm, 5 µm) Acetonitrile:H2O 35-85 FTIR, flow-cell 16.5 µm [14] 

Polyfit-RSM Carbohydrates NH2 (250x2 mm, 5 µm) Acetonitrile:H2O 75-55 FTIR, flow-cell 10 µm [17] 

Polyfit-RSM Carbohydrates NH2 (250x2 mm, 5 µm) Acetonitrile:H2O 75-55 FTIR, flow-cell 10 µm [17] 

Note: BGC stands for background correction, RSM stands for reference spectra matrix, conc stands for concentration, AR stands for absorbance ratio, RW 

stands for relative absorbance, p2p stands for point to point matching, Polyfit stands for polynomial fit, PEG stands for polyethylene glycol and FTIR 

stands for Fourier transform infrared. 
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For example, the application of the AR as IP was evaluated in a method for pesticides 

quantification in reverse phase gradient LC [12], for the determination of the critical eluent 

composition for poly-ethylene analysis [15] as well as for the quantitative determination of 

sugars in beverages [16].The absorbance ratio and a point to point matching algorithm was 

employed for the quantification of nitrophenols employing a micro-LC and a micro-machined 

nL flow cell [13] as well using standard LC-IR instrumentation [14].  

Figure 2 illustrates the background correction process of a nitrophenol standard mixture 

containing 4-nitrophenol (4-NP), 3-methyl-4-nitrophenol (3m4-NP), 2,4-dinitrophenol (2,4-

dNP) and 2-nitrophenol (2-NP). Figure 2a shows the change in the relative absorbance signal 

at the wavenumbers selected for calculating the RW and Figure 2b shows the same data set 

after background correction. After elimination of the interfering background contribution, the 

elution of analytes can be observed in the chromatogram at retention times between 8 and 11 

min. A close-up view of the elution time window is shown in Figure 2c, where characteristic 

nitrophenol bands can be observed. After background correction, a chromatogram can be 

extracted and used for quantification as shown in Figure 2d.  

 

 

Figure 2. LC-IR data obtained during gradient elution after the injection of a nitrophenol standard 

solution. Change in RW observed during the gradient (a), contour plot of the background corrected 

spectra (b), 3D plot of the background corrected spectra in the retention time window 8-13 min (c)  

and extracted chromatograms (d). 

The background correction methods have an important limitation due to the influence on 

the background correction accuracy of the size of the RSM. In order to limit the effect of this 
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drawback, an alternative approach based on the use of a reference spectral surface calculated 

from a series of polynomial fittings of the background absorption at each wavenumber in the 

RSM was proposed [17]. As the absorbance of the eluent at each wavenumber is dependent 

on its composition, this approach correlates the eluent composition during the gradient with a 

defined spectral feature related to the mobile phase composition. Two alternative parameters 

were evaluated: i) the absorbance at a defined single wavenumber (SW-Polyfit-RSM) and ii) 

the absorbance ratio at two wavenumbers (AR-Polyfit-RSM). The selected parameters have to 

be characteristic for the absolute or relative concentration of at least one of the components of 

the mobile phase. Data included in the RSM are used for the calculation of polynomial fits 

modelling background absorption at each wavenumber. The optimum degree of the calculated 

polynomial fits might vary within a user-defined range and is selected automatically 

employing the degrees of freedom adjusted R-square statistic. Then, for each spectrum 

include in the SM, a set of reference values is measured by using either the SW or AR 

parameter, and the background contribution is calculated employing the previously calculated 

polynomial regression model for this wavenumber. In the final step, a simple subtraction of 

the calculated background signal from the SM is carried out. This method was tested on 

acetonitrile: water reversed phase gradient LC data sets obtaining background correction 

accuracies comparable to that provided by AR-RSM. 

 

 

MULTIVARIATE METHODS FOR CHEMOMETRIC  

BACKGROUND CORRECTION 
 

As shown above, hyphenated LC instruments provide two-dimensional bilinear data and 

because of that methods based on factor analysis have been thoroughly employed to identify 

or correct the different sources of variation in LC data.  

Principal component analysis (PCA), simple-to-use interactive self-modeling analysis 

(SIMPLISMA) and evolving factor analysis (EFA) have been used to extract both, spectral 

information and elution profiles of analytes. 

Besides, they have also been used for the determination of the number of eluting 

compounds in LC runs with linearly independent spectra and/or eluting profiles (i.e., the 

chemical rank of the chromatographic data set), and for the chemometric resolution of 

overlapping analytes. For example, using SIMPLISMA for background correction, a critical 

step is the determination of the target analytes, as the over or under estimation of that value 

would obviously affect background correction accuracy. Here, the use of the log-

(eigenvalues) obtained from a singular value decomposition (SVD) analysis of the RSM 

matrix has been successfully used. 

On the other hand, parallel factor analysis (PARAFAC, PARAFAC2) and multivariate 

curve resolution-alternating least-squares (MCR-ALS) have been also employed to resolve 

the elution profiles and pure instrumental responses. A remarkable feature of all PARAFAC 

and MCR-ALS strategies is their second order advantage, which allows analyte quantification 

in the presence of unknown interferences. Table 2 summarizes the most innovative works 

published on the field of background correction in gradient LC set-ups during the last years, 

indicating the analytes under study and the characteristics of the chemometric data treatment 

applied. 
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Table 2. Examples of applications employing multivariate BGC methods 

 

BGC approach Application Chromatography Detection Reference 

  Column System 
Organic modifier 

[%] v/v 
  

PLS-RSM 
Pesticides 

Caffeine 

C18 (150×2.1 mm, 

3 µm) 
Acetonitrile:H2O 40-100 

FTIR, flow-cell 25 

µm 
[24] 

EBS Polymers 
C18 (150×2.1 mm, 

5 µm) 
Acetonitrile:THF 

 
DAD (flow cell) [20] 

SIMPLISMA 
Carbohydrates / 

Nitrophenols 

NH2 (250x2 mm, 5 

µm) / C18 (150x2 

mm, 5 µm) 

Acetonitrile:H2O 75-55 / 35-85 
FTIR, flow-cell 10 

and 16.5 µm 
[22] 

PCA 
Carbohydrates / 

Nitrophenols 

NH2 (250x2 mm, 5 

µm) / C18 (150x2 

mm, 5 µm) 

Acetonitrile:H2O 75-55 / 35-85 
FTIR, flow-cell 10 

and 16.5 µm 
[22] 

SBC Nitrophenols 
C18 (150x2 mm, 5 

µm) 
Acetonitrile:H2O 35-85 

FTIR, flow-cell 16.5 

µm 
[23] 

SBC 
Pharmaceutical 

substances 

C18 (150×4.6 mm, 

5 µm) 

KH2PO4 

buffer:Methanol:Acetonitrile 
85:15 - 55:25:20 DAD (flow cell) [25] 

Note: BGC stands for background correction, RSM stands for reference spectra matrix, conc stands for concentration, PLS stands for partial least squares, EBS 

stands for eluent background spectrum subtraction, SIMPLISMA stands for simple-to-use interactive self-modeling analysis, PCA stands for principal 

component analysis, SBC stands for science based calibration, FTIR stands for Fourier transform infrared and DAD stands for diode array detector. 
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Edelmann et al. [18] showed the usefulness of MCR–ALS for the quantification of co-

eluting analytes in wine samples analyzed under isocratic conditions in an on-line LC-Fourier 

transform infrared spectrometry (LC-FTIR) system. Using isocratic conditions, background 

correction was initially performed by subtracting the average baseline spectrum acquired 

before co-elution of the target analytes and also using first-derivative spectra to remove 

baseline drifts. Ruckebusch et al. [19] proposed the use of MCR-ALS for the analysis of gel 

permeation chromatography-FTIR (GPC-FTIR) data obtained during the analysis of 

butadiene rubber and styrene butadiene rubber blends. Results obtained provided in-depth 

knowledge of polymers along the molecular weight distribution. 

In 2004 Boelens et al. [20] developed an innovative and efficient method for the eluent 

background spectrum subtraction (EBS) in LC coupled to spectroscopic techniques (e.g., 

Raman, UV-Vis). In this method, data measured during the LC run was split into two blocks. 

The first block consists of the matrix where no analytes are present (i.e., the background 

spectral subspace or B-subspace), and the other part is formed by spectra in which eluent and 

analytes are present (i.e., the elution spectra). Initially, variation in the eluent spectra at 

baseline level is modeled in the background spectral subspace by PCA. Here, the number of 

principal components is selected according to the empirical IND algorithm. Then, eluent 

background correction of the elution spectra the PCA is carried out using the PCA loading 

vectors. This approach assumes, as abovementioned, that the elution spectra are a linear 

combination of analyte and background spectra, latter being described by the PCA loading 

vectors. For background correction, these are fitted under the elution spectra by an 

asymmetric least-squares (asLS) method. The asLS algorithm assumes that the analyte 

spectrum consists of positive values only and negative residuals of the least-squares fit are 

penalized while performing the regression in an iterative way. For application of the EBS 

method, the elution time window of the analytes has to be known in advance. This 

prerequisite, might limit its applicability. If the identification of the elution window of the 

analytes is carried out using an additional detection system (e.g., DAD), the presence of non-

UV absorbing analytes might lead to a wrong estimation of the number of principal 

components required to describe the background absorption of the analytes subspace. 

Besides, a second limitation is that it cannot be carried out on-the-fly because the data set has 

to be split and analyzed prior to background correction. 

In 2006, István et al. [21] employed PARAFAC and PARAFAC2 chemometric 

background correction on simulated on-line LC-IR runs. Although PARAFAC2 performed 

better than PARAFAC, it did not give correct decompositions and a new method named 

objective subtraction of solvent spectrum with iterative use of PARAFAC and PARAFAC2 

(OSSS–IU–PARAFAC and OSSS–IU–PARAFAC2, respectively) was developed to improve 

results. The OSSS–IU–PARAFAC2 was found to be useful even in the presence of extensive 

spectral overlap between the target analytes and the background spectra, and also for analytes 

at low concentrations. Whilst the new method improved the accuracy of the decomposition, 

the restrictions imposed by this approach (e.g., constant eluent composition or constant 

elution profiles of any given component among different LC runs) limited its practical 

applicability as the trilinear assumption excludes its application of gradient elution. Besides, 

for a proper use of the algorithm it requires the use of more than one chromatographic run 

with different compositions. 

The use of MCR-ALS is troublesome when the background absorption is very intense 

compared to the signal of the analytes of interest as it occurs in hyphenated LC-IR systems. 
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While chemometric background correction is difficult under both, isocratic and gradient 

elutions, changes in shape and spectral intensity during gradient runs might increase the 

chemical rank of the data matrices complicating MCR-ALS data analysis. In this situation, 

the previous removal of a significant part of the solvent background contributions has shown 

to be effective to facilitate MCR-ALS analysis and so, to increase the accuracy of the 

resolution. Two strategies approaches based on SIMPLISMA and PCA were evaluated for 

chemometric background correction (see Figure 3).  

 

 

Figure 3. Step-by-step description of the workflow employing PCA/SIMPLISMA based background 

correction. 

After an initial chemometric background correction step, MCR-ALS provided improved 

signal-to-noise ratios, removed remaining mobile phase and background signal contributions 

and allowed the resolution of overlapped chromatographic peaks [22]. Moreover, MCR-ALS 

can be applied exploiting the use of augmented data matrices and/ or equality constraints for 

concentrations or spectra that might improve results.  

Another alternative involving Science Based Calibration (SBC) [23] has been proposed. 

Here, a reference spectra matrix and a reference spectrum of the analyte of interest are used to 

extract quantitative chromatographic profiles. The SBC approach is based on the fact that a 

spectrum can be viewed as the sum of the analyte signal in dependence on its concentration 

and absorbance that is not derived from the analyte (i.e., instrumental noise, interfering matrix 

compounds etc.). In the same way, for a set of spectra, the signal can be seen as the sum of 

the analyte signal described by the mean analyte spectrum and its standard deviation and the 

spectral noise defined as the mean noise value and its covariance matrix. When the analyte 

concentration is kept constant, differences between the spectra are only due to i) variations in 

the concentrations of other sample components and ii) instrumental noise.  
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Table 3. Method comparison 

 

BGC approach 
RSM 

required 

Reference spectra 

required 

Instrument 

stability 
Gradient 

Recovery of 

corrected spectra 

On-the-fly 

BGC 

# User-defined 

variables 

CSS No No Not critical Yes Yes No Low 

RSM-AR RW, RSM-p2p Yes No Highly critical Yes Yes Yes Low 

RSM-Polyfit Yes No Highly critical Yes Yes Yes Low 

PCA SIMPLISMA-RSM Yes No Critical Yes Yes No Medium 

EBS No No Critical Yes Yes No Medium 

MCR-ALS No No Not critical No Yes No High 

PARAFAC/PARAFAC2 No No Critical No Yes No High 

SBC No Yes Not critical Yes No No Medium 
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Consequently, after mean centering, under these conditions the spectra represent only 

noise. Using this so called ―noise matrix‖, and a reference spectrum from the analyte, a 

regression model can be calculated which can be employed to predict the concentration of the 

analyte in new sample spectra.  

The performance of the method depends mainly on the representativeness of the 

employed noise matrix and the quality of the available reference spectrum. Therefore, SBC is 

well fitted to important characteristics of on-line LC-IR systems.  

On the one hand, the target analytes are often known and their spectra can be obtained 

and so, used as the ‗analyte signal‘ and, on the other hand, if the IR spectrum of the mobile 

phase is acquired during a blank gradient LC run or during the re-equilibration of the system 

after the run, the resulting spectral matrix can be used as the ‗noise‘ matrix as it includes both 

interfering spectra corresponding to the changes in the background absorption due to the LC 

gradient and instrumental noise. 

The usefulness of this approach for background correction has been assessed by means of 

the injection of a standard solution containing four nithophenols into an on-line LC-IR 

system.  

The advantage of this multivariate approach is that background correction and resolution 

of analytes of interest and other matrix compounds can be achieved in one step. However, it is 

not possible to recover background corrected analyte spectra. 

 

 

METHOD COMPARISON 
 

In Table 3 an overview over the characteristics and constraints of each of the discussed 

background correction methods can be found. Fundamentally, the described approaches are 

restrained by the information necessary for computing background correction as well as the 

instrumental conditions of applicability.  

For example, RSM-based methods require the availability of a suitable RSM, whereas for 

the SBC approach, a reference spectrum of the analytes is necessary.  

On the other hand side, for some approaches instrumental stability is of great importance 

for accurate background correction, whereas other methods can only be employed efficiently 

under isocratic elution conditions, hence limiting drastically the number of possible 

applications. 

Furthermore, it should be clear for a proper selection of the correction method, which 

information has to be recovered from the background corrected data. Most of the described 

methods allow the calculation of background corrected spectra or spectral profiles. However, 

for example the SBC approach do not provides this information. It might also be relevant to 

know if on-the-fly background correction is necessary for implementing an analytical tool. 

There have been developed only very few methods allowing to correct spectra real-time in 

on-line gradient systems. 

Finally, it can be relevant to consider the number of user defined variables that are 

implied in the correction process. Generally, univariate methods are simpler and require less 

user-interaction than multivariate methods. In some cases, the optimization of the background 

correction step can be time consuming and challenging for each new application. 

 

Complimentary Contributor Copy



Chemometric Background Correction in Liquid Chromatography 95 

CONCLUSION 
 

In summary, a panel of univariate and multivariate background correction methods for 

spectroscopic detection in LC has been proposed. The selection of the most appropriate 

method depends on the experimental conditions and the available information and it may vary 

depending on the analytical problem. As a rule of thumb, mathematically simple methods are 

preferable over more complex approaches because they usually have fewer restrictions and 

require a lower number of user-defined variables. Besides, no complex data pre-treatments 

are needed and the need for previous knowledge on matrix compounds is limited. 

Furthermore, the instrumental conditions as well as the spectral characteristics of analytes, 

matrix and mobile phase have to be taken into account. Some approaches are more sensitive 

to detector drifts or retention time changes. Another important point to consider is the need 

for on-the-fly background correction as well as the need for recovering background corrected 

analyte spectra. 
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Abstract

The area of feasible solutions (AFS) is a low dimensional representation of the

set of all possible nonnegative factorizations of a given spectral data matrix. The

AFS can be used to investigate the so-called rotational ambiguity of MCR methods

in chemometrics, and the AFS is an excellent starting point for feeding in additional

information on the chemical reaction system in order to reduce the ambiguity up to a

unique factorization.

The FAC-PACK program package is a freely available and easy-to-use Matlab tool-

box (with a core written in C and FORTRAN) for the numerical AFS computation for

two- and three-component systems. The numerical algorithm of FAC-PACK is based

on the inflation of polygons and allows a stable and fast computation of the AFS. In

this contribution we explain all functionalities of the FAC-PACK software and demon-

strate its application to a consecutive reaction system with three components.

1. Introduction

Multivariate curve resolution techniques in chemometrics suffer from the non-uniqueness

of the nonnegative matrix factorization D = CA of a given spectral data matrix D ∈
R

k×n. Therein C ∈ R
n×s is the matrix of pure components concentration profiles and

A ∈ R
s×n is the matrix of the pure component spectra. Further, s denotes the number

of independent chemical components. This non-uniqueness of the factorization is often

∗E-mail address: mathias.sawall@uni-rostock.de
†E-mail address: klaus.neymeyr@uni-rostock.de
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called the rotational-ambiguity. The set of all possible factorizations of D into nonnegative

matrices C and A can be presented by the so-called Area of Feasible Solutions (AFS).

The first graphical representation of an AFS goes back to Lawton and Sylvestre in

1971 [10]. They have drawn for a two-component system the AFS as a pie-shaped area

in the plane; this area contains all pairs of the two expansion coefficients with respect to

the basis of singular vectors, which result in nonnegative factors C and A. In 1985 Borgen

and Kowalski [4] extended AFS computations to three-component systems by the so-called

Borgen plots, see also [14, 22, 1, 2].

In recent years, methods for the numerical approximation of the AFS have increas-

ingly gained importance. Golshan, Abdollahi and Maeder presented in 2011 a new idea

for the numerical approximation of the boundary of the AFS for three-component systems

by chains of equilateral triangles [5]. This idea has even been extended to four-component

systems [6].

An alternative numerical approach for the numerical approximation of the AFS is the

polygon inflation method which has been introduced in [18, 19, 20]. The simple idea behind

this algorithm is to approximate the boundary of each segment of the AFS by a sequence of

adaptively refined polygons. A numerical software for AFS computations with the polygon

inflation method is called FAC-PACK and can be downloaded from

http://www.math.uni-rostock.de/facpack/

The current software revision 1.1 of FAC-PACK appeared in February 2014.

The aim of this contribution is to give an introduction into the usage of FAC-PACK.

In Section 2 a sample model problem is introduced, the initial data matrix is generated

in MATLAB and some functionalities of the software are demonstrated. In Section 3 this

demonstration is followed by the Users’ guide to FAC-PACK, which appears here for the

first time in printed form.

2. A Practical Case Study

2.1. Generation of Test Data

Let us consider the consecutive system of reactions X → Y → Z with kinetic constants

k1 = 0.75 and k2 = 0.25. The time interval for the concentration factor C is assumed to

be t ∈ [0, 20] with an equidistant discretization by k = 21 grid points. The spectral factor

A is constructed on the wavelength interval λ ∈ [0, 100] with an equidistant discretization

which uses n = 101 points. The three Gaussian functions (plus a constant)

a1(λ) = 0.95 exp(−
(λ − 20)2

500
) + 0.3,

a2(λ) = 0.9 exp(−
(λ − 50)2

500
) + 0.25,

a3(λ) = 0.7 exp(−
(λ − 80)2

500
) + 0.2

define the rows of A by their evaluation along the discrete wavelength axis. According to

the bilinear Lambert-Beer model the spectral data matrix D = CA for this reaction is a

Complimentary Contributor Copy



How to Compute the Area of Feasible Solutions 99

21 × 101 matrix with the rank 3. This model problem is a part of the FAC-PACK software;

see the data set example2.mat in Section 3.3.3. The pure component concentration profiles

and spectra together with the mixture spectra for the sample problem are shown in Figure

1.

The MATLAB code to generate data matrix D reads as follows:

t = linspace(0,20,21)’;

x = linspace(0,100,101)’;

k = [0.75 0.25];

C(:,1) = exp(-k(1)*t);

C(:,2) = k(1)/(k(2)-k(1))*(exp(-k(1)*t)-exp(-k(2)*t));

C(:,3) = 1-C(:,1)-C(:,2);

A(1,:) = 0.95*exp(-(x-20).ˆ2./500)+0.3;

A(2,:) = 0.9*exp(-(x-50).ˆ2./500)+0.25;

A(3,:) = 0.7*exp(-(x-80).ˆ2./500)+0.2;

D = C*A;

save(’example2’, ’x’, ’t’, ’D’);

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

t

Factor C

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

λ

Factor A

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

λ

Mixture spectra D

Figure 1. Pure component concentration profiles and spectra together with the mixture

spectra for the sample problem presented in Section 2.1.

2.2. AFS Computation with FAC-PACK

Here we consider the factorization problem which is an inverse problem compared to the

construction of D in Section 2.1. For given D we are looking for matrix factorizations

D = CA with nonnegative factors C and A. The pair of matrices (C, A) as constructed

in Section 2.1 is one possible factorization of D within the set of all nonnegative matrix

factorizations of D. The set of all nonnegative factorizations is described by the area of

feasible solutions (AFS), which is a certain low dimensional representation of these feasible

matrix pairs. For geometric techniques to compute the AFS see [4, 14] and the references

therein. For numerical methods to compute the AFS see [1, 5, 2, 6, 18, 19].

In FAC-PACK the computation of the AFS is based on the polygon inflation algorithm,

which is explained in [18, 19]. The users’ guide to FAC-PACK is contained in Section 3; a

quick introduction is given in Section 3.1 and a detailed introduction is given in Section 3.2.

The program starts with the import of the spectral data, see Section 3.3.2. In the following

we consider the model problem from Section 2.1. For this sample data there is no need for
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Figure 2. Initial nonnegative matrix factorization (NMF) for the model problem as com-

puted by FAC-PACK.

a baseline correction. Otherwise the baseline correction module as introduced in Section

3.1.1 can be used.

The first step of the polygon inflation algorithm is the computation of a singular value

decomposition (SVD). The SVD is computed automatically after the data matrix is loaded.

For the given sample problem the four largest singular values are

σ1 = 23.920, σ2 = 7.444, σ3 = 2.991, σ4 = 0.000.

Since σ4 = 0, the rank of D equals 3 and D represents a three-component system. After

selecting 3 as the number of components in the AFS computation module, an initial non-

negative matrix factorization (NMF) can be computed, see Section 3.5.3. This initial NMF

often has no physical or chemical meaning and is sometimes called an abstract factorization.

However, this initial NMF provides the starting point from which the polygon inflation al-

gorithm inflates the polygons. The initial NMF for the model problem is presented in Figure

2.

The set of all nonnegative matrix factorizations of D is represented by the area of

feasible solutions (AFS). For a three-component system the AFS is a subset of the two-

dimensional plane, see Section 3.5.4 and [18] for the mathematical background of this

low-dimensional representation. Section 3.5.4 additionally contains the setting options for

the various control parameters of the polygon inflation algorithm and also the options on

the algorithmic variants of the polygon inflation algorithm. The resulting area of feasible

solutions (AFS) for the spectral factor A is denoted by MA and is shown in Figure 3. This

AFS consists of three separated segments (isolated subsets).

Each of the three segments of the spectral AFS MA is approximated by an adaptively

generated polygon. The AFS MC for the concentration factor C can be computed in a

similar way; then the complete algorithm is applied to the transposed data matrix DT .

In some cases the AFS consists of only one segment with a hole or of more than three

segments. Then the AFS is computed by a modification of the method which is called

the inverse polygon inflation algorithm [19]. In this modified algorithm first the superset

FIRPOL of the AFS is computed and in a second step points not belonging to the AFS are

eliminated by inflation a second polygon in the interior of FIRPOL.
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Figure 3. The spectral AFS MA for the model problem from Section 2.1. The three markers

(+) indicate the components of the initial NMF. These three points are the starting points

for the polygon inflation method. Furthermore, the series of points marked by the symbol ◦
represent the single spectra, which are rows of the spectral data matrix D.

2.3. Reduction of the Rotational Ambiguity by the Complementarity

Theorem

The bilinear Lambert-Beer model D = CA results in two factors and so two areas of

feasible solutions can be constructed. The spectral AFS MA has been considered in Section

2.2. The concentrational AFS MC can be constructed in the same way if the algorithm is

applied to the transposed data matrix DT . The simultaneous representation ofMA and MC

can be very advantageous. In this way restrictions can be analyzed of the partial knowledge

of one factor on the other factor. This mutual dependence of the factors is a consequence of

the factorization

D = UΣV T = UΣT−1

︸ ︷︷ ︸

C

TV T
︸ ︷︷ ︸

A

.

where partial knowledge of A implies some restrictions on the matrix elements of the s× s

matrix T , this implies some restrictions on T−1 and so the factor C is to some extent prede-

termined. Therein s is the rank of D, which is the number of independent components. A

systematic analysis of these restrictions appeared in [17] and has led to the complementarity

theorem. The application of the complementarity theorem to the AFS is analyzed in [20],

see also [3].

For the important case of an s = 3-component system a given point in one AFS (either a

given spectrum or concentration profile) is associated with a straight line in the other AFS.

The form of this straight line is specified by the complementarity theorem. Only points

which are located on this line and which are elements of the AFS are consistent with the

pre-given information. In case of a four-component system a given point in MA (or MC)

is associated with a plane in MC (or MA) and so on.

For three-component systems this simultaneous representation of MA and MC to-

gether with a representation of the restrictions of the AFS by the complementarity theorem

is a functionality of the Complementarity & AFS module of FAC-PACK. This module, its
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options and results are explained in the users’ guide in Section 3.1.3. This module gives the

user the opportunity to fix a number of up to three points in the AFS. These points corre-

spond to known spectra or known concentration profiles. For example such information can

be available for the reactants or for the final products of a chemical reaction. Typically any

additional information on the reaction system can be used in order to reduce the rotational

ambiguity for the remaining components. Within the AFS computation module the lock-

ing of spectra (or concentration profiles) results in smaller AFS segments for the remaining

components, see Section 3.5.6. Here we focus on the simultaneous representation of the

spectral and the concentrational AFS and the mutual restrictions of the AFS by adding par-

tial information on the factors. Up to three points (for a three-component system) in an AFS

can be fixed. These three points determine a triangle in this AFS and also a second triangle

in the other AFS. These two triangles correspond to a factorization of D into nonnegative

factors C and A. All this is explained in the users’ guide in Section 3.6. The reader is

invited to experiment with the MATLAB GUI of FAC-PACK, to move the vertices of the

triangles through the AFS by using the mouse pointer and to watch the resulting changes

for all spectra and concentration profiles. This interactive graphical representation of the

system provides the user with the full control of the factors and supports the selection of a

chemically meaningful factorization.

In Figure 4 the results of the application of the Complementarity & AFS module are

shown for the sample problem from Section 2.1. The four rows of this figure show the

following:

1. First row: A certain point in the AFS MA is fixed and the associated spectrum A(1, :)

is shown. This point is associated with a straight line in the concentrational AFS MC .

This line intersects two segments of MC . The complementary concentration profiles

C(:, 2) and C(:, 3) are restricted to the two continua of the intersection. Up to now

no concentration profile is uniquely determined.

2. Second row: A second point in MA is fixed and this second spectrum A(2, :) is

shown. A second straight line is added to MC by the complementarity theorem.

The intersection of these two lines in MC uniquely determines the complementary

concentration C(:, 3).

3. Third row: Three points are fixed in MA which uniquely determines the factor A.

The triangle in MA corresponds with a second triangle in MC . All this determines

a nonnegative factorization D = CA.

4. Fourth row: A second nonnegative factorization is shown, which exactly reproduces

the original components of the model problem from Section 2.1.

2.3.1. Soft Constraints and the AFS

Multivariate curve resolution methods often use soft-constraints in order to favor solutions

which are particularly smooth, monotone, unimodal or that have other comparable proper-

ties. While moving vertices of triangle-factors interactively through the AFS the user might

be interested to see where in the AFS solutions with certain properties can be found.
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Figure 4. Successive reduction of the rotational ambiguity. First row: one fixed spectrum

is associated with a straight line in MC . Second row: two fixed spectra in MA result in

two straight lines in MC . The point of intersection uniquely determines one concentration

profile. Third row: three fixed points in MA uniquely determine a complete factorization

D = CA. Fourth row: This complete factorization reproduces the original factors from

Section 2.1.

To this end the Complementarity & AFS module of FAC-PACK provides the option to

plot the level set contours for certain constraint functions within the AFS window. Contour

plots are available for estimating the

• monotonicity of the concentration profiles (in MC),

• the smoothness of spectra (in MA) or concentration profiles (in MC ),

• the Euclidean norm of the spectra (in MA) in order to estimate the total absorbance

of the spectra,
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• and the closeness to an exponentially decaying function (in MC) in order to find

concentration profiles of reactants which are degraded in a first order reaction.

In Figure 5 two contour plots are shown. First, in MA the closeness of a concentration

profile to an exponentially decaying function is shown. The smallest distance, which is

shown by the lightest grey has the coordinates (α, β) ≈ (7.2714,−8.5516). This point is

the same which is shown in the fourth row and third column of Figure 4 and which can be

identified with the reactant X in the model problem from Section 2.1. Second, the contours

of the Euclidean norm of the spectra within the MA window. These contours serve to

estimate the total absorbance of the spectra and can for instance be used in order to identify

spectra with few and narrow peeaks.
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Closeness to exponentially decaying function in MC
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Figure 5. Contour plots within the (α, β)-plane close to the areas of feasible solutionsMC

and MA for the data from Section 2.1. Left: Contours of closeness of a concentration

profile to an exponentially decaying function in the MC window. Right: The contour plot

of the Euclidean norm (total absorbance) of the pure component spectra within the MA

window.

3. Users’ Guide to FAC-PACK

Here the users’ guide on the revision 1.1 of FAC-PACK follows.

FAC-PACK is an easy-to-use software for the computation of nonnegative multi-com-

ponent factorizations and for the numerical approximation of the area of feasible solutions

(AFS). Revision 1.1 contains new functionalities for the reduction of the rotational ambi-

guity.

Important features of FAC-PACK are:

• a fast C program with a graphical user interface (GUI) in MATLAB,

• baseline correction of spectral data,

• computation of a low-rank approximation of the spectral data matrix and initial non-

negative matrix factorization,
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• computation of the spectral and concentrational AFS by the polygon inflation method,

• applicable to two- and three-component systems,

• live-view mode and factor-locking for a visual exploration of all feasible solutions,

• reduction of the AFS by factor-locking,

• simultaneous representation of the spectral and concentrational AFS,

• reduction of the rotational ambiguity by the complementarity theorem.

3.1. Quick Start

Download the FAC-PACK software from

http://www.math.uni-rostock.de/facpack/

Then extract the software package facpack.zip, open a MATLAB desktop window and

start facpack.m. The user can now select one of the three modules of FAC-PACK, see Figure

6.

Figure 6. The start window of FAC-PACK.

3.1.1. Baseline Correction Module

Step 1: If the baseline needs a correction (e.g., if a background subtraction has partially

turned the series of spectra negative), then the Baseline correction button can be

pressed. This simple correction method only works for spectral data in which fre-

quency windows with a distorted baseline are clearly separated from the main signal

groups of the spectrum; see Figure 7.

Step 2: Load the spectral data matrix. Sample data shown above is example0.
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Figure 7. Baseline correction within 6 steps.

Step 3: One or more frequency windows should be selected in which more or less only the

distorted background signal is present and which are clearly separated from the rele-

vant spectral signals. In each of these frequency windows (marked by columns) the

series of spectra is corrected towards zero. However, the correction is applied to the

full spectrum. In order to select these frequency windows click the left mouse button

within the raw data window, move the mouse pointer and release the mouse button.

This procedure can be repeated.

Step 4: Select the correction method, e.g., polynomial degree 2.

Step 5: Compute the corrected baseline.

Step 6: Save the corrected data.

3.1.2. AFS Computation Module

Step 1: Press the Button AFS computation in order to compute the AFS.

Step 2: Select example2 as sample spectral data matrix.

Step 3: Select 3 as the number of components.

Step 4: Compute an initial nonnegative matrix factorization (NMF).

Step 5: Choose Polygon inflation.

Step 6: Compute the AFS which consists of three segments.

Step 7: Plot the range of spectral factors associated with segment 1 (leftmost segment) of the

AFS.

A second test problem is shown in Figure 9:

Step 1: Select example3 as the data matrix.

Step 2: Select 3 as the number of components.

Step 3: Compute an initial nonnegative matrix factorization (NMF).

Step 4: Choose Inverse polygon inflation. The AFS consists of only one segment with a

hole.

Step 5: Compute the AFS.

Step 6: Select live-view on.

Step 7: Move the mouse pointer through the AFS and watch the interactively computed so-

lutions.
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Figure 8. Quickstart in 6 steps.

3.1.3. Complementarity & AFS Module

Step 1: Press the button Complementarity & AFS to activate this GUI.

Step 2: The sample data example2 can be selected.

Step 3: Select FIRPOL to plot two supersets including the AFS for C and A and/or select

full to show the AFS for the spectral and the AFS for concentrational factor. The sets

FIRPOL can easily and quickly be computed; the computation of the AFS for C and

for A may be time-consuming.

Step 4: Click the first button in the AFS live-view/factor A input block and move the mouse

pointer through the spectral AFS (factor A). A first spectrum A(1, :) can be locked by

clicking in the AFS. The associated spectrum is shown in the spectral factor window

(right-upper window).

Step 5: Click the second button and move the mouse pointer once again through the AFS for

A. While moving the mouse pointer through the AFS a second spectrum A(2, :) is

shown in the spectral factor window together with the unique (by the complemen-

tarity theorem) concentration profile of the remaining third component. A certain

second spectrum A(2, :) can be locked by clicking in the AFS.

Step 6: Finally, click the third button and the spectrum A(3, :) can be selected by moving

the mouse pointer through the spectral AFS. The resulting predictions on the spectral

factor are shown interactively. This third spectrum can also be locked.

Step 7: These last three buttons and also the buttons first, second, third in the AFS live-

view/factor C block can be clicked and then a spectrum or concentration profile can

be modified by moving the mouse pointer through the AFS. This allows to modify

the two triangles in the spectral and concentrational AFS which uniquely determine
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Figure 9. Quick start with live-view mode in 7 steps.

a feasible factorization of the given spectral data matrix.

In the following sections the functionalities of FAC-PACK are explained in detail.

3.2. Introduction to FAC-PACK

FAC-PACK is a software for the computation of nonnegative multi-component factoriza-

tions and for the numerical approximation of the area of feasible solutions (AFS). Currently,

the software can be applied to systems with s = 2 or s = 3 components.

Given a nonnegative matrix D ∈ R
k×n, which may even be perturbed in a way that

some of its entries are slightly negative, a multivariate curve resolution (MCR) technique

can be used to find nonnegative matrix factors C ∈ R
k×s and A ∈ R

s×n so that

D ≈ CA. (1)

Some references on MCR techniques are [10, 7, 12, 11, 15]. Typically the factorization

(1) does not result in unique nonnegative matrix factors C and A. Instead a continuum of

possible solutions exists [12, 22, 8]; this non-uniqueness is called the rotational ambiguity

of MCR solutions. Sometimes additional information can be used to reduce this rotational

ambiguity, see [9, 16] for the use of kinetic models.

The most rigorous approach is to compute the complete continuum of nonnegative ma-

trix factors (C, A) which satisfy (1). In 1985 Borgen and Kowalski [4] found an approach

for a low dimensional representation of this continuum of solutions by the so-called area

of feasible solutions (AFS). For instance, for a three-component system (s = 3) the AFS
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Figure 10. The complementarity & AFS module.

is a two-dimensional set. Further references on the AFS are [21, 14, 22, 1]. For a nu-

merical computation of the AFS two methods have been developed: the triangle-boundary-

enclosure scheme [5] and the polygon inflation method [18]. FAC-PACK uses the polygon

inflation method.

FAC-PACK works as follows: First the data matrix D is loaded. The singular value

decomposition (SVD) is used to determine the number s of independent components un-

derlying the spectral data in D. FAC-PACK can be applied to systems with s = 2 or s = 3
predominating components. Noisy data is not really a problem for the algorithm as far

as the SVD is successful in separating the characteristic system data (larger singular values

and the associated singular vectors) from the smaller noise-dependent singular values. Then

the SVD is used to compute a low rank approximation of D. After this an initial nonnega-

tive matrix factorization (NMF) is computed from the low rank approximation of D. This

NMF is the starting point for the polygon inflation algorithm since it supplies two or three

points within the AFS. From these points an initial polygon can be constructed, which is a

first coarse approximation of the AFS. The initial polygon is inflated to the AFS by means

of an adaptive algorithm. This algorithm allows to compute all three segments of an AFS

separately. Sometimes the AFS is a single topologically connected set with a hole. Then

an ”inverse polygon inflation” scheme is applied. The program allows to compute from the

AFS the continuum of admissible spectra. The concentration profiles can be computed if

the whole algorithm is applied to the transposed data matrix DT . Alternatively, the spectral

and the concentrational AFS can be computed simultaneously within the “Complementarity

& AFS” graphical user interface (GUI).

FAC-PACK provides a live-view mode which allows an interactive visual inspection of
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the spectra (or concentration profiles) while moving the mouse pointer through the AFS.

Within the live-view mode the user might want to lock a certain point of the AFS, for

instance, if a known spectrum has been found. Then a reduced and smaller AFS can be

computed, which makes use of the fact that one spectrum is locked. For a three-component

system this locking-and-AFS-reduction can be applied to a second point of the AFS.

Within the GUI ”Complementarity & AFS” the user can explore the complete factor-

ization D = CA simultaneously in the spectral and the concentrational AFS. The factoriza-

tion D = CA is represented by two triangles. The vertices of these triangles can be moved

through the AFS and can be locked to appropriate solutions. During this procedure the pro-

gram always shows the associated concentration profiles and spectra for all components. In

this way FAC-PACK gives the user a complete and visual control on the factorization. It is

even possible to import certain pure component spectra or concentration profiles in order

to support this selection-and-AFS-reduction process within the ”Complementarity & AFS”

GUI.

3.3. Get Ready to Start

Please download FAC-PACK from

http://www.math.uni-rostock.de/facpack/

Then extract the file facpack.zip. Open a MATLAB desktop and run facpack.m.

This software is shareware that can be used by private and scientific users. In all other

cases (e.g. commercial use) please contact the authors. We cannot guarantee that the soft-

ware is free of errors and that it can successfully be used for a particular purpose.

3.3.1. Program Structure

The current revision of FAC-PACK consists of three graphical user interface (GUI) windows

to solve the following problems in multivariate curve resolution:

1. Correction of the baseline for given spectroscopic data or pre-processed data, e.g.,

after background subtraction,

2. Computation of the area of feasible solutions for two- and three-component systems,

3. Simultaneous representation of the spectral and concentrational AFS and interactive

reduction of the rotational ambiguity up to uniqueness by means of the complemen-

tarity theorem [17, 20].

Once FAC-PACK is started it is necessary to select one of the three GUIs ”Baseline

correction”, ”AFS computation” or ”Complementarity & AFS”. No additional MATLAB

toolboxes are required to run the software.

Baseline correction This GUI has the following two windows:

1. Raw data window (Left window): The raw data window shows the k raw spectra

which are the rows of the data matrix D ∈ R
k×n.
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2. Baseline corrected data window (Right window): This window shows the control pa-

rameters for the baseline computation together with the corrected spectra. Seven

simple functions (polynomials, Gaussian- and Lorentz curves) can be used to ap-

proximate the baseline.

AFS computation The GUI uses four windows:

1. Data window (Upper-left window): The data window shows the k rows (spectra) of

the data matrix D ∈ R
k×n in a 2D-plot. The number of spectra k is printed together

with the number of spectral channels n. The four largest singular values of D are

shown. By transposing the data matrix D it is possible to compute the AFS for the

concentration factor C (instead of the AFS for the spectral factor A).
2. NMF window (Upper-right window): This window allows to set the number of com-

ponents to s = 2 or s = 3 and to compute an initial NMF. The smallest minimal

components of C and A are printed. The figure shows the profiles of the so-called

abstract matrix factors. The buttons allow to compute the profiles of C and/or A.
3. AFS window (Lower-left window): Various control parameters allow to make cer-

tain settings for the AFS computation in order to control the approximation quality

or maximal number of edges. Pressing the Compute AFS button starts the AFS

computation. The live-view mode is active after the AFS has been drawn. Just move

the mouse pointer to (and through) the AFS.
4. Factor window (Lower-right window): This window shows the spectral factors (or

concentration profiles if the transpose option has been activated in the first window)

for the grid points shown in the AFS window.

Complementarity & AFS The GUI is built around four windows and a central control

bar:

1. Pure factor windows (Upper row): These windows show three concentration profiles

and three spectra of a factorization D = CA which is computed by a step-wise

reduction of the rotational ambiguity for a three-component system.
2. C, A - AFS windows (Lower row): Here FIRPOL, a superset which includes the

AFS, and/or the AFS can be shown for the factors C and A. A feasible factorization

D = CA is associated with two triangles whose vertices represent the concentration

profiles and spectra.
3. Control bar (Center): Includes all control parameters for the computations, the live-

view mode, the import of pure component spectra or concentration profiles as well as

the control buttons for adding contour plots on certain soft constraints.

3.3.2. Importing Initial Data

Spectral data are imported to FAC-PACK by means of a MAT-file ∗.mat. This file must

contain the matrix D ∈ R
k×n whose rows are the k spectra. Each spectrum contains

absorption values at n frequencies. The file may also contain a vector x with n components

representing the spectral wavenumbers/frequencies and a time-coordinates vector t ∈ R
k.

The spectral data matrix D is loaded by pressing one of the buttons (1)1, (18) or (64)

1Red numbers refer to Section 3.7.
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depending on the active GUI. The dimension parameters k and n are shown in the GUI.

The four largest singular values are shown in the fields (22)-(25) or (71)-(74). These sin-

gular values allow to determine the numerical rank of the data matrix and are the basis for

assigning the number of components s.

3.3.3. Sample Data

FAC-PACK provides some sample data matrices:

example0.mat: k = 51 spectra, n = 201 channels, s = 3 components with a

baseline turning negative to demonstrate the baseline correction.

example1.mat: k = 51 spectra, n = 101 channels, s = 2 components.

example2.mat: k = 21 spectra, n = 101 channels, s = 3 components,

the AFS has three clearly separated segments.

example3.mat: k = 21 spectra, n = 101 channels, s = 3 components,

the AFS is one topologically connected set with a hole.

example4.mat: some random noise has been added to data matrix D given in

example2.mat, the AFS has three clearly separated segments.

3.3.4. External C-Routine

All time-consuming numerical computations are externalized to a C-routine in order to

accelerate FAC-PACK. This C-routine is AFScomputationSYSTEMNAME.exe, wherein

SYSTEMNAME stands for your system including the bit-version. For example AFScom-

putationWINDOWS64.exe is used on a 64 bit Windows system. The external routine is

called if any of the buttons Initial nmf (30), Compute AFS (43), no. 1 (57) or no. 2 (59)

is pressed. Pre-compiled versions of the C-routine for the following systems are parts of

the distribution:

- Windows 32/64 bit,

- Unix 32/64 bit and

- Mac 64 bit.

The execution of the external routine can always be stopped by CTRL + C in the com-

mand window. If the C-routine takes too much computation time, the reason for this can be

large values for k, n, max fcls (40) or max edges (41) or too small values for ε-bound

(38) or δ-stopping (39).

3.3.5. Further Included Libraries

The C-routine AFScomputationSYSTEMNAME.exe includes the netlib library lapack

and the ACM routine nl2sol. Any use of FAC-PACK must respect

the lapack license, see http://www.netlib.org/lapack/LICENSE.txt, and

the nl2sol license, see http://www.acm.org/publications/policies/softwarecrnotice.

3.4. Baseline Correction Module

AFS computations depend sensitively on distorted baselines and negative components in the

spectral data. Such perturbing signals can pretend further components in the reaction system
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and negative components are not consistent with the nonnegative factorization problem.

The Baseline correction GUI tries to correct the baseline and is accessible by pressing the

button Baseline correction on the FAC-PACK start window, see a screen shot on page 129.

Data loading is explained in Section 3.3.2. The Transpose button (2) serves to transpose

the data matrix D.

The Baseline correction GUI is a simple tool for spectral data preprocessing. It can be

applied to series of spectra in which the distorted baseline in some frequency windows is

well separated from the relevant signal. We call such frequency intervals, which more or

less show the baseline, zero-intervals. The idea is to remove the disturbing baseline from

the series of spectra by adapting a global correction function within in the zero-intervals to

the baseline. See Figure 11 where four zero-intervals have been marked by columns. The

zero-intervals are selected in the raw data window (8) by clicking in the window, dragging

a zero-interval and releasing the mouse button. The procedure can be repeated in order to

define multiple zero-intervals. The Reset intervals button (7) can be used in order to reset

the selection of all zero-intervals.
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0.8

1

channel

Raw spectra

Figure 11. Four zero-intervals are marked by columns. In these intervals the spectral data

is corrected towards zero. Data: example0.mat.

Mathematically every spectrum is treated separately. Let a ∈ R
n be a certain spectrum.

Then the aim is to compute a baseline function b ∈ R
n so that the norm of the residuum

a − b is minimal within the selected intervals. The baseline-corrected spectrum is then

anew = a− b. Once again, this explains the naming zero-intervals, since there the spectrum

is assumed to be zero.

The sum of the interval lengths of these zero-intervals should be as large as possible

in order to ensure a reliable baseline approximation. However, the required number of

frequency grid points depends on the degrees of freedom of the type of the baseline function.

The text field (11) shows the information ”ok”/”not ok” in order to indicate whether or not

the selected intervals are large enough for the baseline approximation. Data cutting is a

further functionality of the baseline correction GUI: If only a certain frequency subinterval

is to be analyzed or the baseline correction is only to be applied to a subinterval, then this

subinterval can be marked by mouse clicking and dragging and then the Cut data-button

can be pressed. The user can always return to the initial data by pressing the Reset cutting-

button (6).
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3.4.1. Type of the Baseline

Four types of baselines are available:

• Polynomials of order zero up to order four,

• a Gauss curve,

• or a Lorentz curve.

The most recommended baselines are polynomials with the degrees 0, 1 or 2. A polynomial

of degree 0 is a constant function so that a constant is added or subtracted for each spectral

channel of a spectrum.

The baselines ”Gauss curve” and ”Lorentz curve” can be used to remove single isolated

peaks from the series of spectra. Once again, the curve profile is fitted in the least-squares

sense to the spectroscopic data within the selected frequency interval. Then the fitted profile

is subtracted from the spectrum.

3.4.2. Program Execution and Data Export

The baseline correction by an external C-procedure is started by pressing the Correct

baseline-button (12). The computation times for data wrapping and for solving the least-

squares problem are shown in the text fields (13) and (14). The corrected series of spec-

tra (in black) is shown in the window (16) together with the original data (in gray). The

baseline-corrected data can be stored in a MATLAB file by pressing the Save-button (15).

By clicking the right mouse button in a figure a separate MATLAB figure opens. The fig-

ure can now be modified, printed or exported in the usual way. If for some reason (e.g. pro-

gram runs too long) the external C-procedure for the baseline correction is to be stopped,

then CTRL + C only works the MATLAB command window (and not in the GUI).
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Baseline corrected series of spectra

Figure 12. Sample problem example0.mat with corrected baseline by a 2nd order poly-

nomial.
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3.5. AFS Computation Module

This section describes how to compute the area of feasible solutions (AFS) for two- and

three-component systems with FAC-PACK.

3.5.1. Initial Steps

The AFS computation module can be started by pressing the AFS computation button

on the FAC-PACK start window. Data loading by the Load button (18) is explained in

Section 3.3.2. The loading process is followed by a singular value decomposition (SVD) of

the data matrix. The computing time is printed in the field Computing time info (47). The

dimensions of D are shown in the data window together with the singular values σ1, . . . , σ4.

These singular values allow to determine the ”numerical rank” of the data matrix and are

the basis for assigning the number of components s in the NMF window.

FAC-PACK provides some sample data matrices. These sample data sets are introduced

in Section 3.3.3. Figure 13 shows the series of spectra from example2.mat. Three clearly

nonnegative singular values indicate a three-component system.

3.5.2. Transposing the Problem

FAC-PACK computes and displays the spectral matrix factor A, see (1), together with its

AFS. In order to compute the first matrix factor C and its AFS, press the Transpose button

(19) to transpose the matrix D and to interchange x and t.

3.5.3. Initial NMF

To run the polygon inflation algorithm an initial NMF is required. First the number of

components (either s = 2 or s = 3) is to be assigned. In the case of noisy data additional

singular vectors can be used for the decomposition by selecting a larger number of singl

vcts (29). For details on this option see [13], wherein the variable z equals singl vcts.

The initial NMF is computed by pressing the button Initial nmf (30). The NMF uses

a genetic algorithm and a least-squares minimizer. The smallest relative entries in the

columns of C and rows of A, see [18] for the normalization of the columns of C and

rows of A, are also shown in the NMF window, see (34) and (35). These quantities are used

to define an appropriate noise-level ε; see Equation (6) in [18] for details.

The initial NMF provides a number of s interior points of the AFS; see Equations (3)

and (5) in [18].

The buttons plot C and A (31), plot C (32) and plot A (33) serve to display the factors

C and A together or separately. Note that these abstract factors are associated with the

current NMF. After an NMF computation the A factor is displayed.

Figure 14 shows the factor A for an NMF for example2.mat. The relative minimal

components in both factors are greater than zero (9.9 · 10−4 and 10−3). So the noise-level

e-neg. entr.: (37) can be set to the lower bound e-neg. entr.: 1 · 10−12.

Complimentary Contributor Copy



116 M. Sawall and K. Neymeyr

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

channel

Figure 13. Test matrix example2.mat loaded by pressing the Load button (18).
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Figure 14. The initial NMF for example2.mat with s = 3 components.

3.5.4. Computation of the AFS

For two-component systems (s = 2) the AFS consists of two real intervals. FAC-PACK

represents the associated AFS by the two orthogonal sides of a rectangle. The sides are just

the intervals of admissible values for α and β where

T =

(
1 α

1 β

)

is the transformation matrix which constitutes the rotational ambiguity. See [1, 2] for the

AFS for the case s = 2. However in [1], see Equation (6), the entries of the second row of

T are interchanged.

For three-component systems (s = 3) the AFS is formed by all points (α, β) so that

T =





1 α β

1 s11 s12

1 s21 s22
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is a transformation which is associated with nonnegative factors C and A, see [18]. A

permutation argument shows that with (α, β) the points (s11, s12) and (s21, s22) belong to

the AFS, too.

The initial NMF is the starting point for the numerical computation of the AFS since it

provides first α and β in the AFS.

Next various control parameters for the numerical computation of the AFS are ex-

plained. Further two ways of computing different kinds of the AFS are introduced.

Control parameters Five control parameters are used to steer the adaptive polygon in-

flation algorithm. FAC-PACK aims at the best possible approximation of the AFS with the

smallest computational costs. Default values are pre-given for these control parameters.

• The parameter e-neg. entr. (37) is the noise level control parameter which is denoted

by ε in [18]. Negative matrix elements of C and A do not contribute to the penaliza-

tion functional if their relative magnitude is larger than −ε. In other words, an NMF

with such slightly nonnegative matrix elements is accepted as valid.

• The parameter e-bound (38) controls the precision of the boundary approximation

and is denoted by εb in [18]. Decreasing the value εb improves the accuracy of the

positioning of new vertices of the polygon.

• The parameter d-stopping (39) controls the termination of the adaptive polygon in-

flation procedure. This parameter is denoted by δ in Section 3.5 of [18] and is an

upper bound for change-of-area which can be gained by a further subdivision of any

of the edges of the polygon.

• max fcls. (40) and max edges (41) are upper bounds for the number of function-calls

and for the number of vertices of the polygon.

Type of polygon inflation FAC-PACK offers two possibilities to apply the polygon infla-

tion method for systems with three components (s = 3). The user should select the proper

method according to the following explanations:

1. The ”classical” version of the polygon inflation algorithm is introduced in [18] and

applies best to an AFS which consists of three clearly separated segments. Select

Polygon inflation by pressing the upper button (42). A typical example is shown

in Figure 15 for the test problem example2.mat. In each of the segments an initial

polygon has been inflated from the interior. Interior points are accessible from an

initial NMF.

2. Alternatively, the Inverse polygon inflation procedure is activated by pressing the

lower button in (42). This should be done if the AFS is only one topologically con-

nected set (with a hole) or if the isolated segments of AFS are in close neighborhood.

See Figure 16 for an example.

The inverse polygon inflation method is more expensive than the classical version.

First the complement of the AFS is computed and then some superset of the AFS is
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computed. A set subtraction results in the desired AFS. The details are explained in

[20].

The user should always try the second variant of the polygon inflation algorithm if the

results of the first variant are not satisfying or if something appears to be doubtful.
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Figure 15. An AFS with three clearly separated segments as computed by the ”classical”

polygon inflation algorithm. Data: example2.mat.
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Figure 16. An AFS which consists of only one segment with a hole. For the computation

the inverse polygon inflation algorithm has been applied to example3.mat.

3.5.5. Factor Representation & Live-View Mode

Next the plotting of the spectra and/or concentration profiles is described. These factors can

be computed from the AFS by certain linear combinations of the right and/or left singular

vectors. The live-view mode allows an interactive representation of the factors by moving

the mouse pointer through the AFS.
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Figure 17. The live-view mode for the two-component system example1.mat. By moving

the mouse pointer through the AFS the transformation to the factors C and A is computed

interactively and all results are plotted in the factor window. The spectra are drawn by solid

lines and the concentration profiles are represented by dash-dotted lines.
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Figure 18. The AFS for the problem example2.mat consists of three separated segments.

The leftmost segment of the AFS is covered with grid points. For each of these points the

associated spectrum is plotted in the right figure.
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Figure 19. The live-view mode is active for the 3 component system example2.mat. In the

rightmost AFS-segment the mouse pointer is positioned in the left upper corner at the co-

ordinates (0.9896,−0.4196). The associated spectrum is shown in the right figure together

with the mouse pointer coordinates.
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Two-component systems For two-component systems a full and simultaneous represen-

tation of the factors C and A is possible. In order to get an overview of the range of possible

spectra one can discretize the AFS-intervals equidistantly. For each point of the resulting

2D discrete grid the associated spectrum is plotted in the factor window. The discretiza-

tion parameter (subinterval length) is selected in the field (50) and/or (51). The plot of the

spectra is activated by pressing button AFS 1 (52) or button AFS 2 (53).

Live-view mode: The live-view mode can be activated in the field (55). By moving the

pointer through the AFS the associated solutions are shown interactively. Figure 17 shows

a typical screen shot. The y-axis labels are turned off.

Three component systems For three-component systems the range of possible solutions

is presented for each segment of the AFS separately. The user can select with the buttons

AFS 1 (52), AFS 2 (53) and AFS 3 (54) a specific AFS which is then covered by a grid. First

the boundary of the AFS segment (which is a closed curve) is discretized by a number of

bnd-pts nodes. The discretization parameters for the interior of this AFS segment are step

size x (50) and step size y (51); the interior points are constructed line by line. The resulting

nodes are shown in the AFS window by symbols × in the color of the AFS segment. For

each of these nodes the associated spectrum is drawn in the factor window. For the test

problem example2.mat the bundle of spectra is shown in Figure 18. The resolution can be

refined by increasing the number of points on the boundary or by decreasing the step size

in the direction of x or y.

If the admissible concentration profiles are to be printed, then the whole procedure is

to be applied to the transposed data matrix D; activate the Transpose button (19) at the

beginning and recompute everything.

Live-view mode: The live-view mode can be activated in the field (55). By moving the

pointer through the AFS, the associated solutions are shown interactively. An example is

shown in Figure 19.

Additionally, a certain point in the AFS can be locked by clicking the left mouse button;

then the AFS for the remaining two components is re-computed. The resulting AFS is a

smaller subset of the original AFS, which reflects the fact that some additional information

is added by locking a certain point of the AFS. See Section 3.5.6 for further explanations.

3.5.6. Reduction of the Rotational Ambiguity

With the computation of the AFS FAC-PACK provides a continuum of admissible matrix

factorizations. All these factorizations are mathematically correct in the sense that they

represent nonnegative matrix factors, whose product reproduces the original data matrix

D. However, the user aims at the one solution which is believed to represent the chemical

system correctly. Additional information on the system can help to reduce the so-called

rotational ambiguity. FAC-PACK supports the user in this way. If, for instance one spectrum

within the continuum of possible spectra is detected, which can be associated with a known

chemical compound, then this spectrum can be locked and the resulting restrictions can be

used to reduce the AFS for the remaining components.
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Figure 20. Reduction of the AFS for the test problem example2.mat. Left: the reduced

AFS is shown by black solid lines after locking a first spectrum (marker ×). Right: The

AFS of the remaining third component is shown by a black broken line.

Locking a first spectrum After computing the AFS, activate the live-view mode (55).

While moving the mouse pointer through any segment of the AFS, the factor window shows

the associated spectra. If a certain (known) spectrum is found, then the user can lock this

spectrum by clicking the left mouse button. A × is plotted into the AFS and the button

no. 1 (56) becomes active. By pressing this button a smaller subset of the original AFS is

drawn by solid black lines in the AFS window. This smaller AFS reflects the fact that some

additional information on the system has been added. The button esc (57) can be used for

unlocking any previously locked point.

Locking a second spectrum Having locked a first spectrum and having computed the

reduced AFS the live-view mode can be reactivated. Then a second point within the reduced

AFS can be locked. By pressing button no. 2 (58) the AFS for the remaining component is

reduced for a second time and is shown as a black broken line. Once again, the button esc

(59) can be used for unlocking the second point.

Figure 20 shows the result of such a locking-and-AFS-reduction procedure for the test

problem example2.mat. For this problem the AFS consists of three clearly separated seg-

ments and the final reduction of the AFS is shown by the black broken line in the uppermost

segment of the AFS. The live-view mode allows to display the possible spectra along this

line. The resulting restrictions on the complementary concentration factor C can be com-

puted by the module AFS & Complementarity, see Section 3.6.

3.5.7. Save Data and Extract Axes

To save the results in a MATLAB *.mat file press either Save AFS (60) or Save all (61). A

proper file name is suggested.

Save AFS saves the data D, the factors U , S, V of the singular value decomposition,

the factors Cinit, Ainit of the initial NMF and the AFS. The AFS has the data format of a

structure which contains the following variables:

• For s = 2 the AFS consists of two segments: AFS{1} ∈ R
2 and AFS{2} ∈ R

2
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with α ∈ [AFS{1}(1), AFS{1}(2)] and β ∈ [AFS{2}(1), AFS{2}(2)] and vice

versa.

• For s = 3 and an AFS consisting of three segments: AFS{i} ∈ R
mi×2 with i =

1, 2, 3 is a polygon whose x-coordinates are AFS{i}(:, 1) and whose y-coordinates

are AFS{i}(:, 2).

• For s = 3 and an AFS consisting of one segment with a hole: AFS{1} ∈ R
m×2 is the

outer polygon (AFS{1}(:, 1) the x-coordinates and AFS{1}(:, 2) the y-coordinates)

and AFS{2} ∈ R
`×2 is the inner polygon surrounding the hole.

If the lock-mode has been used, see Section 3.5.6, then the results are saved

in AFSLockMode1 and LockPoint2 (case of one locked spectrum) as well as

AFSLockMode2 and LockPoint1 (case of two locked spectra).

The user can get access to all figures. Therefore click the right mouse button in the

desired figure. Then a separate MATLAB figure opens. The figure can now be modified,

printed or exported in the usual way.

3.5.8. Cancellation of the Program

Whenever the buttons Initial nmf (30), Compute AFS (43), no. 1 (57) or no. 2 (59) are

pressed, an external C-routine is called, see Section 3.3.4. The GUI does not respond to

any activities during the execution of the C-routine. Therefore, in case of any problems

or in case of too long program runtimes, the C-routine cannot be canceled from the GUI.

The termination can be enforced by typing CTRL + C in the MATLAB command window.

Time consuming processes can be avoided if all the parameters are adjusted to reasonable

(default) values.

3.5.9. How to Det Help

If the Help box (62) is checked and the mouse pointer is moved over a button, a text field

or an axis, then a short explanation appears right next to the Help field. Further, a small

pop-up window opens if the mouse pointer rests for more than one second on a button.

3.6. Complementarity & AFS Module

This FAC-PACK module simultaneously shows the AFS for the spectral factor and the AFS

for the concentration factor. It demonstrates how the rotational ambiguity for a three-

component system can be reduced by means of the complementarity theory. For the com-

plementarity theorem see [19, 20] and for comparable results see [3]. Solutions can be

selected and modified within a live-view mode. Any changes in the spectral AFS are imme-

diately mapped to changes in the concentrational AFS and vice versa. This gives the user

the full control over and a visualization of a the complete factorization D = CA.

3.6.1. Initial Steps

The Complementarity & AFS module module can be started by pressing the Complemen-

tarity & AFS button on the FAC-PACK start window. Data loading by the Load button
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(18) is explained in Section 3.3.2. The loading process is followed by a singular value de-

composition (SVD) of the data matrix. The dimensions of D are shown in the fields (69)

and (70) together with the four largest singular values in the fields (71-74). For this module

the fourth singular value should be ”small” compared to the first three singular values so

that the numerical rank of D equals 3. For noisy data one might try to use a larger number

of vectors in the field (78), see also Section 3.5.3.

In Figure 13 we consider the sample data example2.mat, cf. Section 3.3.3. The param-

eters in the fields (75)-(77) control the AFS computation. The meaning of these parameters

is explained in Section 3.5.4.

3.6.2. AFS Selection

In this module both the spectral AFS MA and the concentrational AFS MC are computed.

It is also possible to compute FIRPOL which includes the AFS. The user can select to

compute

1. the two FIRPOL sets which contain MA and MC as subsets. For the spectral factor

FIRPOL is the setM+

A = {(α, β) : (1, α, β)·V T ≥ 0}; see also Equation (6) in [19].

Points in M+

A represent only one nonnegative spectrum A(1, :). The concentrational

set FIRPOL M+

C can be described in a similar way. The FIRPOL computation is

computationally cheaper and faster since no optimization problems have to be solved.

2. the spectral AFS MA and the concentrational AFS MC . These computations are

often time-consuming.

FIRPOL as well as the AFS are computed by the polygon inflation method [18, 19]. Numer-

ical calculations are done by the C-routine AFScomputationSYSTEMNAME, see Section

3.3.4, immediately after a selection is made in the checkbox (79). The results are shown in

the windows (65) and (67).

Figure 21 shows FIRPOL M+

A and the AFS MA for the sample data example2. The

trace of D, see Section 3.6.2, is also shown. The triangle in MA represents a complete

feasible factor A.
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Figure 21. Sample data example2. Left: FIRPOL M+

A. Center: MA. Right: MA with the

trace of D marked by gray circles and a triangle representing a feasible factor A.
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Traces of the spectral data matrix D The traces of spectral data matrix D can be drawn

in MA and MC . The traces in MA are the normalized expansion coefficients of the rows

of D with respect to the right singular vectors V (:, 2) and V (:, 3). The normalization is that

the expansion coefficient for V (:, 1) equals 1. Thus the trace MA is given by the k points

wi =

(
(DV )i2

(DV )i1
,
(DV )i3

(DV )i1

)

=

(
D(i, :) · V (:, 2)

D(i, :) · V (:, 1)
,

D(i, :) · V (:, 3)

D(i, :) · V (:, 1)

)

, i = 1, . . . , k.

Analogously, the traces of D in MC are the normalized expansion coefficients of the

columns of D with respect to the scaled left singular vectors σ−1
2

U(:, 2) and σ−1
3

U(:, 3)

uj =

(
(Σ−1UTD)2j

(Σ−1UTD)1j
,
(Σ−1UTD)3j

(Σ−1UTD)1j

)

=

(
σ1U(:, 2)T · D(:, j)

σ2U(:, 1)T · D(:, j)
,

σ1U(:, 3)T ·D(:, j)

σ3U(:, 1)T ·D(:, j)

)

for j = 1, . . . , n. If the checkbox trace (80) is activated, then the traces of D in MA and

MC are plotted by small gray circles.

3.6.3. Live-View Mode

The AFS can be explored in a live-view mode which allows an interactive representation

of the factors by moving the mouse pointer through the AFS. Points in MA and or MC

can be locked by clicking the left mouse button in the AFS. Any points can be unlocked

and afterwards moved in the AFS. The modification of a certain point in one AFS results

in changes for the components in the other AFS. All this is shown interactively. A unique

factor C or A is represented by a triangle in the AFS. The vertices of these triangles can

be unlocked by the buttons (82)-(84) and (86)-(88). By a step-by-step selection and modi-

fication of three vertices in the AFS for A (or three vertices in the AFS for C) the user can

construct two triangles and thus a complete factorization D = CA. Next an initial triangle

is constructed in MA; the whole procedure can also be applied to MC .

Initialization: Selection of a first point By activating the first-radio button (83) a first

spectrum/point of the spectral AFS can be selected. If the mouse pointer is moved through

the AFS window (67), then the associated spectra are shown in the window (66) for the

factor A. The complementary concentration profiles are restricted by the complementarity

theorem to a one-dimensional affine space; the associated straight line is shown in the con-

centrational AFS simultaneously. By pressing the left mouse button a certain point in the

AFS can be locked. All this is illustrated in Figure 22.

Initialization: Selection of a second point Next a second point can be selected in MA.

Therefore the second-radio button (84) can be activated and the mouse pointer can be moved

through the AFS MA. The following items are plotted simultaneously:

• the two selected points in the AFS MA,

• the two associated spectra in the factor window (66),

• the two complementary straight lines and the point of intersection in the AFS MC

(65),
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Figure 22. A first point, marked by ×, is locked in the AFS MA (lower-right). This results

in: Upper-left: no concentration profile has uniquely been defined up to now. Upper-right: a

single pure component spectrum has been fixed. Lower-left: the straight line is a restriction

on the complementary concentration profiles C(:, 2 : 3) in MC .

• the associated concentration profile for the uniquely determined complementary con-

centration profile in the factor window (64).

By pressing the left mouse-button a certain point can be locked. The result is illustrated in

Figure 23.

Initialization: Selection of a third point A third point can be added by activating the red

third-radio button (85) and moving the mouse pointer through the AFS MA. The following

items are plotted simultaneously:

• a triangle in the AFS MA whose vertices uniquely determine the factor A,

• the three associated spectra in the factor window (66),

• the three complementary straight lines which define a triangle in the AFS MC (65),

• the associated concentration profiles in the factor window C (64).

Once again a third point can be locked by clicking the left mouse button. Figure 24 illus-

trates this.
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Figure 23. A second point, marked by ×, is locked in the AFS MA (lower-right). This

results in: Upper-left: one complementary concentration profile is uniquely determined.

Upper-right: the two locked pure component spectra. Lower-left: the falling straight line

restricts the complementary concentration profiles C(:, 2 : 3) and the rising straight line

restricts the complementary concentration profiles C(:, 1) and C(:, 3) in MC . One concen-

tration profile marked by ◦ is now uniquely determined.

3.6.4. Modification of the Solution

Once an initial solution has been selected, one can now modify the vertices of the triangles.

This can be done by activating the buttons

• (80)-(82) to modify the triangle in MC ,

• (84)-(86) to modify the triangle in MA.

The selection and re-positioning of the vertices has to follow the rule that all six vertices

are within the segments of MA and MC . Otherwise, negative components can be seen in

the factor windows (64) and (66). In general a vertex in one AFS is associated with a line

segment in the other AFS; see [17] for the complementarity theorem and [3, 19, 20] for

applications to three-component systems. Any vertex in one AFS and the associated line

segment in the other AFS are plotted in the same color in order to express their relationship.

By changing one vertex of a triangle, two vertices of the other triangle are affected.
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Figure 24. Three locked points in MA uniquely define the factor A represented by a fea-

sible triangle (lower-right). This results in: Upper-left: three complementary concentration

profiles. Upper-right: three pure component spectra. Lower-left: a triangle in the AFS MC .

3.6.5. Contour Plots on Factor Properties

The Complementarity & AFS module can help the user to select pure components in the

AFS which have certain desired properties. Sometimes it might help to know where in an

AFS monotone concentration profiles or exponentially decaying profiles (of a reactant) can

be found. Smoothness of a pure component profile or a small integral of a spectrum might

also be valuable selection criteria. In the Complementarity & AFS module any point in the

(α, β)-plane can be evaluated with respect to various constraint functions which estimate

the smoothness, monotonicity, exponential decay and so on. The result in form of a contour

plot is then shown in the AFS.

By using the radio buttons (90)-(92) for the factor C and by using the radio buttons (94)

and (95) for the factor A the contour plots are shown. These plots can be removed from

the AFS by clicking the buttons (89) and (93). The numerical evaluation of the constraint

function may take some time.

Contour plots for the following constraint functions are available:

• monotone concentration profiles (90): monotonously increasing or decreasing pro-

files are favored and are shown in light gray or white in the contour plot,

• smooth concentration profiles (91): profiles with a small Euclidean norm of the dis-

crete second derivative are favored (91) (shown white in the contour plot),
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• exponentially decaying concentration profiles (92): for every point of a grid in the

(α, β)-plane the approximation error for an exponentially decaying function (with

an optimized decay constant) is calculated. This allows to favor reactants decaying

exponentially, which can be found in the light gray or white areas in MC ,

• smooth spectra (94): spectra with a small Euclidean norm of the discrete second

derivative are favored,

• small norm spectra: spectra with a small Euclidean norm of the representing vector

are favored. Thus spectra with few isolated and narrow peaks are shown in light gray

compared to those with wide absorbing peaks (shown in darker gray).

Figure 25 shows two examples.
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Figure 25. Contour plots for two soft constraints. Left: Contour evaluating the closeness

to an exponentially decaying function. The right lower vertex (marked by ◦) represents an

exponentially decaying concentration profile. Right: Contour plot for the Euclidean norm

of the spectrum for example2.mat.

3.6.6. Import of Spectra and Concentration Profiles

If the user can provide one or more pure component spectra or certain concentration profiles

for the reaction system under consideration, then these data can be loaded into the Com-

plementarity & AFS module. After pressing the Import spectra-button (98) one, two or

three pure component spectra can be loaded. These should be stored in a MATLAB variable

named a being an ` × n vector in case of ` pre-given spectra. (Linear interpolation should

be used if a known spectrum does not fit the dimension n.) Any loaded spectrum is marked

in the spectral AFS MA by a ∗.

Analogously, known concentration profiles can be loaded by pressing the Import con-

centration profiles (96) button. The data must be provided in a ∗.mat file containing the

variable c; columns with k components determine pre-given concentration profiles.

3.6.7. Save Data and Extract Axes

In order to export the solutions press the Save-button (97). Then
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• the variables determining the geometry of FIRPOL and of the AFS,

• the initial spectral data, the SVD,

• and, if available, the locked points in AFS MA and MC , the associated spectra plus

concentration profiles and transformation matrix T determining a unique factoriza-

tion CA

are saved in a MATLAB file.

Any figure window in the GUI can be accessed by clicking the right mouse button in

the desired figure. Then a separate MATLAB figure opens. The figure can now be modified,

printed or exported in the usual way.

3.6.8. Program Abortion

The AFS & complementarity module calls an external C-routine if FIRPOL or the AFS

is computed through the check fields (79). The GUI does not respond to any commands

during the execution of the C-routine. In case of any problems or in case of too long

program runtimes, the C-routine cannot be canceled from the GUI. Program abortion can

be enforced by typing CTRL + C in the MATLAB command window.

3.7. Screen Shots & Description of Operation Panels

I: Screen shot of the Baseline-correction module:
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The GUI buttons, data fields and figures:

1 Load data matrix D

2 Transpose D

3 # rows of D
4 # columns of D

5 Cut spectra as marked by mouse

6 Reset spectral cutting

7 Reset selected intervals
8 Raw spectra window

9 Select type of baseline correction

10 Status of data consistency
11 Status of band selection consistency

12 Apply baseline correction

13 Computing time for data wrapping

14 Computing time for baseline correction
15 Save button

16 Corrected spectra window

17 Name of data file
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II: Screen shot of the AFS computation module:
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The GUI buttons, data fields and figures:

18 Load button

19 Transpose button
20 # rows of data matrix D

21 # columns in D

22 Singular value 1 of D
23 Singular value 2 of D

24 Singular value 3 of D

25 Singular value 4 of D

26 File name
27 Initial spectra window

28 Input # components

29 # of singular values used for initial
NMF

30 Compute NMF

31 Plot factors C and A

32 Plot factor C
33 Plot factor A

34 Minimal matrix elements of C in the
NMF

35 Minimal matrix elements of A in the
NMF

36 NMF window

37 Acceptable negativeness for the NMF

38 Precision at the boundary

39 Stopping precision
40 Maximal # calls of the target function

41 Maximal # of edges

42 Select type of polygon inflation

43 Compute AFS
44 # edges

45 # calls of target function

46 No. used function calls for the
boundary-precision

47 Output on the numerical computation

48 AFS window

49 # of boundary points for the factor
representation

50 Step size x direction for the factor rep-
resentation

51 Step size y direction for the factor rep-
resentation

52 Plot factors for segment 1 of the AFS

53 Plot factors for segment 2 of the AFS

54 Plot factors for segment 3 of the AFS

55 Activate live-view mode

56 Compute AFS for 1 selected point

57 Reset 1. restricted AFS

58 Compute AFS for 2 selected points

59 Reset 2. restricted AFS

60 Save button (AFS)

61 Save button (all)

62 Help field

63 Factor window
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III: Screen shot of the Complementarity & AFS module:
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The GUI buttons, data fields and figures:

64 Factor C

65 AFS for C
66 Factor A

67 AFS for A

68 Load spectral data matrix D

69 # rows of D
70 # columns of D

71 Singular value 1 of D

72 Singular value 2 of D

73 Singular value 3 of D
74 Singular value 4 of D

75 Acceptable negativeness for the NMF

76 Precision at the boundary

77 Stopping precision
78 # of singular vectors used for initial

NMF

79 Select AFS (FIRPOL and/or full AFS)

80 Mark mixed spectra (rows of D) in the
AFS

81 Live-view mode C off

82 Live-view mode C(:, 1) on

83 Live-view mode C(:, 2) on

84 Live-view mode C(:, 3) on
85 Live-view mode A off

86 Live-view mode A(1, :) on

87 Live-view mode A(2, :) on

88 Live-view mode A(3, :) on
89 Contour mode C off

90 Contour mode for C - monotone pro-
files

91 Contour mode for C - smooth profiles

92 Contour mode for C - exponential de-
cay

93 Contour mode for A off

94 Contour mode for A - smooth spectra

95 Contour mode for A - spectra with a
small norm

96 Import external concentration profiles

97 Save the results

98 Import external spectra

99 Computing time

100 Name of data file

References

[1] H. Abdollahi, M. Maeder, and R. Tauler, Calculation and Meaning of Feasible Band

Boundaries in Multivariate Curve Resolution of a Two-Component System, Anal.

Chem. 81 (2009), no. 6, 2115–2122.

Complimentary Contributor Copy



132 M. Sawall and K. Neymeyr

[2] H. Abdollahi and R. Tauler, Uniqueness and rotation ambiguities in Multivariate

Curve Resolution methods, Chemom. Intell. Lab. Syst. 108 (2011), no. 2, 100–111.
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ABSTRACT 
 

This chapter includes an overview of current chemometric methodologies using the 

second-order advantage to solve problems related to the analysis of emergent 

contaminants in water samples. Discussions are focus on pharmaceuticals and other 

compounds in tap, river and other sort of water samples. Second-order data generation 

through several techniques such as fluorescence spectroscopy, high performance liquid 

chromatography and capillary electrophoresis is commented. This work describes the 

most frequently used algorithms, such as the standard approaches for second-order data 

analysis: PARAFAC (parallel factor analysis) and MCR-ALS (multivariate curve 

resolution alternating least squares), and the recently implemented U-PLS/RBL (unfolded 

partial least squares/residual bilinearization) as well. This chapter deals with the nature of 

the drawbacks related to their implementation, as well as other problems that are inherent 

to the involved analytical techniques and samples.  
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INTRODUCTION 
 

Up to date, a great variety of synthetic and naturally occurring chemical compounds have 

been found in groundwater, surface water (i.e., river, lake, sea, wetland), tap water, raw and 

treated wastewater (domestic, industrial and municipal), sediments, soil, air, food, etc [1-10]. 

The so-called ―emerging contaminants‖ cover a great variety of man-made or naturally 

occurring chemicals as well as their metabolites or degradation products, and microorganisms 

that are present in the environment, but are not usually monitored due to lack of regulations, 

and cause known or suspected adverse ecological and/or human health effects [11, 12]. 

Generally, this kind of compounds is also referred to as ―contaminants of emerging 

concern‖ because of the potential risks for the environment and human health associated with 

their massive environmental release. The presence of this kind of compounds in the 

environment generates an emerging concern in many countries. In that way, environmental 

and health protection agencies have established policies for their regulation and monitoring to 

protect freshwater, the aquatic environment and wildlife. For example, the Environmental 

Protection Agency of the United States (www.epa.gov.ar/waterscience) periodically develops 

a list of contaminants, i.e., the Contaminant Candidate List, and decides which contaminants 

to regulate, which is called Regulatory Determinations. Therefore, this list of unregulated 

contaminants is useful to prioritize research and data collection efforts and determine whether 

a specific contaminant should be regulated in the future. The Network of References 

Laboratories for Monitoring of Emerging Environmental Pollutants (NORMAN) 

(http://www.norman-network.net) in Europe is also an important association which enhances 

the exchange of information on emerging environmental substances.  

Emerging contaminants typically include pharmaceuticals (i.e., analgesics, anti-

inflammatories, antimicrobials, β-blockers, lipid regulators, X-ray contrast media, veterinary 

drugs), personal care products (e.g., acetophenone, polycyclic musks, nitro musks), artificial 

sweeteners (e.g., sucralose, acesulfame, saccharin, cyclamate, aspartame), stimulants (e.g., 

caffeine), illicit drugs and drugs of abuse (e.g., opiates, cocaine, cannabis, amphetamines), 

hormones and steroids (e.g., 17β-estradiol, estrone, estriol, 17α-ethinyloestradiol, mestranol), 

surfactants (e.g., alkylphenols), pesticides (e.g., chlorpyrifos, chlordane, malathion, diuron, 

prodiamine, phenylphenol, carbendazim), plasticizers (e.g., bisphenol A, bisphenol A 

diglycidyl ether, diethyl phthalate, dibutylphthalate), flame retardants (e.g., 

polybrominateddiphenyl ethers), anticorrosives (e.g., benzotriazole, totyltriazole), and 

nanomaterials (e.g., fullerenes, nanotubes, quantum dots, metal oxanes, nanoparticles: TiO2, 

silver, gold) [12, 13]. Products which contained these contaminants are consumed or used 

worldwide and became indispensable for modern civilizations [12]. Therefore, occurrence of 

emerging contaminants is reported in a variety of environments such as influents and 

effluents from wastewater treatment plants, surface water, groundwater, sediments and even 

tap water. The environmental concentration in water, which commonly range from ng/L to 

µg/L, can change significantly depending on the season (consumption patterns are different in 

summer and winter), climatic conditions (e.g., temperature, rainfalls), bedrock geology, soil 

type, rate of industrial production, human metabolism (e.g., excretion rate) and distance to 

primary sources, i.e., industrial sewage treatment plants, landfilling areas, hospitals, 

municipal sewage systems or private septic tanks, among others [14]. 
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It is clear that emerging contaminants are present in complex matrixes at trace levels, a 

combination that places considerable demands on the analytical methods used for their 

determination. Monitoring of emerging contaminants requires specialized sampling and 

analytical techniques. In general, the analytical methods involve sample clean up to remove 

possible interferences from the sample matrix, and pre-concentration step to increase analyte 

concentrations. The most relevant techniques for sample clean up and pre-concentration are 

solid-phase extraction (SPE) and liquid-liquid extraction (LLE) [15-20]. Emerging 

contaminants are usually analyzed by liquid chromatography tandem mass spectrometry (LC-

MS/MS), gas chromatography coupled to mass spectrometry (GC-MS), and ultrahigh 

performance liquid chromatography mass spectrometry (UHPLC-MS/MS) [21-27].  

One disadvantage of the cited analytical methods is associated with the sample 

preparation steps due to the fact that sample clean up represents a tedious and time-

consuming procedure for reducing matrix effects and removing potential interferences [21, 

28]. For this reason, the development of simple, high selective and sensitive new analytical 

methods is required. In that way, second-order calibration allows for the analysis of the target 

analytes in the presence of unexpected interferences and matrix effects, but avoiding sample 

preprocessing.  

 

 

SECOND ORDER CALIBRATION 
 

Second-Order Data Generation 
 

In multivariate calibration the term ‗order‘ is usually employed to denote the number of 

modes for the data array which is recorded for a single sample. The term ‗way‘, on the other 

hand, is reserved for the number of modes of the mathematical object which is built by 

joining data arrays measured for a group of samples [29]. When second-order data for a group 

of samples are joined into a single three-dimensional array, the resulting object is known as 

three-way array, and these data are usually known as three-way data [30]. 

Second-order data can be generated in two ways: (1) using a single instrument, such as a 

spectrofluorimeter registering excitation-emission matrices (EEMs) or a diode-array 

spectrophotometer following the kinetics of a chemical reaction, or (2) coupling two 

‗hyphenated‘ first-order instruments, as in GC-MS, bi-dimensional GC (GC-GC), MS-MS, 

etc. [30]. 

In the implementation of multi-way analysis, the analytical community has found a way 

of improving the quality of the results when developing analytical methods to be applied for 

the quantitation of target analytes in complex matrices. Using modern instrumentation, 

analytical laboratories can generate a variety of second-order instrumental data [31]. 

Separative techniques such as chromatography and electrophoresis coupled to any 

detection system, i.e., diode array detector (DAD), fluorescence detector (FLD), Fourier 

transform infrared spectroscopy (FTIR) or MS, generate matrix data which have the 

retention/elution times in one mode and the spectral sensor on the other mode. The same kind 

of data is obtained with non separative methods which register the temporal signals, such as 

flow injection analysis (FIA) and sequential injection analysis (SIA) coupled to the above 

mentioned detectors. On the other hand, when the data is recorded using a spectrofluorimeter, 

Complimentary Contributor Copy



Mirta R. Alcaráz, Romina Brasca, María S. Cámara et al. 138 

the matrix will have excitation and emission signals in the excitation and emission 

dimensions, respectively. Another way of obtaining fluorescence second-order data is by 

measuring synchronous fluorescence spectra (SFS) at different offsets (). Moreover, 

electrochemical methods provide multi-way data by changing an instrumental parameter, i.e., 

pulse time in differential pulse voltammetry (DPV). All these data can be arranged into a data 

table or matrix, where columns and rows correspond to each data dimension. 

An important second-order data property is the trilinearity. Multi-linearity can be defined 

as the possibility of mathematically expressing a generic element of a multi-way data array as 

a linear function of component concentrations and profiles in the data modes [32, 33]. 

Second-order data are trilinear when each compound in all experiments treated together can 

be described by a triad of invariant pure profiles, and the spectral shape of a component is not 

modified by changes in the other two modes (bilinearity property). However, some three-way 

arrays that are considered non-trilinear can be conveniently modeled, i.e., those having shifted 

retention times in different chromatographic runs. On the other hand, total synchronous 

fluorescence spectra do not fulfill the bilinearity property due to the fact that the shape of the 

SF for each analyte varies with the change in  [34]. 

As was previously commented, the chemical data for a single sample in the second-order 

domain comprise a matrix, which can be visualized as a two-dimensional surface or 

―landscape‖. Figure 1 illustrates one example of second-order data: a chromatographic run 

between 0-2 min which was registered with a DAD in the wavelength range of 200-360 nm. 

As can be appreciated in this figure, the time variation was represented at  = 268 nm on the 

x-axis, while on the other, the wavelength variation was displayed at time = 1 min. A multi-

way array can be modeled with an appropriate algorithm to achieve selectivity by 

mathematical means as will be developed in the next section. 

 

 

Figure 1. Landscape obtained by plotting the chromatographic elution time registered with a DAD for a 

given sample. The time variation is represented on the x-axis at λ = 268 nm (purple line), and the 

wavelength variation at time = 1 min (green line) on the y-axis. 
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Second-Order Algorithms  
 

Several algorithms can be cited among those involving the second-order advantage: 

Generalized Rank Annihilation (GRAM) [35], Direct Trilinear Decomposition (DTLD) [36, 

37], Self-Weighted Alternating Trilinear Decomposition (SWATLD) [38], Alternating 

Penalty Trilinear Decomposition (APTLD) [39], Parallel Factor Analysis (PARAFAC) [40], 

Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) [41], Bilinear Least 

Squares (BLLS) [42], N-way and Unfolded -Partial Least Squares /Residual Bilinearization 

(N- and U-PLS/RBL) [43, 44, 45] and Artificial Neural Networks followed by Residual 

Bilinearization (ANN/RBL) [46]. A description of the three most used algorithms, i.e., 

PARAFAC, MCR-ALS and U-PLS/RBL, will be presented below. 

 

 

PARAFAC 
 

PARAFAC decomposes a three-way array X, obtained by joining second-order data from 

the calibration and test samples according to the following equation [40]: 

 

X =    
    

       + E (1) 

 

where   indicates the Kronecker product, N is the total number of responsive components, 

the column vectors an, bn and cn are usually collected into the score matrix A and the loading 

matrices B and C; and E is a residual error term of the same dimensions as X[(I+1)×J×K]. I is 

the number of calibration samples and, hence, the first dimension of X is (I+1), since the test 

sample is also included in X. J and K are the number of digitized wavelengths (in the case of 

EEM data). 

The application of the PARAFAC model to two-way data sets calls for:(1) initializing 

and/or constraining the algorithm, (2) establishing the number of components, (3) identifying 

specific components from the information provided by the model, and(4) calibrating the 

model in order to obtain absolute concentrations for a particular component in an unknown 

sample. Initialization of the least-squares fit can be carried out with profiles obtained by 

several procedures, the most usual being Direct Trilinear Decomposition (DTLD) [36]. The 

number of components (N) can be estimated by considering the internal PARAFAC 

parameter (known as core consistency) [40] or by analyzing the univariate calibration line 

obtained by regressing the PARAFAC relative concentration values from the training samples 

against their standard concentrations [48]. Identification of the chemical constituent under 

investigation is accomplished with the aid of the profiles B and C, as extracted by 

PARAFAC, and comparing them with those for a standard solution of the analyte of interest. 

This is required, since the components obtained by decomposition of X are sorted according 

to their contribution to the overall spectral variance, and this order is not necessarily 

maintained when the unknown sample is changed. Finally, absolute analyte concentrations 

are obtained after proper calibration, since only relative values (A) are provided by 

decomposing the three-way data array (see Figure 2). Experimentally, this is done by 

preparing a data set of standards of known composition and regressing the first I elements of 

column A against known standard concentrations y of analyte n. 
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MCR-ALS 
 

This algorithm, instead of forming a three-dimensional data array like PARAFAC, 

arranges the matrices along the mode that is suspected of breaking the trilinear structure (i.e., 

if a matrix-to-matrix variation of profiles occurs along the column direction, a column-wise 

augmented matrix is created). The bilinear decomposition of the augmented matrix D is 

performed according to the expression [33, 41]: 

 

D= CS
T
 + E (2) 

 

where the rows of D contain, in the case of chromatographic data registered with DAD, the 

absorption spectra measured as a function of time, the columns of C contain the time profiles 

of the compounds involved in the process, the columns of S contain their related spectra, and 

E is a matrix of residuals not fitted by the model. Appropriate dimensions of D, C, S
T
 and E 

are thus(1+I)J× K, (1+I) J×N, N×K and (1+I)J× K, respectively (I = number of training 

samples, J = number of elution times, K = number of digitized wavelengths and N = number 

of responsive components). 

Decomposition of D is achieved by iterative least-squares minimization of ||E|| under 

suitable constraining conditions (i.e., non-negativity in spectral profiles, unimodality and non-

negativity in concentration profiles), and also closure relations between reagents and products 

of a given reaction. 

 

 

Figure 2. Schematic representation of a three-component PARAFAC model: (B) emission, (C) 

excitation and (A) relative concentration loadings. 

The pure spectra of the compounds should be the same in all experiments, but the profiles 

in the different C sub-matrices need not share a common shape. This is the reason why 
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kinetic experiments performed in different conditions (e.g., pH and temperature) and, hence, 

showing different kinetic profiles can be analyzed together, as long as the spectra of the 

compounds involved in the process remain invariant (absorption spectra usually show limited 

temperature dependence). Similar considerations can be made for variations in chromatogram 

peaks. 

In the present context, we need to point out that MCR-ALS requires initialization with 

system parameters as close as possible to the final results [41]. In the column-wise 

augmentation mode, the species spectra are required, as obtained from either pure analyte 

standards or the analysis of purest spectra. 

Figure 3 represents an array built with three HPLC-DAD matrices recorded for three-

component mixtures with different concentrations of each analyte (74 times × 81 

wavelengths). As can be seen, the D column-wise augmented matrix (222 times × 81 

wavelengths) is decomposed into two matrices: the augmented C matrix of size 222 × 3 (three 

components) containing the evolution during the chromatographic run of every component in 

each individual matrix, and the S
T
 matrix of size 3 × 81 containing the spectra of each 

component. The area under the evolution curve for each component can be used to build the 

univariate calibration graph with a quantitative purpose. 

 

 

Figure 3. Schematic representation of an MCR-ALS modeling. A column-wise augmented matrix (D), 

and the profiles retrieved after the MCR-ALS decomposition, i.e., temporal profiles (C) and spectral 

profile (S
T
), for the three compounds are represented. 

 

U-PLS/RBL 
 

This algorithm involves a first calibration step in which information regarding 

concentrations is employed, but without including data for the unknown sample [43].The I 

calibration data matrices Xc,i (size JK, where J and K are the number of channels in each 

Complimentary Contributor Copy



Mirta R. Alcaráz, Romina Brasca, María S. Cámara et al. 142 

dimension) are vectorized (unfolded), and a usual U-PLS model is calibrated with these data 

and the vector of calibration concentrations y (Nc1, where Nc is the number of calibrated 

analytes). This provides a set of loadings P and weight loadings W (both of size JKA, where 

A is the number of latent factors), as well as regression coefficients v (size A1). Techniques 

such as leave-one-out cross-validation allow for the acquisition of the parameter A [49]. If no 

unexpected interferences occur in the test sample, v can be employed to estimate the analyte 

concentration: 

 

yu = tu
T
v (3)

 

 

where tu is the test sample score, obtained by projection of the (unfolded) data for the test 

sample Xu onto the space of the A latent factors: 

 

tu = (W
T
 P)

–1
 W

T
 vec(Xu) (4) 

 

When unexpected constituents occur in Xu, then the sample scores given by equation (4) 

are not suitable for analyte prediction using equation (3). In this case, the residuals of the U-

PLS prediction step [sp, see equation (5)] will be abnormally large in comparison with the 

typical instrumental noise, which is easily assessed by replicate measurements: 

 

sp = || ep || / (JK–A)
1/2

= || vec(Xu) – P (W
T
 P)

–1
W

T
vec(Xu) || / (JK–A)

1/2
 = 

= || vec(Xu) – Ptu || / (JK–A)
1/2 

(5) 

 

where || · || indicates the Euclidean norm. 

Interestingly, if unexpected constituents occur in the test sample, the situation can be 

handled by RBL [44], which is based on Singular Value Decomposition (SVD) modeling of 

the interferent effects. RBL aims at minimizing the norm of the residual vector eu, computed 

while fitting the sample data to the sum of the relevant contributions to the sample signal. For 

a single interferent: 

 

vec(Xu) = Ptu + vec[gintbint(cint)
T
] + eu (6) 

 

where bint and cint are the left and right eigenvectors of Ep and gint is a scaling factor: 

 

(gint, bint,cint) = SVD1(Ep) (7) 

 

where Ep is the JK matrix obtained after reshaping the JK1 ep vector of equation (3), and 

SVD1 indicates taking the first principal component. 

During this RBL procedure, P is kept constant at the calibration values and tu is varied 

until ||eu|| is minimized. The minimization can be carried out using a Gauss-Newton (GN) 

procedure starting with tu from equation (3). Once || eu || is minimized in equation (4), the 

analyte concentrations are provided by equation (1), by introducing the final tu vector found 

by the RBL procedure.  

The number of unexpected constituents Nunx can be assessed by comparing the final 

residuals su with the instrumental noise level: 
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su = || eu || / [JK – (Nc+Nunx)]
1/2 

(8) 

 

where eu is from equation (4). A plot of su computed for trial number of components will 

show decreasing values, starting at sp when the number of components is equal to A (the 

number of latent variables used to described the calibration data), until it stabilizes at a value 

compatible with the experimental noise, allowing to locate the correct number of components. 

It should be noticed that for Nunx 1, the profiles provided by the SVD analysis of Ep 

unfortunately no longer resemble the true interferent profiles, due to the fact that the principal 

components are restricted to be orthonormal. 

 

 

Software 
 

Finally, the software freely available on the Internet to implement second-order 

calibration should be mentioned. They are in the form of MATLAB codes [50], including 

several useful graphical user interfaces (GUI) [51, 52, 53]. Among the most popular GUI it 

can be mentioned: a) N-way toolbox (http://www.models.life.ku.dk/nwaytoolbox/download) 

for PARAFAC, PARAFAC2, GRAM, DTLD, U-PLS and N-PLS, b) MCR graphical 

interface (http://www.mcrals.info/) for MCR-ALS, and c) MVC2 graphical interface 

(www.iquir-conicet.gov.ar/descargas/mvc2.rar) for PARAFAC, APTLD, SWATLD, 

BLLS/RBL, U-PLS/RBL, N-PLS/RBL and MCR-LS. 

 

 

Literature Examples 
 

In this section, an up-to-date literature search on the use of chemometric tools for solving 

problems related to the determination of emerging contaminants in water samples is presented 

(Table 1). The considerable relevance of chemometric algorithms in the development of 

methods for the determination of emerging contaminants in a wide range of water samples is 

highlighted in many reviews [30, 54, 55, 56, 57, 58].  

In general terms, the main purpose of the works was to solve problems that arise from the 

analysis of samples in which the target analytes are present at very low concentrations and 

embedded in complex matrices, which contains species that interfere with the determination. 

To overcome these drawbacks, different kinds of strategies, which in many cases comprise 

the application of chemometric approaches, were followed. In this sense, most of the works 

describe the application of second-order chemometric algorithms in the simultaneous 

determination of several emerging contaminants by separation methods such as HPLC 

coupled to DAD or MS [59, 60, 61, 62, 63]. The use of the chemometric algorithms allowed 

solving problems such as lack of chromatographic resolution due to coeluting analytes and/or 

presence of interferences in the sample matrix. Besides, several works demonstrate the 

capability of the use of EEMs for the determination of emerging contaminants in complex 

matrices without any prior sample pretreatment [64, 65, 66, 67]. 

In general terms, MCR-ALS, PARAFAC and U-PLS/RBL are the preferred algorithms to 

process this kind of data, but their implementation is related to the data intrinsic 

characteristics. Maggio et al. [68] observed distorting effects on the chromatograms, i.e., the 

Complimentary Contributor Copy



Mirta R. Alcaráz, Romina Brasca, María S. Cámara et al. 144 

analyte retention time shift from run to run and the shift magnitude increases with the 

presence of potential interferents in some samples, making it impossible to align the 

chromatograms in the time dimension, in order to restore the trilinearity required by most 

second-order multivariate algorithms. Consequently, MCR-ALS was the preferred algorithm, 

since it is able to handle second-order data deviating from trilinearity. On the other hand, 

PARAFAC has been mainly applied to resolved data involving EEMs [64, 66, 67, 69, 70, 72], 

and there are also several applications related to the determination of different analytes by 

chromatographic methods such as GC [73] and LC [63]. However, PARAFAC requires 

second-order data following trilinear structures.  

When working with separative methods, the appearance of baseline drift and coelution 

problem between analytes, and also with the matrix components, led to the fact that neither 

identification nor quantification could be performed using classical univariate calibration. In 

fact, erroneous determinations of starting and ending points of each peak, in case of baseline 

drift, have a drastic effect on the uncertainty of the predicted concentrations. In consequence, 

handling baseline drifts or background contributions before applying second-order calibration 

algorithms has been a critical preprocessing step in many chromatographic analyses [60, 63, 

74, 79, 80]. An approach is to set the background as a systematic part of the model and treat it 

as a chemical component. Another way to solve this problem is exhibited by De Zan et al. 

[75], whom proposed a method for the determination of eight tetracycline antibiotics in 

effluent wastewater by LC-DAD. Because of the high complexity of the analytical problem 

under study, a considerable number of matrix compounds coeluted with the target analytes 

leading to strong overlapping and baseline drift. To solve these drawbacks, the asymmetric 

least-squared algorithm developed by Eilers [76] was employed to eliminate the 

chromatogram baseline. Then, to eliminate unexpected interferences and sensitivity changes, 

a strategy involving standard addition calibration in combination with U-PLS/RBL was 

implemented. The same procedures were conducted by García et al. [74] in the analysis of 

seven non-steroidal anti-inflammatory drugs and the anticonvulsant carbamazepine, by 

Martinez Galera et al. for the quantitation of nine -blockers [60], and by Vosough et al. for 

the quantification of sulfonamids, metronidazole and chloramphenicol [73], all of themin 

river water and modeling LC-DAD data with MCR-ALS. Yu et al. [63] employed the same 

aforementioned strategy but using another algorithm, i.e., the chromatographic background 

drift was completely eliminated by orthogonal spectral signal projection (OSSP) to improve 

the quantitative performance of PARAFAC. On the other hand, a novel method for the 

determination of carbaryl in effluents using excitation-emission-kinetic fluorescence data was 

proposed by Zhu et al. [67]. The followed strategy comprised the application of quadrilinear 

PARAFAC to eliminate the strong and broad native fluorescence of different chromophores 

present in the matrix effluent and estimate the carbaryl concentration. Moreover, the effects 

of both Rayleigh and Raman scattering could be avoided and weakened. Kumar et al. [34] 

employed MCR-ALS for the simultaneous extraction of the SFS for the pure components at 

various wavelength offsets, without any prior knowledge of them. The principal aim of this 

work was to create ―fingerprints‖ for the identification of the fluorophores benzo[a]pyrene, 

perylene, and pyrene in groundwater. In this case, the methodology based on the subtraction 

of the blank solvent spectra was used to correct the Raman scattering.  

Another interesting consideration when analyzing complex environmental samples is the 

matrix effect caused by the presence of interferents or by the pretreatment steps. In this sense, 

several works were conducted to reduce the number of calibration samples by using 
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transference of calibration with piecewise direct standardization (PDS) [77], especially when 

the standard addition method should be implemented [73, 75, 78]. Very recently, Schenone et 

al. [71] presented a methodology based on the use of EEM‘s modeled with PARAFAC 

combined with PDS to predict the phenyleprine concentration in waters when significant 

inner filter effects occur, even in the presence of unexpected sample components. Results 

were compared with those obtained after the application of the classical standard addition 

method combined with PARAFAC, carrying out five additions to each sample, in triplicate, 

and it was showed that the methodology constitutes a simple and low-cost method for the 

determination of emerging contaminants in water samples. 

Moreover, some researchers used different strategies to observe and/or quantitate the 

degradation products of certain emerging contaminants. In order to quantitate the analytes 

involved in the photodegradation of phenol, Bosco et al. [64] applied PARAFAC to resolve 

EEMs recorded throughout the reaction. Besides, Razuc et al. [79] used hybrid hard-soft 

modeling multivariate curve resolution (HS-MCR) to study the kinetic behavior of the 

photodegradation reaction of ciprofloxacin carried out in a flow system with UV–Vis 

monitoring. The UV–Vis spectra recorded for a given sample were arranged in matrices and 

subsequently analyzed using HS-MCR. The spectral overlap and lack of selectivity inherent 

to the use of spectrophotometric detection in the analysis of mixtures was overcome by using 

this algorithm. 

In some cases of highly complex systems, a strategy that involves data partitioning into 

small regions should be applied to troubleshoot issues such as rank deficiencies due to 

complete spectral overlap between analytes. In this sense, García et al. [80] developed an 

HPLC-DAD method coupled to MCR-ALS and U-PLS/RBL to simultaneously determine 

eight tetracyclines in wastewater. In order to simplify the analysis, the total chromatographic 

data registered for each sample was partitioned in eight regions, each of them corresponding 

to each analyte and the associated interferences. Another example is discussed in the work 

done by Alcaráz et al., in which an electrophoretic method coupled to MCR-ALS involving 

two compounds that share the same UV spectra was presented [81]. The resolution strategy 

consisted of considering them as if they were a single analyte, but with two electrophoretic 

peaks. In this sense, they had to be completely separated to be satisfactorily quantitated. 

Therefore, in order to obtain the individual contribution for each analyte, the vector profile 

was split into two parts after resolution by MCR-ALS. 

On some occasions, researchers applied different algorithms to compare their predictive 

ability, and then select the most suitable for the intended application. For example, in the 

work of Culzoni et al. [65] experimental data was modeled with PARAFAC, U-PLS/RBL, 

and N-PLS/RBL. The quantitative analysis was carried out by registering EEMs of a variety 

of water samples containing galantamine and additional pharmaceuticals as interferences, and 

further processing through the chosen algorithms. In order to compare their performance on 

modeling second-order data, the statistical comparison of the prediction results was made via 

the Bilinear Least Squares (BLS) regression method and the Elliptical Joint Confidence 

Region test. In this work, while the ellipses corresponding to PARAFAC and U-PLS include 

the theoretically expected point (1,0) suggesting a high-quality prediction, the one 

corresponding to N-PLS does not include it, indicating a deficient accuracy.  
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Table 1. Applications of chemometric algorithm used to the resolution of second-order instrumental data aiming at the determination  

of emerging contaminants in water samples 

 
Analytes Sample Instrumentation Challenges Algorithm LOD Year 

[Ref.] 

Methomyl, seethylsimazine, deethylatrazine, 

carbendazim, carbofuran, simazine, atrazine, alachlor, 

chlorpyrifos-oxon, terbutryn, chlorfenvinphos 

pirimiphosmethyl, chlorpyrifos 

Wastewater, 

sediment 

HPLC-DAD Chromatographic  

coelution  

MCR-ALS – 2004 

[86] 

Resorcinol, phenol, oxamyl, methomyl River water, 

wastewater  

HPLC-DAD Baseline drift  

Chromatographic coelution 

GRAM 

PARAFAC 

MCR–ALS 

– 2004 

[59] 

 

Methomyl, deethylsimazinedeethylatrazine, 

carbendazimcarbofuran, simazine, atrazine, alachlor, 

chlorpyrifosoxon, terbutryn, chlorfenvinphos, 

pirimiphos-methyl, chlorpyrifos 

Wastewater, 

sediment 

LC-MS Baseline drift  

Chromatographic  

coelution 

Matrix interferences 

MCR-ALS – 2005 

[90] 

 

Carbendazim, thiabendazole Tap, mineral  

and river water 

SPE-EEM Matrix interferences  PARAFAC 

PLS/RBL 

MBC: 

1×10-3 µg mL−1 

TBZ: 

2×10-4 µg mL−1 

2006 

[69] 

Phenol, hydroquinone, 

catechol and resorcinol 

Wastewater EEM Spectral overlapping  

Matrix interferences 

PARAFAC – 2006 

[64] 

Tetracycline, chlortetracycline and oxytetracycline Surface water  Photochemically 

induced 

fluorescence(PIF)-EEM  

Spectral overlapping  

Matrix interferences 

N-PLS 

PARAFAC 

BLLS 

– 2006 

[78] 

Alachlor, atrazine, carbendazimcarbofuran, 

chlorfenvinphos, chlorpyrifoschlorpyrifos-

oxondeethylatrazinedeethylsimazine, 

methomylpirimiphos-methylsimazine, terbutryn 

Wastewater, 

sediment 

HPLC-DAD/MS Chromatographic coelution 

Matrix interferences 

MCR-ALS – 2006 

[85] 

 

Carbaryl and its degradation product 1-naphthol River and  

tapwater 

EEM Matrix interferences PARAFAC – 2008 

[70] 

Tetracycline, oxytetracycline, 

meclocycline, minocycline, metacycline, 

chlortetracycline, demeclocycline and doxycycline 

Wastewater HPLC-DAD Matrix interferences U-PLS/RBL 

MCR-ALS 

0.02–0.03 mg L−1 2008 

[80] 

Benzo[a]pyrene and dibenzo[a,h]anthracene Natural water, 

wastewater 

Solid phase EEM Spectral overlapping  

Matrix interferences 

PARAFAC 

U-PLS/RBL 

0.14 g L−1 2008 

[91] 
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Analytes Sample Instrumentation Challenges Algorithm LOD Year 

[Ref.] 

Atrazine, simazine,chlorpyrifos, diazinon, lindane, 

endosulphan I, endosulphan II, endosulphan, sulphate, 

pyrene, fluoranthene, phenanthrene, 

nonylphenol,etoxylate, t-octylphenol) 

River water Data sets from 

monitoring and 

simulation studies  

Identification of 

contamination patterns  

MCR-ALS – 2009 

[88] 

Carbaryl Effluent  EEM Spectral overlapping  

Matrix interferences 

PARAFAC 3.58 µg L−1 2009 

[67] 

Naproxen, ketoprofen, diclofenac, piroxicam, 

indomethacin, sulindac, diflunisal, carbamazepine 

River water, 

wastewater  

SPME-HPLC-DAD Chromatographic coelution 

Spectral overlapping  

Matrix interferences 

MCR-ALS 

 

 2009 

[74] 

Sotalolatenolol, nadolol, 

pindolol, metoprolol, timolol, bisoprolol, propanolol 

and betaxolol, paracetamol and phenazone 

River water HPLC-DAD Chromatographic coelution 

Spectral overlapping  

Matrix interferences 

MCR-ALS 0.2 – 0.5 µg L−1 2010 

[60] 

Organochlorinated compounds, polycyclic aromatic 

hydrocarbons, pesticides and alkylphenols 

River water, 

sediment and soil 

 

Data sets from 

monitoring and 

simulation studies 

Identification of 

contamination patterns 

MCR-ALS – 2010 

[92] 

Galantamine River, tap and  

well water 

EEM Spectral overlapping PARAFAC 

U-PLS/RBL 

N-PLS/RBL 

– 2010 

[65] 

 

Benzophenone-3,4-methylbenzilidene camphor, 

octocrylene, 1-(4-tert-butylphenyl)-3-

(4methyoxyphenyl)1,3-propanedione), 

ethylhexylmethoxycinnamate, ethylhexylsalicylate, 

homosalate 

Wastewater HPLC-DAD 

 

Chromatographic coelution 

Spectral overlapping  

Matrix interferences 

MCR-ALS – 2011 

[84] 

 

Bentazone River water 

 

EEM Spectral overlapping  

Matrix interferences 

PARAFAC 

 

5 ng mL−1 2011 

[66] 

Aldicarbsulfoxide, oxamyl, aldicarbsulfone, methomyl, 

3-hydroxy-carbofuran, aldicarb, propoxur, carbofuran, 

carbaryl, 1-naphthol and methiocarb 

Surface and  

tap water 

HPLC-DAD Chromatographic coelution 

Spectral overlapping  

Matrix interferences 

MCR-ALS 0.1 – 2.3 µg 

mL−1 

2011 

[68] 

Simazin, atrazine, propazine Stream, well, 

and river water 

GC-MS Chromatographic coelution 

Matrix interferences 

PARAFAC 0.15 –1.34 µg 

L−1 

2012 

[72] 

Benzo[a]pyrene, perylene, and pyrene Groundwater TSFS Spectral overlapping  

 

MCR–ALS – 2012 

[34] 

Ciprofloxacin Aqueous solution Flow system-UV-Vis Monitoring of 

photodegradation reaction 

HS-MCR – 2013 

[79] 
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Table 1. (Continued) 

 
Analytes Sample Instrumentation Challenges Algorithm LOD Year 

[Ref.] 

Sulfacetamide, sulfamerazine, sulfamethoxazole, 

tetracycline, pipemidicacid, pefloxacin, danofloxacin, 

lomefloxacin, metronidazole,ornidazole, 

andoxytetracycline 

Tap water  HPLC-DAD Baseline drift  

Chromatographic coelution 

Matrix interferences 

OSSP 

PARAFAC 

 

– 2013 

[63] 

Sulfamethoxazole, metronidazole, chloramphenicol, 

sulfadizine and sulfamerazine 

Wastewater SPE-HPLC-DAD Baseline drift  

Chromatographic coelution 

Matrix interferences 

MCR/ALS 19 – 40 ng mL−1 2013 

[73] 

Carbamazepine  Tap, ground 

and river water 

PIF-EEM Matrix interferences PARAFAC 

U- and N-

PLS 

MCR-ALS 

0.2 ng mL−1 2013 

[82] 

Ofloxacin and ciprofloxacin Tap water  HPLC-EEM  Chromatographic coelution 

Matrix interferences 

PARAFAC 

U-PLS/RTL 

MCR-ALS 

0.4 – 3.2 µg L−1 2014 

[31] 

Flumenique, enoxacin, ofloxacin, cinoxacin, 

enrofloxacin and ciprofloxacin  

Tap water  CE-DAD Electrophoretic coelution 

Matrix interferences 

MCR-ALS 5 – 18 µg L−1 2014 

[81] 
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This latter fact demonstrates that in the system under study it is not appropriate to 

maintain the tridimensional nature of the data for the quantitative analysis in order to 

successfully quantitate the analyte. Another example related to the application of BLS to 

compare the performance of different algorithms can be found in the work of Lozano et al. 

[82]. 

An interesting aspect to point out is the calculation of figures of merit for the different 

chemometric methods. 

The traditional calibration curves (signal as a function of analyte concentration) could not 

be employed to inform figures of merits when applying multivariate methods to process 

higher-order data. In the last years, the net analyte signal (NAS) emerged as a concept that 

helps to improve the multivariate calibration theory. It allows separating the analyte specific 

information from the whole signal, and can be used for estimating important figures of merit. 

In addition, NAS values of each sample can be used to represent multivariate models as 

pseudo-univariate curve, an easier and simpler manner to interpret them in routine analyses 

[60, 68, 73, 74, 79, 80, 82, 84, 85, 85]. García et al. [80] showed that, in general terms, lower 

LODs are obtained when performing univariate calibration, because multivariate figures of 

merit are highly affected by the presence of unexpected components in real samples. 

Basically, computation and report of figures of merit is fundamental to establish the method 

efficiency. In this sense, most of the works under study do not report or calculate detection 

and quantitation limits [59, 74, 78, 83, 84, 85, 86], or those in which they are mentioned were 

calculated using univariate curves [73]. It is pertinent to remark that sensitivity (SEN) can be 

considered as one of the most relevant figures of merit in the field of analytical chemistry due 

to the fact that it is a decisive factor in estimating others, such as LOD and LOQ. SEN can be 

defined as the variation in the net response for a given change in analyte concentration [31]. 

For more information related to the calculation of SEN with multivariate quantitative 

purposes the reader is referred to the work of Bauza et al. [87]. 

Regarding the abundance of conducted research, pesticides (in particular, insecticides) 

are the most studied analytes [67, 72, 82, 88], followed by drugs (i.e., antibiotics) [78, 79, 

81], phenolic compounds [59, 64], and others [34, 62, 89]. With respect to the analysis of 

pesticides, Peré et al. [91] developed an LC-MS method coupled to MCR-ALS for the 

analysis of biocides in complex environmental samples, including methomyl, 

deethylsimazine, deethylatrazine, carbendazim, carbofuran, simazine, atrazine, alachlor, 

chlorpyrifos-oxon, terbutryn, chlorfenvinphos, pirimiphosmethyl and chlorpyrifos. With 

regard to the analysis of hydrocarbons, a method for the simultaneous determination of two 

polycyclic aromatic hydrocarbons, i.e., benzo[a]pyrene and dibenzo[a,h]anthacene, which 

consisted in EEMs registration of samples deposited on nylon membranes and their resolution 

by applying PARAFAC was developed by Bortolato et al. [91]. An example related to the 

assessment of drug traces in highly complex wastewater samples can be found in the  

work conducted by Vosough et al. [73]. In this work, five important antibiotics, i.e., 

sulfamethoxazole, metronidazole, chloramphenicol, sulfadizine and sulfamerazine, were 

analysed using SPE-HPLC-DAD. Due to the matrix interferences and the resulting sensitivity 

changes, a strategy implementing standard addition calibration in combination with  

MCR-ALS was performed.  

The versatility of MCR-ALS was also exemplified in the work of Terrado et al. [92]. An 

interesting discussion related to the use of MCR-ALS as a powerful chemometric tool for the 

analysis of environmental monitoring data sets was carried out. The proposed strategy 
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allowed for the investigation, resolution, identification, and description of pollution patterns 

distributed over a particular geographical area. The results obtained by MCR-ALS analysis of 

surface water, groundwater, sediment and soil data sets obtained in a 3-year extensive 

monitoring were used to perform an integrated interpretation of the main features that 

characterize pollution patterns of organic contaminants affecting the Ebro River basin 

(Catalonia, NE Spain). Then, concentrations of four different families of compounds, i.e., 

organochlorinated compounds, polycyclic aromatic hydrocarbons, pesticides and 

alkylphenols were analysed. This example showed the capability of chemometric methods in 

relation to their field of action, i.e., they could be employed not only to estimate analyte 

concentrations but also to evaluate analyte patterns or behaviors in different environmental 

locations. 

 

 

CONCLUSION 
 

In this chapter a complete overview of the applications of second-order algorithms for the 

determination of emerging contaminants in a variety of complex environmental water 

samples was carried out. The selected examples, which include diverse approaches, show the 

capability of the different algorithms to enhance data resolution and reduce the tedious 

workbench associated with this kind of analytes which are embedded in complex matrices. As 

a consequence, the analytical chemist should be encouraged to exploit more frequently these 

tools, originated by the association of second-order data generation and modeling with 

convenient algorithms, which are nowadays easily available on the Internet.  
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ABSTRACT 
 

Proton magnetic resonance spectroscopy (
1
H-MRS) is a non-invasive diagnostic tool 

for measuring biochemical changes in the human body. It is providing information on the 

chemical structure of complex molecules and capable of the quantitative analysis of 

complex mixtures. Magnetic resonance spectroscopy refers to the absorption and release 

of radio frequent energy by a nucleus in a magnetic field. While MRS provides spectral 

or chemical information, MRI gives anatomical information. In medical applications, 

MRS is applied to identify substances at specific locations in the body and to obtain an 

indication of their concentration. A disease condition can be indicated on a MRS 

spectrum by either a change in concentration of a metabolite, which is normally present 

in the brain, or by the appearance of a resonance, which is not normally detectable. 

Metabolites are the intermediates and products of metabolism, usually restricted to small 

molecules. The aim of quantification methods is to non-invasively determine the absolute 

concentration of metabolites. As the metabolite concentrations change with a range of 

disease conditions, quantification is important in a medical context to detect these 

changes. Accurate and robust quantification of proton magnetic resonance spectroscopy 

is to precisely synthesize the biochemical compounds of the tissue, and by means of 

correct computation of different metabolites‘ concentrations detected in the associated 

spectra. However, overlapping nature of metabolites of interests, existing static field (B0) 

inhomogeneity as well as low-SNR regime hinders the performance of such 

quantification methods. Here briefly describes principle of advanced quantitative data 

analysis and discuss biomedical applications of MRS.  
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INTRODUCTION 
 

Proton magnetic resonance spectroscopy (
1
H-MRS) is a non-invasive technique for 

monitoring biochemical changes in a living tissue [1]. 
1
H-MRS of the brain has information 

consisting from the molecular content of tissues, which made it a useful tool for monitoring 

human brain tumours. Metabolite concentrations are most often presented as ratios or 

absolute concentrations. Important methodological aspects in an absolute quantification 

strategy are needed to address, including radiofrequency coil properties, calibration 

procedures, spectral fitting methods, cerebrospinal fluid content correction, macromolecule 

suppression, and spectral editing. 

The signal frequency that is detected in nuclear magnetic resonance (NMR) spectroscopy 

is proportional to the magnetic field applied to the nucleus. This would be a precisely 

determined frequency if the only magnetic field acting on the nucleus was the externally 

applied field. But the response of the atomic electrons to that externally applied magnetic 

field is such that their motions produce a small magnetic field at the nucleus which usually 

acts in opposition to the externally applied field. This change in the effective field on the 

nuclear spin causes the NMR signal frequency to shift. The magnitude of the shift depends 

upon the type of nucleus and the details of the electron motion in the nearby atoms and 

molecules. It is called a ―chemical shift―. The precision of NMR spectroscopy allows this 

chemical shift to be measured, and the study of chemical shifts has produced a large store of 

information about the chemical bonds and the structure of molecules [2]. 

The MRS signal is made up of several peaks in specific frequencies which are related to 

the chemical environment of the metabolites. The amplitude of the time-domain coefficients 

of each metabolite, which is equivalent to the peak area in the frequency-domain, is 

proportional to the amount of that metabolite‘s concentration [3, 4]. 

Concentration of metabolites may lead to accurate monitoring of the human brain 

tumours only if they are well quantified [5]. An accurate and robust quantification of 
1
H-MRS 

is to precisely synthesize the biochemical compounds of tissues and by means of correct 

computation of different metabolites‘ abundance. The performance of such methods are 

limited due to the overlapping nature of metabolites of interests and the static field (B0) 

inhomogeneity in the actual low signal-to-noise ratio (SNR) regime. Furthermore, a large and 

broad background baseline signal, which comes from macromolecules hampers the accuracy 

of MRS quantification. 

Quantification methods to estimate the abundance of metabolites of interests are 

implemented either in time-domain [6] or in frequency-domain [7]. Also number of 

simultaneous dual domains techniques have been proposed for spectral line estimation in 

MRS [8-12]. 

 

 

BASICS OF MAGNETIC RESONANCE 
 

One of the non-invasive diagnostic techniques used for detection of cancer and metabolic 

diseases is Nuclear Magnetic Resonance (NMR). NMR is based on the magnetic properties 

that certain nuclei experiment when exposed to an external magnetic field. These nuclei have 

a unique resonance frequency related to the radio waves emitted. Only certain atomic nuclei 
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have a nuclear magnetic moment, for instance, Proton (
1
H), Phosphorus (

31
P), Carbon (

13
C), 

Fluor (
19

F), Sodium (
23

Na), etc. Due to its abundance in the human body, the most common 

nucleus used in MR is 
1
H. 

The proton MRS signal is obtained by placing the sample under investigation into a static 

external magnetic field B0 to which the angular momentum of the nuclei is aligned (Figure 1).  

 

 

Figure 1. Spin rotation around its own axis and around the magnetic. 

Spins rotate about the Z axis with a specific frequency called the Larmor frequency (f0) 

proportional to the magnetic field B0. At the Larmor frequency the nuclei absorb energy 

causing the proton to change its alignment and to be detected in a magnetic field. This Larmor 

frequency is defined by:  

 

 (1) 

 

Since the gyromagnetic ratio (γ) is a constant of each nuclear species, the spin frequency 

of a certain nuclei (f0) depends on the external magnetic field (B0) and the local 

microenvironment. The electric shell interactions of these nuclei with the surrounding 

molecules cause a change in the local magnetic field leading to a change on the spin 

frequency of the atom (a phenomenon called chemical shift). The value of this difference in 

resonance frequency gives information about the molecular group carrying 
1
H and is 

expressed in parts per million (ppm).  

The effective magnetic field at the nucleus can be expressed in terms of the externally 

applied field B0 by the expression: 





2

0
0

B
f 
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 (2) 

 

where σ is called the shielding factor or screening factor. The factor s is small typically 10-5 

for protons and <10-3 for other nuclei [13]. In practice the chemical shift is usually indicated 

by a symbol d which is defined in terms of a standard reference. 

 

 (3) 

 

The signal shift is very small, parts per million, but the great precision with which 

frequencies can be measured permits the determination of chemical shift to three or more 

significant figures. The chemical shift position of a nucleus is ideally expressed in ppm 

because it is independent of the field strength.  

 

 (4) 

 

There are different field strengths clinically used for conventional MRI, ranging from 0.2 

to 3T. Since the main objective of MRS is to detect weak signals from metabolites, a higher 

strength field is required (1.5T or more). Higher field strength units have the advantage of 

higher signal-to-noise ratio (SNR), better resolution and shorter acquisition times making the 

technique useful in sick patients and others that cannot hold still for long periods of time.  

 

 

MAGNETIC RESONANCE SPECTROSCOPY (MRS) SIGNALS 
 

MRS signals are measured in the time domain and they are exponentially decaying sine 

wave, which is termed free-induction decay (FID). FID signal contains the sum of the 

response from all metabolites, macromolecule and noise, which can be represented as a sum 

of complex-damped exponentials. 

They can be measured from a specific anatomical region, or from an entire organ overlaid 

by a grid of multiple voxels (MRSI). In order to observe the contribution of individual 

metabolites, MRS signals are transformed to the frequency domain using the Fast Fourier 

Transform (FFT), producing a spectrum where the metabolite resonances can be visualized. 

Some metabolites such as lactate have doublets, triplets or multiples instead of single 

peaks. These peaks are broken down into more complex peaks and are explained by J-

coupling, also named spin-spin coupling. The J-coupling phenomenon occurs when the 

molecular structure of a metabolite is such that protons are found in different atomic groups. 

These groups have a slightly different local magnetic fields, thus each 
1
H resonates at a 

frequency characteristic of its position in the molecule resulting in a multiple peak. 
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Figure 2. Left: Time domain signal representation in two planes corresponding to the real and 

imaginary parts. Right: Real and imaginary parts of the Fourier Transformed signal. Adapted from [14]. 

 

SIGNAL MODEL 
 
1
H-MRS signal s(t) is contained three main terms, that can be modeled by: 

 

 (5) 

 

The first term; met(t) represents the metabolites signal whose model function is known. 

The main goal is to obtain reliable estimation of the metabolite parameters. The function 

met(t) can be defined as: 

 

 

(6) 

 

where K is the number of metabolites (k = 1, ..., K), mk(t) the profile of metabolite , ak the 

amplitude, φk the phase shift, dk the damping correction, fk the frequency shift due to B0 

inhomogeneity and . Although the distortions are not exactly known, but they have 

shown specified boundaries. The second term; b(t) represents the baseline signal which its 

model is not known exactly. In the frequency-domain, it is shown broad and smooth 

compared to the resonance signals and in the time-domain, it decays quickly and exists in few 

early samples. These two features of baseline are used in our dictionary construction 

algorithm to overcome the baseline problem. The third term; n(t) denotes the white Gaussian-

distributed noise. 

 

 

Technique 
 

The 
1
H-MRS acquisition usually starts with anatomical images, which are used to select a 

volume of interest (VOI), where the spectrum will be acquired. For the spectrum acquisition, 

different techniques may be used including single- and multi-voxel imaging.  
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Single-Voxel Spectroscopy 
 

In the single voxel spectroscopy (SVS) the signal is obtained from a voxel previously 

selected. This voxel is acquired from a combination of slice-selective excitations in three 

dimensions in space, achieved when a RF pulse is applied while a field gradient is switched 

on. It results in three orthogonal planes and their intersection corresponds to VOI (Figure 3). 

 

 

Figure 3. MRS signal [15]. 

 

Figure 4. Left: The intersection of the orthogonal planes, given by slice selection and phase gradients, 

results in the VOI. 
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MAGENTIC RESONANCE SPECTROSCOPY IMAGING (MRSI) 
 

Magnetic resonance spectroscopy imaging (MRSI) is multi voxel technique. The main 

objective of MRSI is to obtain simultaneously many voxels and a spatial distribution of the 

metabolites within a single sequence. Thus, this 
1
H-MRS technique uses phase-encoding 

gradients to encode spatial information after the RF pulses and the gradient of slice selection. 

MRSI is acquired using only slice selection and phase encoding gradients, besides the 

spoiler gradients. Instead of the anatomical information given by the conventional MRI 

signal, the MRS signal results in a spectrum of metabolites with different frequencies. 

The main difference between MRSI and SVS is that, after the RF pulse, phase encoding 

gradients are used in one, two or three dimensions (1D, 2D or 3D) to sample the k-space. In a 

1D sequence, the phase encoding has a single direction, in 2D has two orthogonal directions 

and, in 3D three orthogonal directions. The result of a 2D MRSI is a matrix, called a 

spectroscopy grid.  

The size of this grid corresponds to the field of view (FOV) previously determined. In the 

3D sequence, many grids are acquired within one FOV. The number of partitions (or voxels) 

of the grids is directly proportional to the number of phase encoding steps. 

The spatial resolution is also proportional to the number of voxels in a determined FOV 

(more voxels give a better spatial resolution). However, for a larger number of voxels, more 

phase encoding steps are needed and this implies a longer time for acquisition. Spatial 

resolution is also determined by the FOV size (smaller FOV gives better spatial resolution) 

and by point of spread function (PSF). 

 

 

ACQUISITION PARAMETERS 
 

Pulse sequence: Mainly, two techniques are used for acquisition of SVS 
1
H-MRS spectra: 

pointed-resolved spectroscopy (PRESS) and stimulated echo acquisition mode (STEAM). In 

the PRESS sequence, the spectrum is acquired using one 90
o
 pulse followed by two 180

o
 

pulses. Each of them is applied at the same time as a different field gradient. Thus, the signal 

emitted by the VOI is a spin echo.  

The first 180
o
 pulse is applied after a time TE1/2 from the first pulse (90

o
 pulse) and the 

second 180o is applied after a time TE1/2+TE. The signal occurs after a time 2TE (Figure 3). 

To restrict the acquired sign to the VOI selected, spoiler gradients are needed. Spoiler 

gradients de-phase the nuclei outside the VOI and reduce their signal.  

STEAM is the second most commonly used SVS technique. In this sequence all three 

pulses applied are 90
o
 pulses. As in PRESS, they are all simultaneous with a different field 

gradient. After a time TE1/2 from the first pulse, a second 90
o
 is applied. The time elapsed 

between the second and the third is conventionally called ―mixing time‖ (MT) and is shorter 

than TE1/2. 

The signal is finally achieved after a time TE+MT from the first pulse (Figure 3). Thus, 

the total time for STEAM technique is shorter than PRESS. Spoiler gradients are also needed 

to reduce signal from regions outside the VOI. 
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Figure 5. Left: PRESS sequence with three RF pulses applied simultaneously with field gradients along 

the main axes of the magnet. Right: STEAM sequence with the refocusing gradients positioned before 

the second RF pulse and after the third RF pulse. Only the first part of the data acquisition time is 

shown as the first part of the FID. Figures from [16]. 

 

Echo Time (TE) 
 

Echo time represents the time in milliseconds (ms) between the application of the first 

pulse and the beginning of the data acquisition. MRS signals can be acquired at long and 

short TE, where long TE signals provide a good observation of slowly decaying components, 

while short TE signals provide more metabolic information. Typical long TE signals are in 

the range between 60 and 300ms and short TE signals are in the range between 1 and 50ms.  

 

 

Repetition Time (TR) 
 

Repetition time is the time between successive pulse sequences applied to the same slice.  

 

 

T1, T2 and T2
* 

 

T1 is also called the spin-lattice relaxation time and refers to the time to reduce the 

difference between the longitudinal magnetization after the RF pulse and its equilibrium value 

by a factor of e
1
, where e is Euler‘s number e = 2.71828. Thus, we have: 

 

 (7) 

 

where Mz(t) is the longitudinal net magnetization at time t and M0 the initial net 

magnetization aligned with B0. T2 is also called the spin-spin relaxation time and refers to the 
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time constant which describes the return to equilibrium of the transverse  

magnetization Mxy as:  

 

 (8) 

 

where Mxy0 is the net transversal magnetization at time 0. T2 is always ≤ T1. The net 

magnetization in the xy-plane goes to zero and then the longitudinal magnetization still grows 

until the net magnetization is reached along the z-axis. T2
*
 is also known as the effective 

transverse relaxation time, thus, the time constant for the observed decay of the FID. It is a 

combination of transverse relaxation and magnetic field inhomogeneity effects. In the 

presence of a homogeneous magnetic field T2
* 

= T2, however, in an inhomogeneous field 

T2
*
<T2. We have the following relation between time and frequency domain parameters: 

 

 (9) 

 

where v corresponds to the linewidth1 of the Fourier transformed signal. (i.e., the Full Width 

at Half Maximum (FWHM)). 

 

 

Figure 6. Left: Graphical representation of the T1 and T2 relaxation times along the magnetization M0. 

The time constants T1 and T2 are measured in seconds (or ms) and refer to the exponential nature of the 

two relaxation processes. Middle: real part of the FID during relaxation and its envelope, which is 

related to the T2
*
 relaxation time. Right: Real part of FFT of the FID showing the linewidth of the 

spectrum, which corresponds to the Full Width at Half Maximum (FWHM).[17] 

 

Single or Multi-Voxel 
 

In the single voxel spectroscopy (SVS) the signal is obtained from a voxel previously 

selected. This voxel is acquired from a combination of slice-selective excitations in three 

dimensions in space, achieved when a RF pulse is applied while a field gradient is switched 

on. It results in three orthogonal planes and their intersection corresponds to VOI. In other 

hand, multi-voxel MRS measures signals from a grid of multiple volumes. 
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Number of averages is the number of acquisitions performed in order to increase the 

SNR. In addition the number of points (NDP) is the number of time samples used in the 

acquisition. 

Proton MRS is the most common spectroscopy technique used in brain studies, where up 

to twenty metabolites can be distinguished and quantified. The metabolites commonly 

observed in 1H MRS are: N-acetyl-L-aspartate (NAA), Creatine (Cr), Choline (Cho), Myo-

inositol (m-Ins), Lactate (Lac), Glutamate (Glu) and Glutamine (Gln). 

 

 

Water Suppresion  
 

MRS-visible brain metabolites have a low concentration in brain tissues. Water is the 

most abundant and thus its signal in MRS spectrum is much higher than that of other 

metabolites (the signal of water is 100.000 times greater than that of other metabolites). To 

avoid this high peak from water to be superimpose on the signal of other brain metabolites, 

water suppression techniques are needed. The most commonly used technique is chemical 

shift selective water suppression (CHESS) which pre-saturates water signal using frequency 

selective 90
o
 pulses before the localizing pulse sequence. Other techniques sometimes used 

are VAriable Pulse power and Optimized Relaxation Delays (VAPOR) and Water 

suppression Enhanced through T1 effects. 

 

 

Figure 7. STEAM spectrum of normal human muscle with (top) and without water suppression 

(bottom). [18]. 

 

Higher Fields 
1
H-MRS 

 

Higher field MRI (3T and above) is used in many centers mostly for research purposes. 

On the past decade, 3T MRI started to be routinely used for clinical examinations and it 
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results in better SNR and faster acquisitions factor which are important in sick patients that 

cannot hold still. 
1
H-MRS performed at 3T MRI has a higher SNR and a reduced acquisition 

time compared to 1.5T. It was believed that SNR would increase linearly with the strength of 

the magnetic field but SNR does not double with 3T 
1
H-MRS because others factors are also 

responsible for the SNR, including metabolite relaxation time and magnetic field 

homogeneity.  

Spectral resolution is improved with higher magnetic field. A better spatial resolution 

increases the distance between peaks making it easier to distinguish between them. However, 

the metabolites linewidth also increases at higher magnetic field due to a markedly increase 

T2 relaxation time. Thus, short TE is more commonly used with 3T. The difference of T1 

relaxation time from 1.5T to3T depends on the brain region studied.  

3T 
1
H-MRS is more sensitive to magnetic field inhomogeneity and some artifacts are 

more pronounced with it particularly susceptibility and eddy currents ones. Chemical shift 

displacement is also larger at 3T and this artifact increases linearly with the magnetic field.  

 

 

Figure 8. Real part of the spectra of three in vivo signals acquired at: (a) 1.5 T with acquisition 

parameters: PRESS pulse sequence, TR=6 s, TE=23 ms, SW=1 KHz, NDP=512 points, 64 averages. 

(b) 3.0 T with acquisition parameters: PRESS pulse sequence, TR=2 s, TE=35 ms, SW=2 KHz, 

NDP=2048 points, 1 average. (c) 9.4 T with acquisition parameters: PRESS pulse sequence, TR=4 s, 

TE=12 ms, SW=4 KHz, NDP=2048 points and 256 averages. 

 

Metabolites in Proton MR Spectroscopy 
 

Only a limited number of molecules with protons are observable in 
1
H-MRS. In 

1
H-MRS, 

the principle molecules that can be analyzed are: 

 

 N-acetyl-asparate (NAA) (molecule present in healthy neurones) at 2.0 ppm 

 Creatine/phosphocreatine (Cr) (energy metabolism molecules) at 3.0 ppm 

 Choline compounds (Cho) (marker in the synthesis and breakdown of cell 

membranes) at 3.2 ppm 

 Myo-inositol (mI) (only found in glial tissue) at 3.5 ppm 

 Glutamine-Glutamate-GABA complex (Glx) (neurotransmitters) between 2.1 and 2.5 

ppm 

 Lactate (Lac) (anaerobic metabolism): doublet at 1.35 ppm 

 Free lipids (Lip): wide resonance, doublet at 1.3 and 0.9 ppm 
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The number of discernable metabolites will vary according to the TE of the spectroscopy 

sequence: the longer the TE (135 or 270 ms), the more long T2 metabolites are selected. With 

short TE (15 to 20 ms), the spectrum will be more complex because of the greater number of 

superimposed peaks, producing a number of problems for quantification and interpretation. 

 

 

N-Acetylaspartate (NAA)  
 

Peak of NAA is the highest peak in normal brain. This peak is assigned at 2.02 ppm. 

NAA is synthesized in the mitochondria of neurons then transported into neuronal cytoplasm 

and along axons. NAA is exclusively found in the nervous system (peripheral and central) 

and is detected in both grey and white matter. It is a marker of neuronal and axonal viability 

and density. NAA can be found in immature oligodendrocytes and astrocyte progenitor cells, 

as well. NAA also plays a role as a cerebral osmolyte.  

Absence or decreased concentration of NAA is a sign of neuronal loss or degradation. 

Neuronal destruction from malignant neoplasms and many white matter diseases result in 

decreased concentration of NAA. In contrast, increased NAA is nearly specific for Canavan 

disease. NAA is not demonstrated in extra-axial lesions such as meningiomas or intra-axial 

ones originating from outside of the brain such as metastases.  

 

 

Creatine (Cr)  
 

The peak of Cr spectrum is assigned at 3.02 ppm. This peak represents a combination of 

molecules containing creatine and phosphocreatine. Cr is a marker of energetic systems and 

intracellular metabolism. Concentration of Cr is relatively constant and it is considered a most 

stable cerebral metabolite. Therefore it is used as an internal reference for calculating 

metabolite ratios. However, there are regional and individual variability in Cr concentrations.  

In brain tumors, there is a reduced Cr signal (see details below). On the other hand, 

gliosis may cause minimally increased Cr due to increased density of glial cells (glial 

proliferation). Creatine and phosphocreatine are metabolized to creatinine then the creatinine 

is excreted via kidneys (Hajek Dezortova, 2008). Systemic disease (e.g., renal disease) may 

also affect Cr levels in the brain (Soares Law, 2009).  

 

 

Choline (Cho)  
 

Its peak is assigned at 3.22 ppm and represents the sum of choline and choline-containing 

compounds (e.g., phosphocholine). Cho is a marker of cellular membrane turnover 

(phospholipids synthesis and degradation) reflecting cellular proliferation. Intumors, Cho 

levels correlate with degree of malignancy reflecting of cellularity. Increase Cho may be seen 

in infarction (from gliosis or ischemic damage to myelin) or inflammation (glial proliferation) 

hence elevated Cho is nonspecific. 
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Lactate (Lac)  
 

Peak of Lac is not seen or is hardly visualized in the normal brain. The peak of Lac is a 

doublet at 1.33 ppm which projects above the baseline on short/long TE acquisition and 

inverts below the baseline at TE of 135-144 msec.  

A small peak of Lac can be visible in some physiological states such as newborn brains 

during the first hours of life (Mullins, 2006). Lac is a product of anaerobic glycolysis so its 

concentration increases under anaerobic metabolism such as cerebral hypoxia, ischemia, 

seizures and metabolic disorders (especially mitochondrial ones). Increased Lac signals also 

occur with macrophage accumulation (e.g., acute inflammation). Lac also accumulates in 

tissues with poor washout such as cysts, normal pressure hydrocephalus, and necrotic and 

cystic tumors (Soares Law, 2009).  

 

 

Lipids (Lip)  
 

Lipids are components of cell membranes not visualized on long TE because of their very 

short relaxation time. There are two peaks of lipids: methylene protons at 1.3 ppm and methyl 

protons at 0.9 ppm (van der Graaf, 2010). These peaks are absent in the normal brain, but 

presence of lipids may result from improper voxel selection causing voxel contamination 

from adjacent fatty tissues (e.g., fat in subcutaneous tissue, scalp and diploic space).  

Lipid peak scan be seen when there is cellular membrane breakdown or necrosis such as 

in metastases or primary malignant tumors. 

 

 

Myoinositol (Myo)  
 

Myo is a simple sugar assigned at 3.56 ppm. Myo is considered a glial marker because it 

is primarily synthesized in glial cells, almost only in astrocytes. It is also the most important 

osmolyte in astrocytes. Myo may represent a product of myelin degradation. Elevated Myo 

occurs with proliferation of glial cells or with increased glial-cell size as found in 

inflammation. Myo is elevated in gliosis, astrocytosis and in Alzheimer‘s disease (Soares 

Law, 2009; van der Graaf, 2010).  

 

 

Alanine (Ala)  
 

Ala is an amino acid that has a doublet centered at 1.48 ppm. This peak is located above 

the baseline in spectra obtained with short/long TE and inverts below the baseline on 

acquisition using TE= 135-144 msec .  

Its peak may be obscured by Lac (at 1.33 ppm). The function of Ala is uncertain but it 

plays a role in the citric acid cycle (Soares Law, 2009). Increased concentration of Ala may 

occur in oxidative metabolism defects (van der Graaf, 2010). In tumors, elevated level of Ala 

is specific for meningiomas.  
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Glutamate-Glutamine (Glx) 
 

Glx is a complex peaks from glutamate (Glu), Glutamine (Gln) and gamma-aminobutyric 

acid (GABA) assigned at 2.05-2.50 ppm.  

These metabolite peaks are difficult to separate at 1.5 T. Glu is an important excitatory 

neurotransmitter and also plays a role in the redox cycle (Soares Law, 2009; van der Graaf, 

2010). Elevated concentration of Gln is found in a few diseases such as hepatic 

encephalopathy (Fayed et al., 2006; van der Graaf, 2010). 

 

Table 1. The metabolites and their information 

 

Metabolite 
Freq. 

(ppm) 

short 

T2 

long 

T2 
Role Anomalies 

mI Myo-Inositol 3,6 ● 
 

Glial marker 

↑ : gliomas, MS reactional 

gliosis  

↓ : herpetic encephalitis 

Cho Choline 3,2 ● ● 

Cell membrane 

metabolism 

marker 

↑ : tumors, demyelinization 

Cr 

Pcr 

Creatine 

Phosphocreatine 
3,0 ● ● 

Energy 

metabolism 

marker, serves as 

reference peak as 

it is ~ constant 

 

Glx 
GABA, Glutamate 

Glutamine 
2,1-2,5 ● 

 

Intracellular 

neurotransmitter 

marker 

↑ : hepatic encephalopathy 

NAA 
N-Acetyl-

Aspartate 
2,0 ● ● 

Healthy neuron 

marker 

↑ : Canavan's disease 

↓ : neuronal distress 

Succ Succinate 2,4 ● ● 

DISEASES 

Pyogenic 

abscess  

Ac Acetate 1,9 ● ● Abscess 
 

Ala Alanine 
1,5 

(doublet) 
● ● 

Meningioma, 

Abscess  

Lac Lactate 
1,3 

(doublet) 
● + ● – 

Ischemia, 

convulsions, 

tumors, 

mitochondrial 

cytopathies 

↑ : anaerobic 

metabolism 

Lip Free lipids 
0,9 

1,4 
● ● 

Necrotic tumor 

(high grade)  

 

 

Pre-Processing 
 

Due the signal acquisition procedure, many distortions, noise and shift are applied to 

signal. The pre-processing steps enhanced the signal or more processing. This steps be more 

important when absolute value need to extract from the signal. The pre-processing can be 

done in several parts as follow: 
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Frequency Alignment  
 

Spectral alignment is essential for most of the quantification methods. In this 

preprocessing step the FID is transformed to the frequency domain and the spectra are shifted 

such that some recognizable peaks reach the desired frequency locations. In 
1
H-MRS, the 

resonance frequency of observable metabolites is known and, therefore, they can be used for 

shifting the full spectra. 

In some particular cases, the chemical shifts of in vivo metabolites can vary depending on 

the tissue, temperature and pH. These variations affect the accurate estimation of metabolite 

resonances, especially when fitting a set of metabolite profiles to the in vivo signal. 

Therefore, advanced alignment using for instance quantum mechanics, may be necessary if 

displacement of individual spectral peaks in a metabolite are detected. 

 

 

Figure 9. MRS of white matter in a normal brain. (A) Long TE spectra have less baseline distortion and 

are easy to process and analyze but show fewer metabolites than short TE spectra. Also, the lactate 

peaks are inverted, which makes them easier to differentiate them from lipids. (B) Short TE 

demonstrates peaks attributable to more metabolites, including lipids, glutamine and glutamate, and 

myo-inositol. [19]. 

 

Phase Correction 
 

This correction consists of the multiplication of the complex spectrum by a complex 

phase factor equal to the initial phase of the FID. In particular, for frequency domain methods 

zero-phased spectra are required before quantification in order to obtain reliable metabolite 

estimates. On the other hand, for the time domain methods presented in this manuscript, the 
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phase correction is not necessary because all processing and analysis is done considering the 

real and imaginary parts of the time domain signal. 

 

 

Figure 10. Real part of spectrum of an in vivo signal from mouse brain measured at 9.4 T in a Bruker 

scanner using a PRESS sequence and with acquisition parameters of TR=4 s, TE=12 ms, SW=4 KHz 

and 256 averages in a VOI of size 3×1.75×1.75 mm3. Normally, the carrier frequency is located at the 

water peak (i.e., 4.7 ppm), however, when this position is changed the metabolites of interest resonate 

at different locations. Nevertheless, the resonance frequency of other peaks in 1H MRS is known (e.g., 

NAA at 2.01 ppm) and can be used for peak alignment. [20]. 

 

Figure 11. Top: zero order phase distortion influencing all peaks in the spectrum in the same way. 

Bottom: first order phase distortion influencing the peaks depending on the central frequency ωcent and 

the parameter τ which determines how steeply the first order phase changes with the frequenc [21]. 
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Eddy Current Corrections 
 

Eddy currents are caused by the scanner and cannot always be avoided. They are induced 

by the rapid switching in the magnet of the gradient coils and surrounding metal structures. 

These currents are a manifestation of Faraday‘s law of induction caused by the switching of 

the magnetic field gradients [14]. Klose [22] has developed a method to correct eddy currents 

(called ECC) by point-wise dividing the water suppressed signal by the phase term of the 

water unsuppressed signal. 

 

 

Residual Water Suppression 
 

In vivo 
1
H-MRS signals contain a water resonance usually 10

3
 to 10

4
 larger than those of 

metabolites. Thus, to be able to identify metabolites and obtain a high SNR, an efficient 

suppression of the water peak is required. Water suppression techniques during acquisition 

provide a residual water signal at the level of most observable metabolites. Although these 

methods have a good performance, there is usually an incomplete water suppression and 

residual water remains in the signal. As a consequence, the metabolite peaks near the water 

resonance are altered and the tail of the residual water may affect the baseline of the signal. 

Therefore, numerical methods are required to suppress the unwanted peaks after acquisition. 

 

 

Figure 12. Real part of an in vivo spectrum from mouse brain measured at 9.4 T in a Bruker scanner 

using a PRESS sequence and with acquisition parameters of TR=4 s, TE=12 ms, SW=4 KHz and 256 

averages in a VOI of size 3×1.75×1.75 mm3. Left: unfiltered signal. Right: water suppressed signal 

using the method HLSVD-PRO [23]. 

 

Baseline Correction/Estimation 
 

Baseline estimation is very important in the quantification of in vivo MRS signals and 

can be the source of many systematic errors, therefore, an adequate correction/ estimation 

method is necessary. The baseline of in vivo MRS signals is characterized by a broad and 

non-flat unknown spectrum overlapping with the peaks of interest. Therefore, it can be 

identified with a fast decaying FID. In in vivo 
1
H-MRS signals with long TE the baseline is 

not present, while short TE signals exhibit a significant baseline distortion. 
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Figure 13. MR spectrum illustrating the baseline estimation method proposed by Golotvin and Williams 

[24]. Top: Original 400 MHz spectrum with a water hump. Middle: the baseline model consisting of 

fragments of the smoothed spectrum and regions interpolated by straight lines. Bottom: the spectrum 

after baseline subtraction. 

 

Quantification 
 
1
H-MRS signal can monitor the chemical environment if the well quantified. The 

quantification of MRS signal is the procedure to calculate the concentration of metabolite in 

the signal to obtain the chemical information of interest tissue. There are two approach in 

quantification of MRS signals: 1) Relative quantification: The results of the MRS are 

generally expressed as concentration ratios. Creatine peak or comparison with the healthy 

contralateral zone often serve as the reference values. 2) Absolute quantification: Measuring 

the true concentration of metabolites by MRS comes up against several technical difficulties: 

the peak area has to be determined accurately then converted into concentration after 

calibration. 

Many methods have been developed to quantify the MRS signals accurate and also with 

more speeds. They can be discussed in three generation. The first generation was based on the 

peak picking. The concentration of each metabolite present based on the amplitude of each 

metabolite in its known frequency. This technique has lots of error and high sensitive to 

noise, baseline and any distortion.  

The second generation was introduced based on the peak fitting. The model of peaks 

based on the Lorentzian, Gaussian or Voigt was used to minimize the estimation of signal. 

This technique was more robust in compare to the peak picking, but have poor performance in 

complex signal. 

The third generation is introduced based on the metabolites‘ profile. All the information 

of the metabolite was generated and used in the processing procedure. This technique can 

quantify metabolites more accurate but it takes more time to process the signal. Currently 
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many methods developed which employed the information of metabolites profile to quantify 

the MRS signal in less time and more accuracy.  

The MRS quantification methods are implemented in time-domain or frequency-domain. 

In time domain methods, quantitation is carried out in the same domain as the domain where 

the signals are measured, giving more flexibility to the model function and allowing specific 

time-domain preprocessing.  

In time domain methods, the object is to minimize the difference between the data and 

the model function, resulting in a typical nonlinear least-squares (NLLS) problem. The 

important feature of the interactive methods is they can use a basis set of metabolite profiles. 

VARPRO [25], the local optimization procedure based on Osborne's Levenberg-Marquardt 

algorithm [26], was the first widely used method for quantifying MRS data. It has been 

replaced later by AMARES [27], which proved to be better than VARPRO in terms of 

robustness and edibility. AMARES allows more prior knowledge and can also fit echo 

signals.  

On the other hand, methods such as AQSES [28] or QUEST [25] make use of a 

metabolite basis set, which can be built up from simulated spectra (e.g., via programs based 

on quantum mechanics such as NMR-SCOPE [29]) or from in vitro spectra. The use of a 

metabolite basis set facilitates the disentangling of overlapping resonances when the 

corresponding metabolite profiles also contain at least one non-overlapping resonance.  

 

Table 2. The comparison of three generation of quantification methods 

 

Procedure 
Preparation 

Time 

Sensitivity to Baseline 

Imperfections 
Ease of Use Accuracy 

Integration + - + * 

Peak fitting with prior 

knowledge 
+ - + ** 

Peak fitting with 

metabolite basis set 
- + - *** 

 

The frequency domain is naturally suited for frequency selective analysis with the 

advantage of decreasing the number of model parameters. Visual interpretation of the 

measured MRS signals and of the fitting results is best done in the frequency domain. The 

oldest and still widely used quantitation method in the frequency domain is based on the 

integration of the area under the peaks of interest [30].  

Unfortunately, this method is not able to disentangle overlapping peaks and therefore to 

extract information from individual peaks or metabolite contributions. Residual baseline 

signals and low SNRs will also hamper good quantitation. Furthermore, an appropriate 

phasing is necessary when dealing with the real part of the frequency-domain MRS signal, 

which is far from trivial. Peak integration depends widely on the defined bounds.  

Although frequency-domain fitting methods are equivalent to time-domain fitting 

methods from a theoretical point of view, a simple exact analytical expression of the discrete 

Fourier transform (DFT) of the model function is often not available for the Voigt and/or 

Gaussian lineshapes, even if numerical approximations exist. 
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Table 2. The comparison between some popular quantification methods 

 

Methods Prior-knowledge Profile Lineshape Water Baseline Accuracy 

VARPRO  
    

* 

AMARES  
  

 
 

** 

AQSES 
 

 
 

  ** 

QUEST 
 

 
  

 *** 

LCModel 
 

  
 

 *** 

 

The model functions in the frequency domain are more complicated than in the time-

domain and necessitate thereby more computation time. The frequency-domain methods 

which only use the real part of the spectrum in their model, such as LCModel [15], require a 

very good phasing to get the spectrum in its absorption mode. Quantification methods can be 

divided into three domains: time-domain methods, frequency-domain methods and methods 

which implement in time-frequency domain. 
 

 
 

Time-domain and frequency-domain methods are usually divided into two main classes: 

black-box or non-interactive methods and methods based on iterative model function fitting 

or interactive methods. The time-domain methods can be expressed as the list below: 

 

 

Quantification 

Time 
Domain 

Frequency 
Domain 

Time-Frequency 
Domain 

T
im

e 
D

o
m

ai
n

 

Black-box 

Linear Prediction Total least squares 

SVD-based techniques 

Iterative methods 

Global Optimization 

Genetic Algorithm 

Simulated Annealing 

Local optimization 

variable projection 

(VARPRO) 

advanced method for accurate, robust and efficient 
spectral fitting (AMARES) 

basis set of metabolite 
profile 

automated quantification of short echo time MRS 

(AQSES) 

quantification based on quantum estimation 

(QUEST) 
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The frequency-domain is naturally suited for frequency selective analysis with the 

advantage of decreasing the number of model parameters. Visual interpretation of the 

measured MRS signals and of the fitting results is best done in the frequency domain. The 

frequency-domain methods can be expressed as the list below: 

 
In order to utilize the advantages of time and frequency domain simultaneously, time-

frequency domain method were implementted. The time-frequency domain methods can be 

expressed as the list below: 

 
 

 

 

F
re

q
u

en
cy

 D
o

m
ai

n
 

Non-iterative methods 

Peak integration 

SVD-based techniques 

filter diagonalization method 

(FDM) 

selective-frequency method of 
direction estimation 

(SELF-MODE) 

filtering and down sampling 

(FIDO) 

estimation of signal parameters via 
rotational invariance techniques 

(ESPRIT) 

selective-frequency singular value 
decomposition 

(SELF-SVD ) 

Iterative methods 

Global Optimization  

Local optimization  

Basis set of metabolite profile 

Time-Frequency 
Domain 

Standard Wavelets 

Continues Wavelet 

Packet Wavelets 

Autocorrelation 
Wavelets 

Metabolite-based 
Wavelet 
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CLINICAL APPLICATION 
 

Brain Tomur 
 

The main application of 
1
H-MRS is brain tumors. This technique is usually used as a 

complement to conventional MRI. Combined with conventional MRI, proton MR spectra 

may improve diagnosis and treatment of brain tumors. 
1
H-MRS may help with differential 

diagnosis, histologic grading, degree of infiltration, tumor recurrence, and response to 

treatment mainly when radio necrosis develops and is indistinguishable from tumor by 

conventional MRI. 

MRSI is usually preferable to SVS because of its spatial distribution. It allows the 

acquisition of a spectrum of a lesion and the adjacent tissues and also gives a better depiction 

of tumor heterogeneity. On the other hand, SVS is faster. 

Elevation of Choline is seen in all neoplastic lesions. Choline peak may help with 

treatment response, diagnosis and progression of tumor. Its increase has been attributed to 

cellular membrane turnover which reflects cellular proliferation. Choline peak is usually 

higher in the center of a solid neoplastic mass and decreases peripherally. Cho signal is 

consistently low in necrotic areas. 

Another 
1
H-MRS feature seen in brain tumors is decrease NAA. This metabolite is a 

neuronal marker and its reduction denotes destruction and displacement of normal tissue. 

Absence of NAA in an intra-axial tumor generally implies an origin outside of the central 

nervous system (metastasis) or a highly malignant tumor that has destroyed all neurons in that 

location. Creatine signal, on the other hand, is slightly variable in brain tumors. It changes 

according to tumor type and grade. The typical 
1
H-MRS spectrum for a brain tumor is one of 

high level of Choline, low NAA and minor changes in Creatine. 

 

 

Figure14. Patient with glioblastoma with oligodendroglioma component, WHO grade IV of IV. (A) 

MRS spectrum from region of brain not affected by the tumor. (B) Spectrum from a voxel within the 

tumor, showing elevated choline. (C) T1 MR image and (D) color-rendered MRS image showing 

variations in the levels of choline within the tumor. [19]. 
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Alzheimer's Disease 
 

Pathologically, the condition shows predilection for the hippocampi and anteromedial 

temporal lobes. Susceptibility artifact encountered when imaging the medial temporal lobes 

makes reproducibility of high quality spectra difficult, thus convention is to place the voxel in 

the posterior cingulate gyrus, a spectroscopically homogeneous region [31]. Reduced NAA 

and raised myoinositol are consistently demonstrated on the spectra, even in the early stages. 

Moreover, it is thought that elevated myoinositol levels may provide the earliest imaging 

indicator of the disease as glial proliferation typically precedes significant neuronal loss or 

mitochondrial dysfunction. 

MR spectroscopy is also proving useful in the diagnosis of mild cognitive impairment, a 

condition recognised as preceding the development of Alzheimer's disease [5]. What's more, 

researchers have reported that MR spectroscopy is capable of predicting which patients with 

mild cognitive impairment will go on to develop Alzheimer's disease. Significant decline in 

NAA/Cr ratio or rise in Cho/Cr ratio measured in the paratrigonal white matter may be 

detected before clinical onset of dementia. 

 

 

Epilepsy 
 

A major contribution of MRS to epilepsy is its ability to determine lateralization before 

surgical resection of the diseased brain region. 
1
H-MRS identify abnormalities in high-energy 

metabolism, neuronal function and neurotransmitter levels, but information can only be 

obtained from restricted regions of the brain. 

In temporal lobe epilepsy, 
1
H-MRS is used to lateralize the seizure focus using a 

reduction in NAA/Cr, Ch as a guide. Similarly many dementias are characterized by 

unspecific reduction of NAA levels, associated with neuronal deficits [32]. 

 

 

Stroke 
 
1
H-MRS studies in humans demonstrate that after acute cerebral infarction, lactate 

appears, while NAA and total Cr/PCr are reduced within the infarct compared to the 

contralateral hemisphere. Large variations in the initial concentrations of Cho have been 

observed in the region of infarction [33]. 

In stroke, these early observations have detected prolonged lactate elevation and loss of 

NAA in the affected region. One possible source of persistent lactate is production by 

ischemic but viable brain cells shifted toward anaerobic glycolysis. Such an ―ischemic 

penumbra‖ is conceivably amenable to therapeutic interventions [33]. 
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ABSTRACT 
 

Metabolomics, the systematic identification and quantitation of low molecular 

weight compounds, is, thanks to recent technological advances, currently making major 

inroads into clinical research and diagnostics. In this rapidly expanding field of analytical 

biochemistry, chemometric methods play a crucial role in the process of generating 

knowledge out of data, which are usually signals obtained by either mass spectrometry 

(MS) or nuclear magnetic resonance (NMR) spectroscopy. In the last decade, though, MS 

has established itself as the de facto standard for the analysis of small molecules, mainly 

because of its superior sensitivity and resolution. 

Mathematical methods for data processing on the one side, and statistical and data 

mining approaches for data analysis on the other are the two main pillars of this entire 

process. Compared to the workflow in other functional genomics disciplines, the unique 

specialty of metabolomics lies in an additional level of scrutiny, namely a plausibility 

check of results from the perspective of biochemistry. Based on the existing body of 

knowledge and the detailed functional understanding of metabolic reactions, analytical 

results can be subjected to a thorough biochemical interpretation, usually in the context of 

annotated pathways, aiming at a verification of results and/or at generating new 

biological hypotheses. 

In this chapter, emphasis is put on several steps along this workflow: data 

acquisition, algorithms for signal and data processing, statistical and data mining aspects 

for data analysis, and – eventually – on the interpretation of results in their biochemical 

context.  
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LIST OF ABBREVIATIONS 
 

ANN  artificial neural networks  

AV   associative voting  

ATP  adenosine triphosphate  

BALF bronchoalveolar lavage fluid  

CSF  cerebrospinal fluid  

CO2  carbon dioxide  

CV   coefficient of variance  

DBS  dried blood spots  

DNA  deoxyribonucleic acid  

EA   enrichment analysis  

EBI  european bioinformatics institute  

FATMO  fatty acid transport and mitochondrial oxidation  

FDA  food and drug administration  

GO   gene ontology  

GSEA  gene set enrichment analysis  

GWA  genome-wide association  

HCA  hierarchical clustering analysis  

H2O  water  

HMDB  human metabolome database  

KEGG  kyoto encyclopedia of genes and genomes  

kNN  k-nearest neighbor  

LIMS  laboratory information management systems 

LLOQ  lower limit of quantitation  

MRM  multiple reaction monitoring  

mRNA  messenger ribonucleic acid  

MSEA  metabolite set enrichment analysis  

MS   mass spectrometry  

MSI metabolomics standards initiative  

ORA  overrepresentation analysis  

NADH  nicotinamide adenine dinucleotide  

NCBI  national center for biotechnology information  

NH3  ammonia  

NMR  nuclear magnetic resonance  

pBI  paired Biomarker Identifier  

PCA  principal component analysis  

PLS-DA  partial least square discriminant analysis  

qPCR  quantitative polymerase chain reaction  

RFM  random forest models  

ROC  receiver operating characteristic  

SEA  set enrichment analysis  

SID  stable isotope dilution  

SFR  stacked feature ranking  

SMPDB  small molecule pathway database  
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SNP  single-nucleotide polymorphism  

SOM  self-organizing maps  

SOP  standard operating procedure  

SSP  single sample profiling  

SVM  support vector machines  

uBI  unpaired biomarker identifier 

Y2H  yeast-two-hybrid 

 

 

INTRODUCTION 
 

Metabolomics - History and Proof-of-Concept 
 

When it became technically conceivable to obtain the complete sequence of the human 

genome in a reasonable timeframe, biologists and physicians alike were phrasing incredibly 

high expectations and predicting a quantum leap in evidence-based medicine and drug 

development [1,2]. Now, just a little more than a decade after the first relatively complete 

drafts have been released, there is a general agreement that the functional understanding of an 

organism and its (patho-)physiology requires much more than just deciphering its genetic 

material [3]. With a little exaggeration, one might actually argue that the most significant 

impact of the human genome project was that it did not meet these expectations straight away 

and, thus, promoted a wave of technology developments heralding an era of functional 

genomics with its comprehensive analytical platforms for messenger ribonucleic acid 

(mRNA) (transcriptomics), proteins and peptides (proteomics), and low molecular weight 

biochemicals (metabolomics). 

Among these three disciplines, transcriptomics was the first to be covered by 

standardized commercial solutions. While the microarray-based technologies still offer 

insufficient precision and accuracy for truly quantitative workflows and require confirmation 

by less multiplexed approaches like quantitative polymerase chain reaction (qPCR), they still 

became an accepted standard for this level of expression profiling [4]. Interestingly, the very 

basic unsolved issues arising from the lack of biological understanding of these data sets did 

not seem to hinder the widespread use of transcriptomics (for a brief overview of strengths 

and weaknesses of the current omics platforms, see table 1). 

Analogous developments for the most complex class of biomolecules, the proteome, led 

to a variety of competing platforms, none of which was able to establish a similarly accepted 

industry standard. One of the reasons may simply be its complexity and dynamic range which 

made it impossible to stick to the idea that one analytical platform could really generate a 

comprehensive data set – as one was accustomed to for both sorts of nucleic acids. The far 

more important shortcoming may have been the dramatic lack of reproducibility – both 

preanalytical and analytical – that was not appropriately considered when celebrating the first 

‗breakthrough‘ results, particularly in the field of clinical biomarker research in oncology [5-

7]. 

The third of these disciplines, metabolomics, fundamentally differs from the other two as 

it is not gene-centric in annotation and, thus, cannot easily be linked to the data sets from 

transcriptomics or proteomics experiments. In addition, the basic qualitative workflow, i.e., 
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the structural elucidation of metabolites, is not just another variation of sequencing a 

biopolymer (except for polymeric carbohydrates, of course) but can be a very tedious if not 

impossible task because mass spectrometry (MS) is sometimes not informative enough to 

unanimously identify a metabolite structure and nuclear magnetic resonance (NMR) 

spectroscopy very often not sensitive enough given the minute amounts of a particular 

biomolecule which can be available in biological samples. Still, metabolomics has gained a 

quite remarkable momentum, which is mainly due to two independent developments: 

First, the sensitivity and robustness of triple quadrupole mass spectrometers were 

improved dramatically since these instruments were first conceived and developed in the late 

1970s [8]. Also, experimental improvements such as scheduled multiple reaction monitoring 

(MRM) for hundreds of transitions (reviewed by Ebhardt [9]) and the use of stable isotope 

dilution (SID) for absolute quantitation [10] facilitated an approach to the metabolome which 

was – and still is – far from complete but extremely informative. 

Second, and probably even more important, the detailed knowledge of metabolic 

pathways and their individual reactions allowed for a very straightforward biochemical 

interpretation once quantitative data became available. While the scientific communities of 

cell biologists and biochemists just begin to catalogue and map protein-protein-interactions 

(and do not even seriously try to predict functional relationships at the mRNA level), the vast 

majority of metabolic pathways is characterized and functionally understood in great detail 

(e.g., substrates and products linked to enzymatic reactions, molecular reaction mechanisms, 

equilibria, kinetics and energetics of these reactions, co-factors, etc.). It is this wealth of 

background knowledge that makes metabolomics the most promising area in functional 

genomics for future clinical applications [3,11-13]. 

To date, the most successful use case of mass spectrometry-based metabolomics is still 

the routine diagnostic application in neonatal screening [14]. Here, more than twenty so-

called inborn errors of metabolism, i.e., monogenic disorders of amino acid metabolism and 

fatty acid transport and mitochondrial oxidation (FATMO), are detected with unmatched 

diagnostic performance based on highly standardized, multiplexed quantitative assays for just 

two classes of metabolites, amino acids and acylcarnitines. Yet, this application can only be 

seen as the starting point for a renaissance of classical biochemistry and a new era of 

multiparametric metabolic markers in clinical chemistry. 

 

 

Application Areas  
 

By now, metabolomics is utilized in a very wide range of applications, so it is virtually 

impossible to provide a comprehensive overview. Yet, a brief selection of examples should 

already indicate how versatile this analytical tool has become. 

Fundamental insights into diabetology could be provided by mapping the genotype to the 

metabolic phenotype (now termed the ‗metabotype‘) of individuals, through genome-wide 

association (GWA) studies combined with quantitative metabolomics experiments [15,16]. 

This combination has also led to breakthrough findings in agro-biotechnology, e.g., in 

population genetics research on livestock where major traits of different breeds of cattle could 

be linked to metabotypes in a strikingly plausible way [17]. 

Another very promising field of applications is in nutritional science, the so-called 

nutrimetabolomics [18]. Here, population-based studies have examined the consequences of 
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nutritional habits [19] or individual food products or ingredients [20-22] on human 

metabolism. Metabolomics analyses are also particularly useful in characterizing microbial 

systems, for optimizing cell culture conditions, and in bioprocessing [23]. They have become 

instrumental in the detailed understanding of animal models such as transgenic mice [24] or 

mice exposed to radiation [25].  

 

Table 1. Comparison of the strengths and weaknesses of the four main omics disciplines 

 
Discipline / 

Main analytes 

Completeness1 Qualitative 

analysis 

Quantitative analysis Functional 

understanding 

Genomics / 

Deoxyribonucleic 

acid (DNA) 

Very good; full 

genome sequence 

available  

Very good; well-

established and 

fully automated 

platforms for high-

throughput 

sequencing 

Only applicable for 

copy number 

variation or similar 

applications 

Fair; GWA studies 

identify relevant 

variants (single-

nucleotide 

polymorphisms 

(SNPs)) but often 

with limited odds 

ratio and explained 

variance; haplotype 

association studies 

still at an early stage 

Transcriptomics / 

messenger 

ribonucleic acid 

(mRNA) 

Good; virtually all 

genes covered on 

microarrays, some 

transcripts only 

accessible via 

sequencing 

Good; Directly 

linked to genomic 

sequence 

information; also 

accessible via 

transcript 

sequencing 

Fair; standardized 

platforms available; 

high-throughput 

results semi-

quantitative at best; 

confirmation by 

qPCR required but 

more difficult to 

multiplex 

Very poor; even if 

protein function is 

characterized, 

interpretation is 

further hindered by 

the lack of 

proportionality 

between mRNA and 

protein abundance 

Proteomics / 

Peptides, proteins, 

post-translational 

modifications 

Poor; only a minor 

percentage of the 

proteome accessible 

due to huge dynamic 

range and complexity, 

particularly poor 

coverage of post-

translational 

modifications 

Fair; In principle 

well-established 

workflow for 

identification 

(MS-based 

sequencing of 

peptides) but 

tedious due to 

complexity of 

proteome in 

biological matrices 

Fair; standardized 

solutions for relative 

quantitation 

available, e.g., 

isobaric tags; 

absolute quantitation 

still very rarely 

achieved although 

stable isotope 

dilution works here 

as well 

Poor; function of 

many individual 

proteins well 

described but 

protein interaction 

networks mainly 

based on yeast-two-

hybrid (Y2H) data, 

so still very poor in 

information, 

particularly 

regarding protein 

complexes 

Metabolomics / 

Metabolites (amino 

acids, carbohydrates, 

organic acids, lipids, 

etc.) 

Fair; current platforms 

far from complete 

coverage but 

knowledge of rate-

limiting steps in 

pathways allows for 

smart selection of key 

analytes 

Poor; 

Identification / 

structural 

elucidation of 

metabolites can be 

very difficult (MS 

data not 

sufficiently 

informative / 

NMR requires too 

much material) 

Very good; 

quantitation by stable 

isotope dilution can 

be multiplexed for 

hundreds of 

metabolites and 

reaches quality 

standards of clinical 

chemistry 

Very good; most 

metabolic pathways 

understood in great 

detail (equilibria, 

mechanism, kinetics 

and energetics of 

reactions, co-

factors, localization 

etc.) allowing for 

direct interpretation 

of results 

 

                                                        
1
This column only refers to the human–omes. 
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The most promising field is definitely clinical research where multiparametric metabolic 

signatures have led to a paradigm shift in early diagnosis, staging and monitoring of chronic 

kidney disease [26-29], diabetes [13,30,31], or Alzheimer's disease [32,33]. 

Similarly groundbreaking findings which also demonstrate the potential for evidence-

based drug development were presented in oncology [34-36], exercise physiology [37,38], or 

hypoxia-induced oxidative stress [39]. 

 

 

Fundamental Approaches 
 

In metabolomics, depending on the definition, different fundamental approaches are 

distinguished, e.g., untargeted metabolomics, targeted metabolomics, metabolic 

fingerprinting, or in situ metabolomics [13,18,40,41]. Due to their widespread use, in this 

section, only the two approaches of untargeted and targeted metabolomics will be shortly 

outlined. 

Untargeted metabolomics (also known as metabolic profiling) aims at providing a 

snapshot of the biochemical profile within a sample of interest, trying to measure as many 

compounds as possible at once, and thus ideally providing a holistic picture. This concept is 

basically unbiased, and the number of metabolites analyzed in one sample is primarily limited 

by analytical instrumentation and methods. 

Targeted metabolomics, in contrast, aims at the quantitation of a selected subset of 

known compounds by determining absolute values of metabolite concentrations within a 

sample. This approach is to some extend biased through the pre-selection of metabolites 

(which is often hypothesis-driven), and necessary a priori knowledge for the identification 

and quantification of metabolites. 

Basically in common to the presented approaches, and to some extent also defining the 

structure of this chapter, is the data handling and analysis workflow, which ranges from the 

acquisition of data, the processing of signals and data utilizing chemometric methods, and the 

analysis of data by means of statistical and data mining approaches, to the biochemical 

interpretation of results, mainly in the context of metabolic pathways. 

 

 

DATA ACQUISITION 
 

Data Quality  
 

In the process of acquiring biochemical information on a biological sample of interest, 

the quality of the analytical data is fundamentally decisive for any subsequent steps in the 

workflow of chemometric data examination (which, of course, is true for most areas of 

research). In general, the early and continuous consideration of regulatory directives and 

guidelines, if not anyhow required by the type of application (e.g., in clinical diagnostics), 

helps in establishing a foundation for generating reliable data. Crucial issues with respect to 

data quality lie in all steps of the workflow, ranging from pre-analytical sample handling 

(biobanking and sample preparation) and the actual chemical analytics (development and 

execution of analytical methods) to the area of bioinformatics (the engineering of software 

Complimentary Contributor Copy



Data Handling and Analysis in Metabolomics 187 

and applications for the integration, management and linkage of data). Basic aspects of 

quality assurance and quality control, which play essential roles in contributing to a high level 

of confidence in the obtained data, are also described within this section. 

 

 

Sample Handling 
 

The sample types most frequently analyzed in metabolomics experiments are plasma, 

serum, dried blood spots (DBS), and urine but, of course, other body fluids (e.g., 

cerebrospinal fluid (CSF), synovial fluid, sputum, or lavages such as bronchoalveolar lavage 

fluid (BALF)), all sorts of tissue homogenates and cell cultures samples (cells and 

supernatants) are also used. Standardized protocols are essential for sample collection, 

particularly in multi-centric studies. A key step is the freezing of samples; samples ought to 

be stored in a frozen state as soon as possible to minimize any further metabolic activity 

within the sample, especially to suppress and prevent oxidation but – as with most other 

recommendations – reproducibility is much more important than optimal conditions. The 

same is true for freeze/thaw cycles: it goes without saying that they should be kept to the 

absolute minimum but it is imperative that all the samples in one study are treated the same 

way. 

To get from a complex biological sample to an extract containing the metabolites of 

interest and yet clean enough to be analyzed in state-of-the-art analytical instruments, 

common sample preparation steps are pipetting, chemical derivatization, extraction, filtration, 

and dilution [42]. An example for the efforts undertaken in optimizing sample preparation, in 

this case of extraction protocols, was recently discussed for the application in brain research 

[43]. The usage of laboratory automation systems (mainly robotic liquid handling systems) 

enables improvements in workflow standardization, pipetting accuracy, elimination of manual 

pipetting errors, and the reproducibility and traceability of results. An overview of the main 

platforms available for robotic liquid handling is given by Vogeser [42]. From a regulatory 

perspective, the ‗General Principles of Software Validation; Final Guidance for Industry and 

FDA Staff‘ [44] is partially applicable to the engineering/programming of methods for 

automated sample preparation while the actual liquid handling part can be validated just like 

the analytical performance according to the ‗Guidance for Industry - Bioanalytical Method 

Validation‘ [45]. 

 

 

Chemical Analytics  
 

The primary analytical technologies utilized for the biochemical analysis of samples in 

metabolomics are mass spectrometry and NMR spectroscopy [40,46]. When suitably sensitive 

and robust instruments became available, integrated technology platforms were developed 

[11] and typically built around mass spectrometers as their core analytical devices [47-50]. 

Due to the strengths and weaknesses of the different technologies and the combinations 

thereof (e.g., sensitivity and quantitation capabilities of triple quadrupole instruments vs. 

resolution and mass accuracy of time-of-flight systems), the appropriate selection of 

instruments needs to be decided depending on the specific application. 
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In addition to these technological issues, the development of very well characterized 

bioanalytical methods and protocols is crucial for the generation of reliable data in any 

metabolomics experiment. Examples for bioanalytical method development are described in 

specific detail for the quantitation of prostaglandins and fatty acid metabolites [51] or for the 

general analysis of metabolites from blood plasma [52]. The definition, documentation, and 

validation of bioanalytical methods is recommended to be performed in consideration of the 

‗Guidance for Preparing Standard Operating Procedures (SOPs)‘ [53], and the ‗Guidance for 

Industry - Bioanalytical Method Validation‘ [45].  

 

 

Bioinformatics 
 

From a bioinformatics perspective, key steps during the process of data acquisition are 

the basic handling of generated signals and raw data, the integration and management of 

proprietary information from different sources, and the interconnection of all this with 

publicly annotated knowledge. The handling of generated signals and raw data may be 

directly performed utilizing the software applications provided by the vendors of mass 

spectrometry or other analytical systems.  

The integration and management of proprietary information (e.g., of samples, 

measurements results, instruments or metabolite details) may be executed utilizing laboratory 

information management systems (LIMS), which support the overall metabolomics workflow 

in a comprehensive manner, e.g., MetDAT [54] or SetupX [55]. In an idealized scenario, 

generated data might be directly linked to existing publicly annotated data, stored in online 

databases, as for example in the Human Metabolome Database (HMDB) [56] or MetLin [57]. 

A comprehensive review on metabolomics-related databases is given by Wishart[58]. Coming 

back to the quality aspects mentioned in the beginning of this section, the regulatory guideline 

‗General Principles of Software Validation; Final Guidance for Industry and FDA Staff‘ [44] 

should be taken into account when engineering bioinformatics software, metabolomics 

applications, or chemometric algorithms. When the acquisition of data is completed, and data 

are stored and managed in an appropriate way, they may be subject to the next step of basic 

processing. 

 

 

DATA PROCESSING  
 

Data Characteristics 
 

In metabolomics experiments and studies, data on chemical compounds obtained through 

mass spectrometry analytics are essentially composed of the measurements of ion intensities, 

their mass domain (actually the mass to charge ratio, m/z), and their time domain (the 

retention time in case of chromatographic or electrophoretic separation). By nature, 

metabolites differ in their biological and physical properties, such as their polarity, solubility, 

abundance, or ionization behavior. 

Due to this fact and the diversity of technical parameters of mass spectrometry platforms 

(e.g., chromatographic performance, ionization efficiency, resolution of mass analyzers, or 
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sensitivity and accuracy of ion detectors), the definition and usage of a common standard for 

the processing of raw data is still pending.  

With respect to both, metabolic profiling and targeted metabolomics, the chemometric 

methods discussed in this section are the processing of crude signals, the detection and 

extraction of features, the normalization of data, and the quantitation of metabolite 

concentrations, with the earlier steps being more relevant in metabolic profiling, and the later 

ones being key in targeted metabolomics. 

 

 

Signal Processing 
 

Signals obtained by mass spectrometry are subject to noise related to the analytical 

technique used (electronic noise), to interferences caused by the complexity of the sample 

itself (chemical noise), and to potential errors in the preparation of samples (e.g., variability in 

the derivatization reactions or potential cross-contaminations). The correction of the baseline 

and procedures for the reduction of noise are, therefore, essential steps in the processing of 

metabolomics signals. Typical approaches for modeling the baseline shape are the estimation 

of a local average or minimum intensity [59-61], low order polynomial Savitzky-Golay filters 

[62] or polynomial models [63]. For reducing the noise in mass spectral data, common 

approaches are decomposition methods, like the wavelet transformation [60,64] or smoothing 

filters, such as the Gaussian filter or moving average/median filters [65,66]. When performing 

the noise reduction procedures, one must be aware of the potential bias, which may be 

introduced [67,68]. For deriving high quality data, a sensitive usage of baseline shape 

estimation and smoothing techniques is important, in keeping relevant signals, and at the 

same time reducing background noise sufficiently. 

 

 

Feature Extraction 
 

Utilizing data compression, features can be extracted from the raw signals or peaks, 

which are supposed to represent chemical compounds [69]. One approach relies on the 

assorting of MS data on the mass domain (m/z points) into bins of a certain width [62,70]. 

Another methodology is known as peak picking, the detection of peaks by monitoring specific 

ions or transitions. Peak picking approaches are described in literature as methods for pattern 

classification [71], extracting derivatives [68,72], refining heuristics [73], peak shape model 

approximations [74], or the application of wavelets [60,64]. Especially in large experiments, 

MS-based data may also be subject to systemic drifts; on the mass domain this may be 

corrected through calibration or appropriate mass binning, on the time domain by the usage of 

non-parametric alignment methods, such as dynamic programming. Through the 

deconvolution of isotopes, a profile can be corrected from isotopic artifacts, and simplified to 

unique metabolites; at the same time, the accuracy of quantitative data is markedly improved 

by adding up the peak intensities of the major isotopes belonging to each metabolite [75]. 
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Normalization 
 

In metabolite measurements, data are prone to various sources of hooded inter-sample 

variance, such as differences in the concentration or homogeneity of samples, the degradation 

of samples over time, or drifts of the analytical system. Normalization here refers to the data 

adjustment described in this section, prior to further statistical treatment [61,76]. One 

approach for inter-sample normalization is based on the estimation of a scaling factor, as by 

the summation of measurements [77], the mapping of intensity distribution [77,78], the sub-

selection of peaks/signals [62,79], or by the introduction of class information [61]. Another 

approach performs normalization of all measured concentrations in a sample based on some 

other biological properties [79], e.g., by creatinine or the urine volume in urinary substances, 

or by the cell count, dry weight, protein content or deoxyribonucleic acid (DNA) levels in cell 

culture or tissue samples. The relevance of this latter form of data normalization is widely 

discussed and questioned, since it often leads to confusion or misleading results, for example 

when analyzing urinary samples obtained from patients with impaired kidney function. As an 

accepted gold standard is still missing, the technique of normalization needs to be decided on 

a case-by-case basis.  

 

 

Quantitation 
 

Quantitation of metabolite concentrations is, in principle, performed by referring to 

calibration curves. Common techniques are the quantitation by reference to internal standards 

(standards are added prior to sample extraction), to external standards (standards are added 

after sample extraction), or by standard addition (where samples are incrementally spiked 

with standards). In general, two basic concepts are differentiated, relative quantitation and 

absolute quantitation [50,80]. Relative quantitation is typically applied in untargeted 

metabolomics, aims at the determination of relative metabolite abundances, and is performed 

e.g., by normalizing the signal intensity of a compound referring to a certain metabolite 

(similar to the principle of a house-keeping gene in expression profiling) or – more often – by 

simply comparing peak intensities between two samples or cohorts. Absolute quantitation is 

usually only feasible in targeted metabolomics, aims at the measurement of absolute values of 

metabolite concentrations in SI units (mol/l, mol/g tissue etc.), and is achieved by utilizing 

non-naturally-occurring or (preferably) isotopically labeled but structurally identical internal 

standards for each metabolite or for groups of metabolites with very similar physicochemical 

properties. For adequately handling the chemical diversity of the sample matrix, 

methodologies using selected sets of multiple internal standards have been developed, for 

example being specific to compound classes [51,81] or to retention time regions [82,83]. 

From the perspective of data quality, all steps referring to calibration and quantification of 

metabolite concentrations essentially need to be performed in accordance with given 

regulatory guidelines, e.g., the ‗Guidance for Industry - Bioanalytical Method Validation‘ 

[45]. Based on the results of the quantitation, a measurement matrix containing the absolute 

metabolite concentrations can be created, which may then be the input for the comprehensive 

data analysis. 
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DATA ANALYSIS 
 

Overview 
 

For the analysis of metabolomics data, univariate, multivariate and machine learning 

methods are employed, in both unsupervised and supervised manners, depending on the 

specific biological question. Computational methods for analyzing and interpreting 

metabolomics data are discussed in great detail in the existing literature, for example by Li 

[46] covering the main application areas of biomarker discovery, data clustering and 

visualization, classification and prediction, and methods for the identification/structural 

elucidation of metabolites. Here, both unsupervised methods (without prior knowledge on the 

sample identity) and supervised methods (using a priori information on the samples) are 

described in depth. The most widely used unsupervised methods comprise principal 

component analysis (PCA), self-organizing maps (SOM), and clustering techniques such as 

hierarchical clustering analysis (HCA), k-means, and fuzzy k-means. Also, the application of 

supervised methods is very common, e.g., k-nearest neighbor (kNN) classification, partial 

least square discriminant analysis (PLS-DA), artificial neural networks (ANN), and support 

vector machines (SVM). Common pitfalls occurring in the analysis of data from 

metabolomics experiments were compiled and discussed by Broadhurst [84]. For a general 

overview of data analysis workflows in metabolomics, please refer to more specialized 

literature [36,61,82,85]. In this chapter, a selection of topics with special relevance for 

metabolomics data analysis is discussed, such as preparation, variance, and correlation of 

data, as well as approaches for the search for biomarkers or biomarker signatures.  

 

 

Preparation  
 

Regarding the preparation of metabolomics data, the transformation of data as well as the 

handling of missing values play essential roles. Due to their biological nature, data in 

metabolomics experiments generally tend to have a large inter-parameter dynamic range, a 

fairly small intra-parameter dynamic range, and a non-normal distribution of concentration 

values, which makes appropriate data transformations necessary. For transforming MS data in 

metabolomics (as well as in other application areas), log transformations or similar 

approaches have been proposed [67,86,87], ensuring that multiplicative errors are converted 

into additive errors, and variance can be stabilized. 

Missing values (non-detects) are a consequence of the utilized instrument set-up and 

analytical protocols (defining e.g., detection limits and quantification thresholds), molecular 

sample interactions, and the dynamics of metabolic pathways. In case of a large number of 

missing values in a certain feature, it is definitely recommended to discard those [61,82] 

unless the qualitative information (metabolite detectable/non-detectable) proves to have 

relevant, e.g., diagnostic, meaning. Basic approaches, using pre-specified values (like zero, or 

the minimum value in a dataset observed), means, or medians, for imputing missing data 

points, are known for having serious limitations and inducing a bias, e.g., by reducing the 

variance of the dataset in an unjustified manner [88]. Instead, it is recommended to use 

multivariate methods, as described by Stacklies [89], for estimating missing values. In 
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general, though, the gain in predictive abilities through artificial data point estimation is very 

limited, and the entire process can be primarily seen as a means of preparing data for the 

smoother application of multivariate statistical tools.  

 

 

Variance  
 

Variance in metabolomics studies is influenced by the naturally occurring biological 

variance of metabolites, as well as an unavoidable variance resulting from the analytical 

technology used. Biological variability of metabolites can be surprisingly low if the 

underlying homeostatic control is strict (e.g., glucose and most amino acids in peripheral 

blood) but can also reach a coefficient of variance (CV, the ratio of standard deviation to 

average abundance) of up to 50% or even more, particularly in less well regulated sample 

types such as urine [90,91]. This fact must be taken into account when planning the 

experimental design of a study and estimating the appropriate cohort sizes and numbers of 

samples and time points. The technical/analytical variance of metabolite data on the other 

hand generally ranges between a minimum CV level of around 2 - 5%, which can be achieved 

for small numbers of specifically optimized analytes, and CV values above 20% for semi-

quantitative parameters, depending on the compound classes analyzed, the effort put into 

optimizing the assay, and the availability of an authentic internal standard. The relevant FDA 

‗Guidance for Industry – Bioanalytical Method Validation‘ [45] demands a CV of less than 

15% throughout the dynamic range of a validated quantitative assay while allowing up to 

20% at the lower limit of quantitation (LLOQ). 

 

 

Correlation  
 

In the course of data analysis, also the interdependence of abundances between different 

metabolites should be turned to account. Correlation between features may result from 

specific properties of the analytical platform, as for example, from the same molecule, several 

ionization and derivatization products may be obtained [92]. 

It can also reflect specific chemical characteristics of certain metabolites, such as 

obtaining multiple signals related to the isotopic pattern of the same parent ion. Most 

important for data interpretation is, of course, correlation because of biological mechanisms. 

As a result of efforts to link the correlation of metabolites to metabolite reaction networks, 

various authors differentiated somewhat artificially between positive correlation, negative 

correlation, and correlation dependent on disease states [93-95]. 

In this context, extensive investigations by means of network-based approaches were 

performed, e.g., trying to specify structural properties of biochemical networks by the usage 

of topological network descriptors [96]. 

In this kind of network analysis, correlation-based distance metrics are often developed 

based on the proximity of metabolites, which is used for the visualization of networks, by 

clustering or graph-based representations. 

However, the possibility to make implications on biochemical functions based on these 

correlation-based distance metrics is limited, and should only be seen as a means of 

generating hypotheses for experimental confirmation. 
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Biomarker Identification  
 

In recent years, the quest for metabolic biomarkers for clinical applications has gained 

increasing attention. 

A multitude of approaches for selection and ranking of biomarker candidates was 

developed, based primarily on supervised methods, as described in the beginning of this 

section. A comprehensive overview of these biomarker discovery strategies is given by 

Baumgartner [97]. For independent samples, the most common approaches are random forest 

models (RFM) [98], associative voting (AV) [36], stacked feature ranking (SFR) [99] and the 

unpaired biomarker identifier (uBI) [100]. For dependent samples, typical methods are paired 

null hypothesis testing [101] and the paired Biomarker Identifier (pBI) [100]. A validation of 

putatively identified biomarker candidates should, of course, always be based on a replication 

of study results in independent cohorts but this process can be streamlined by first 

scrutinizing the data in a thorough biochemical plausibility check, which may already 

eliminate the majority of false-positive hits. 

 

 

BIOCHEMICAL INTERPRETATION  
 

Knowledge Annotation  
 

Thanks to the detailed level on which the main pathways of metabolism and their 

molecular reactions have been characterized by generations of biochemists, an elaborate body 

of knowledge is nowadays available in public databases. A structured review of 

metabolomics-related data sources, distinguishing chemical bioinformatics databases, 

metabolic pathways databases, metabolomics databases, pharmaceutical product databases, 

and toxic substance databases is given by Wishart [58]. 

Since the focus of this section is on the functional interpretation of biochemical 

interactions in the context of metabolic pathways, only pathway databases will be subject to 

further discussion. Popular examples of a growing number of these are BioCyc [102], the 

Human Metabolome Database (HMDB) [56], Reactome [103], or the Small Molecule 

Pathway Database (SMPDB) [104] but the entire field was pioneered by the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) [105] which – despite its name – did not 

follow the gene-centric approach of the National Center for Biotechnology Information 

(NCBI; www.ncbi.nlm.nih.gov) or the European Bioinformatics Institute (EBI; 

www.ebi.ac.uk) but rather identified the pathway as the central biological entity around which 

they tailored their repository. 

While there are countless – typically more intuitive than systematic – strategies for the 

biochemical interpretation of metabolomics data, the following paragraphs will only describe 

three basic concepts which can be seen as standard tools for getting a first overview and 

generate hypotheses for further elaboration. 

These three methods are metabolite set enrichment, shell-wise exploration of metabolic 

reactions, and metabolic route finding. 
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Metabolite Set Enrichment 
 

Enrichment analysis (EA) is a general concept that has been used in transcriptomics and 

proteomics experiments for quite some time to boost the statistical power of studies and 

deduce some functional insight. In gene-centrically annotated classes of biomolecules 

(nucleic acids and proteins), the grouping of analytes is usually based on the gene ontology 

(GO) but, of course, this does not work for metabolites. Still, a strategy analogous to a gene 

set enrichment analysis (GSEA) may also be helpful in the functional interpretation of 

metabolomics data. According to Chagoyen [106], two basic approaches are differentiated, 

overrepresentation analysis (ORA), and set enrichment analysis (SEA), with SEA using 

quantitative information (e.g., metabolite concentrations) for analysis. A further specialized 

concept, single sample profiling (SSP), which compares concentrations of metabolites of one 

sample with literature reference values, is described by Xia [107]. In the concise case of a 

metabolite set enrichment analysis, the process can be described as the mapping of a given set 

of metabolites, statistically identified as significantly different between two biological states 

or cohorts, onto a set of metabolic pathways, resulting in a ranking of these pathways 

according to the number of altered metabolites or some derived statistical value, e.g., a 

cumulative p-value [3].  

Selected software tools providing functionality for EA in metabolomics, are MBRole 

(Metabolites Biological Rule) [108], MSEA (Metabolite Set Enrichment Analysis) [107], or 

MetaboAnalyst [109]. To reduce the risk of false positive hits, instead of using a generic 

reference pathway, these analyses should always be based on species-specific pathway lists or 

reactomes.  

 

 

Shell-Wise Exploration 
 

One of the most intuitively helpful ways of biochemical interpretation is a shell-wise 

exploration of metabolic reactions around metabolites of interest, e.g., those top-ranked by 

statistical significance (corrected p-value) or diagnostic performance (area under the curve in 

a receiver operating characteristic (ROC) analysis) [3]. 

One particular metabolite is selected as the seed node, and a shell of all reactions 

synthesizing or degrading this metabolite are displayed. This leads to a set of enzymes, whose 

activities could directly be responsible for the altered concentration of the metabolite of 

interest, and an extended set of metabolites of secondary interest. In a next step, each of these 

secondary metabolites can again be used as a new seed node (compare Figure 1) and so on. 

This way of looking at the role of single enzymatic reactions has long been established in 

neonatal screening for monogenic disorders [14] but was recently confirmed to be equally 

relevant for multifactorial phenotypes/diseases in a series of large-scale studies [110,111]. 

Since the ratio of product and substrate concentrations of each reaction can be taken as a 

rather immediate measure of enzymatic activity, these ratios are far more informative than the 

individual concentration data and less prone to confounding factors such as nutritional uptake. 

Using the ratios as additional traits in GWA studies identified more hits in or near coding 

sequences and improved the statistical significance by many orders of magnitude [15,112]. 
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Figure 1. Systematic sketch of the analysis of tryptophan metabolism through shell-wise exploration. 

As the first seed node, L-tryptophan is chosen, leading to a set of eight either synthesizing of degrading 

enzymatic reactions. As the secondary seed node, 5-hydroxy-L-tryptophan is used for further expansion 

(not all reactions shown for this second step). 

 

Route Finding 
 

When working on the biochemical interpretation of metabolomics results, one should 

keep in mind that the basic concept of metabolic pathways as confined entities, often linear or 

circular in shape is very old and partially outdated. Of course, these pathways are part of a 

larger and densely woven network but the ‗old-fashioned‘ textbook representation is deeply 

routed in most biochemists and keeps them from seeing connections across the artificial 

boundaries of these pathways. To overcome these limitations, allow for generating new 

‗cross-border‘ hypotheses, and treat the entire set of metabolic pathways as one integrated 

source of knowledge, the mundane concept of route finding as it is used in car navigation 

systems can be applied. 

Route finding algorithms provide the functionality to find and depict all possible routes 

between two metabolites, also across artificial pathway boundaries. These algorithms can be 

used to identify the shortest route, routes up to a maximum length, edge-disjoint paths (routes 

not sharing a certain enzyme), or node-disjoint paths (routes not sharing a certain metabolite) 

between two metabolites. 

Some route finding tools apply atom-mapping rules to take reaction mechanisms into 

account [113] or use weighted graphs [114]. As one rather simple example (chosen not to 

create a too complicated graph), MetaRoute [115], a web-based tool for route finding based 

on the information in KEGG [105], was used to find all routes between serine and pyruvate in 

H. sapiens (see Figure 2). It is important to note at this point, that common co-factors and 

small inorganic molecules (e.g., adenosine triphosphate (ATP), nicotinamide adenine 

dinucleotide (NADH), carbon dioxide (CO2), water (H2O), ammonia (NH3), etc.) need to be 

excluded to avoid overly complex results graphs and to prevent too many false positive hits. 
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Hypothesis Generation  
 

All three concepts, metabolite set enrichment, shell-wise exploration, and route finding, 

can be used for deriving deeper insights from multivariate metabolic data sets, and as a 

starting point for the generation of hypotheses inspiring new experiments and studies for 

verification or validation of results. Nevertheless, results need to undergo additional 

plausibility checks. Major factors influencing or potentially skewing results are redundancies 

in metabolism itself (groups of compounds are often metabolized by one enzyme or several 

enzymes catalyze the same reactions), disturbances of signals of endogenous metabolites by 

drug compounds, or analytical or statistical artifacts in general. 

 

 

Figure 2. Route finding across metabolic pathways. Source is serine, target is pyruvate, species is 

Homo sapiens, calculated using MetaRoute [115], results redrawn for better graphical quality. 

To discuss just one example: when deducting hypotheses from metabolite set enrichment 

analyses, one needs to keep in mind that ontologies for metabolomics analyses are basically 

existing (e.g., the concept of pathways as it is used in KEGG), and GO-derived semantic 

similarity measures can also be applied [116] but this still does not warrant a balanced 

assessment. Slightly exaggerated, one might state that one reference pathway, e.g., 

‗glycerophospholipid metabolism‘, covers or directly influences at least one third of the entire 

human metabolism while other reference pathways, say: ‗lysine degradation‘, are still 

complex but basically only reflect the catabolism of one selected amino acid. To use both pari 

passu in an EA can hardly reflect their biological importance. 
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Regarding the generation of hypotheses based on the shell-wise exploration of 

metabolism, a basic discussion is ongoing with respect to the usage of ratios mentioned 

above. On the one hand, it can certainly be argued that ratios are artificial parameters, 

uncommon and too much driven by preformed hypotheses. Moreover, if a certain information 

content is present in a given data set, this information should be found through appropriate 

mathematical analyses (which it eventually could). On the other hand, it may just as well be 

argued that these ratios are in praxi improving the statistical performance, and that it is 

exactly the purpose of the accumulated biological knowledge to support or direct the data 

analysis and exclude biochemically unlikely or impossible findings. 

Finally, route finding approaches offer a unique opportunity to generate completely new 

hypotheses, which are surpassing the possibilities based on ‗pure‘, conventional pathway 

analysis. This approach could additionally be extended and supported by the application of 

further network-oriented tools, e.g., novel ways of network inference or more intuitive means 

of network visualization [117-119]. 

 

 

CONCLUSION 
 

Metabolomics is often described as the youngest omics discipline although a detailed 

analysis of metabolism by organic chemists actually predates nucleic acid or protein 

technologies by roughly a century. It offers, however, the possibility to gain major additional 

insights into basic biochemistry, the pathophysiology of diseases, the mode-of-action of 

drugs, or novel metabolic biomarkers for clinical diagnostics. When high-quality data have 

been generated, the combination of bioinformatic and chemometric methods for the 

processing of data, as well as mathematical, statistical and data mining approaches, build the 

foundation for extracting knowledge out of multivariate data sets. In metabolomics, an 

additional opportunity lies in the biochemical interpretation of results. Thanks to the detailed 

functional understanding of metabolic pathways, plausibility of results can be examined much 

more thoroughly within the respective biochemical context. Despite the multitude of existing 

algorithms, concepts, tools and more, widely accepted gold standards or real expert systems 

for most of these steps are still missing, and the actual interpretation of results is often viewed 

as a niche for the dying race of experienced biochemists.  

In addition to the topics covered in this chapter, several promising trends and initiatives 

can be observed. From the technological perspective, the manufacturers of MS instruments 

are, partly in collaboration with vendors of liquid handling robotics systems, working towards 

fully integrated platforms, e.g., clinical black-box MS analyzers, for the usage in routine 

diagnostics. In parallel, many interesting and promising initiatives are on their way in the area 

of microfluidics solutions, although most of these are still in an experimental and research-

focused phase. Moreover, a multitude of standardization initiatives exists, e.g., mzML for 

defining formats for the exchange of data [120], or the definition of a common ontology, e.g., 

by the metabolomics standards initiative (MSI) [121]. Despite the plethora of these programs 

and initiatives, a summary is undertaken by Enot [3]. 

Also in the area of modeling and simulation of biochemical networks, really promising 

research is performed, as for example the modeling of cell cultures [122], or network 

simulations of inborn errors of metabolism [123]. One must admit that all of these approaches 
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are basically still of a theoretical nature and a successful transfer to clinical applications has 

not been demonstrated but they may be one of the most exciting areas for relevant innovation. 

Furthermore, the integration of data from different omics experiments is on its way, e.g., 

the combination of proteomics and metabolomics data for the identification of putative 

biomarkers [124] but one should be very cautious not to expect the solution of all problems 

from a broader data basis since these combinations are not necessarily improving the 

diagnostic performance [29]. Still, the ultimate goal should be the discovery of sets of multi-

parametric marker candidates which, after successful independent validation by means of 

clinical studies, can act as novel biomarkers in routine clinical diagnostics. 
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ABSTRACT 
 

Quantitative structure-activity relationship (QSAR) is a well-established predictive 

tool in various fields of the chemical research. It captures structural information in the 

numerical form from a set of molecules of some level of similarity as descriptors, and 

correlates this to the response property/activity/toxicity using statistical tools for the 

predictive model development. Since it utilizes some experimental information of the 

chemicals as the observed response for model development, it has found application in 

different fields for the new chemical development in a rational way. Due to its 

widespread application and existing shortcomings in the current methodologies, novel 

tools are being continuously developed. This chapter is written in order to get the readers 

acquainted with some recent selected findings in the QSAR concepts and techniques 

emerged from 2006 onwards.  

We have organized these emerging concepts in QSAR methodologies under the 

broad categories of ‗novel descriptors‘, ‗emerging concepts in chemometric techniques‘ 

and ‗development in validation and applicability domain of QSAR models‘. The 

discussed novel descriptors will include topological maximum cross correlation 

(TMACC) descriptor, hybrid ultrafast shape descriptor, substructure-pair descriptor 

(SPAD), ligand-receptor interaction fingerprint (LiRIf), extended topochemical atom 

(ETA) descriptors etc. The methodology section was divided into novel variable selection 

and novel QSAR model development subtopics. The novel method for optimal selection 

of variables includes gravitational search algorithm (GSA), random replacement method, 

combination of modified particle swarm optimization (MPSO) and partial least squares 

(PLS), advanced replacement method (RM) and enhanced replacement methods (ERM). 

The novel QSAR model development methods comprise different multi-task support 
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vector regression (SVR) algorithms, combination of R-group signatures and the SVM 

algorithm, multi-stage adaptive regression, Comparative Occupancy Analysis (CoOAn) 

etc. The section of new developments in validation and applicability of QSAR will 

include different expression of predictive squared correlation coefficient (Q
2
), 2

mr and 

2
p

c R  metrics, Concordance Correlation Coefficient (CCC) etc. for a stricter test of 

validation of regression-based QSAR models, and finally a novel k-nearest neighbor‘s 

method and model disturbance index (MDI) based method to assess applicability domain 

of a QSAR model. The information provided in this chapter on the recent developments 

in the QSAR field would be beneficial to the QSAR researchers and 

chemoinformaticians. 

 

 

INTRODUCTION 
 

Quantitative structure–activity relationship (QSAR) is one of the major chemoinformatic 

techniques, which have found its application and gained popularity in different fields of 

research. These areas include medicinal, agricultural and environmental (toxicity prediction), 

along with the emerging area of nanoparticle toxicity prediction (nano-QSAR). One of the 

main reasons for gaining the applicability of QSAR over the other computational method in 

varied areas is due the fact that it utilizes the experimental data for deriving the mathematical 

models, and these models could be utilized for the reliable prediction prior to the actual 

experimentation. 

QSAR modeling deals with the development of a quantitative relationship between an 

experimental activity/property and structural features of a molecule. The approach depends on 

being able to represent the structure of a molecule in quantitative terms (descriptors) and then 

to develop a relationship between the quantitative values representing a structure and 

corresponding experimental activity/property value. ―The molecular descriptor is the final 

result of a logic and mathematical procedure which transforms chemical information 

encoded within a symbolic representation of a molecule into a useful number or the result of 

some standardized experiment.‖ [1] 

The QSAR technology has gone through profound changes in the last decade. There are 

various areas in the QSAR technique where these changes have occurred. These areas 

comprise of novel descriptors, novel methodologies, and novel validation parameters 

including methods defining applicability domain of QSAR models. These changes were 

essential to resolve some existing shortcomings of QSAR techniques. In this chapter, we have 

reviewed and discussed the advances in QSAR field embracing each mentioned area 

separately.  

 

 

NOVEL DESCRIPTORS 
 

Till date a wide range of descriptors have been reported and these can be computed using 

various available software tools [2-4]. Based on the information that can be extracted, 

descriptors can be classified into 0D (molecular formula information like molecular weight, 

number of atoms, atom types, sum of atomic properties etc.), 1D (global molecular properties 
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like pKa, solubility, logP, functional groups etc.), 2D (structural patterns like connectivity 

indices, wiener index), 3D (steric and electrostatic field etc.). 

 

 

Developing a Novel Descriptor 
 

Several QSAR scientists are always interested in developing new descriptors rather than 

just using the existing ones, especially while working on unique datasets, e.g., toxicity of 

nano- materials [5]. The basic requirements to develop a new descriptor are mentioned here: 

 

a) Invariance property: It signifies the ability of an algorithm for their calculation to 

provide a descriptor value that is independent of the specific characteristics of the 

molecular representation, such as atom numbering, molecular conformations, spatial 

reference frame, etc.  

b) Degeneracy: It implies the ability of a descriptor to avoid equal values for different 

molecules. So, the descriptors can be classified into, no degeneracy at all, low, 

intermediate, or high degeneracy categories. For instance, the number of atoms in a 

molecule and the molecular weights are high degeneracy descriptors, while, 

generally 3D-descriptors show low or no degeneracy at all. 

c) An unambiguous algorithm: A molecular descriptor must be defined by a computable 

mathematical expression whose terms have to be non-ambiguous and clearly 

obtainable from the molecular structure. 

d) An acceptable numerical range: The values of molecular descriptors must be in a 

suitable numerical range, avoiding singular points and values as 10
13

 or 10
-9

.  

 

The following general characteristics are desired for a descriptor as suggested  

by Randic [6]: 

 

1. Simple 

2. A structural interpreter 

3. Shows a good correlation with at least one property 

4. Preferably discriminate among isomers 

5. Possible to generalize to ―higher‖ descriptors 

6. Not based on experimental properties 

7. Is not trivially related to other descriptors 

8. Is possible to construct efficiently 

9. Should use familiar structural concepts 

10. Change gradually with gradual change in structures 

 

In this section, we will discuss some novel descriptors, which emerged since 2007. 
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Topological MAximum Cross-Correlation (TMACC) Descriptors 
 

Autocorrelation descriptors are one of the important descriptors in 2D-QSAR. Melville et 

al. [7] investigated these descriptors, while focusing on whether the grid independent 

descriptors (GRIND) approach can be used in 2D-QSAR and the result of this approach is 

TMACC descriptors. 

Melville et al. replaced the force field interactions measured on a grid with atomic 

physicochemical values, and the Euclidean 3D distance is replaced with a topological 

distance based on the shortest bond distance between atoms. 

The first step of calculating the TMACC descriptor is to assign a set of numerical values 

to each atom, consisting of interested physicochemical properties. In their study, four atomic 

properties were used, e.g., Gasteiger partial charges to represent electrostatics, Crippen-

Wildman molar refractivity parameters to represent steric properties and polarizability, 

Crippen-Wildman logP parameters representing hydrophobicity, and the recently introduced 

logS parameters representing solubility. While employing the logS descriptors, Melville et al. 

did some minor modifications to the SMARTS strings, in order to get the correct frequencies 

of atom type.  

To take into account the different scales used by each set of atomic parameters, each 

contribution was scaled by the largest absolute value, so that the positive and negative values 

took maximum values of +1 and -1, respectively.  

For the Gasteiger partial charges, they took maximum values for positive and negative 

charges from the ―fragment like‖ subset of the ZINC database, consisting of 49,134 

molecules, carrying out the calculation with Open Babel 2.0.0. 

For all data sets, non-polar hydrogen atoms were treated implicitly, and their atomic 

value was added to the value of the heavy atom to which it was bonded. Polar hydrogen 

atoms were treated explicitly, like any other atom. 

The standard equation (eq. 1) for calculating an autocorrelation descriptor, xac, is 

 

 jiac ppdpx ),(
…  (1)

 

 

where, p is a property and d is a topological distance between atoms i and j, the shortest 

number of bonds between atoms. The sum is computed over all atom pairs that are separated 

by the distance, d. 

The TMACC descriptor extends this equation in three ways. First, each atomic property 

that can take positive and negative values, each one is considered as a separate property; for 

example, partial charge was separated into a positive and negative charge property. Second, 

cross-correlation, as well as autocorrelation values were checked to allow the property type 

for atom i to differ from that calculated for atom j.  

For instance, positive charge-positive charge interactions, positive charge-negative 

charge interaction and positive charge-negative logS interactions are considered. Third, like 

the GRIND descriptor, the maximum value calculated for any given distance was kept. The 

TMACC equation is therefore represented as eq. 2 

 

),max(),,( jijitmacc pqqpdqpx 
…  (2)
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In Eq. (2), q is the property of the second atom. There are two terms to consider for each 

atom pair, because when p≠ q, qjpi ≠ pjqi.  

Comparison to an implementation of HQSAR demonstrates that the TMACC performs 

competitively, and, the latter is marginally superior. Adding different atom types can also 

easily extend the TMACC descriptor. The weakness of the TMACC descriptor is that it is 

currently insensitive to chirality. Also, the use of physicochemical cross-correlations means 

that identification of properties responsible for activity is difficult. 

 

 

Hybrid Ultrafast Shape Descriptor 
 

MACCS key descriptors are binary in nature, which encode the presence or absence of 

sub-structural fragments. Such descriptors have been reported to perform well in the domain 

of similarity-based virtual screening. In contrast, it has been observed that 3D methods as 

well as existing 2D methods do not perform well in terms of the number of actives retrieved 

during screening. Most 3D methods have performed less well since 3D descriptors have to 

deal with translational and rotational variance besides a large number of conformations. It 

was reported that one of the key features in discriminating active from inactive molecules is 

the molecular shape. However, the procedure of calculating molecular shape is a challenging 

task, and also time consuming. A recent shape descriptor proposed by Ballester and Richards 

[8] called Ultrafast Shape Recognition (USR) has shown to avoid the alignment problem, and 

is up to 1500 times faster to calculate than other current methodologies. This shape descriptor 

makes the assumption that a molecule's shape can be uniquely defined by the relative position 

of its atoms and that 3D shape can be characterized by 1D distribution.  

Cannon et al. [9] have introduced a new hybrid descriptor which is a combination of the 

MACCS key 166 bit packed descriptor (binary in nature and encodes topological information) 

and Ultrafast Shape Recognition (USR) descriptor (based on 12 floating point numbers) that 

combines both 2D and 3D information. The hybrid descriptor can improve the virtual 

screening performance as suggested by Baber et al. [10]. In the USR descriptor, 4 additional 

floating-point numbers were added, which incorporates information concerning fourth 

moment of the inter-atomic distance distributions making the hybrid descriptor of total 182 

components. Further, the descriptor efficiency was assessed using the Random Forest 

classifier to conduct a virtual screen and rank molecules taken from the WADA 2005 dataset 

and the National Cancer Institute (NCI) database based on their probability of being active. 

The hybrid descriptor's performance was assessed against the USR descriptor (with three 

moments), the USR descriptor with four and five moments (UF4, UF5) and the MACCS key 

descriptor on an external validation set and was found to be superior in terms of performance. 

 

 

Topological Descriptors for Analyzing Biological Networks 
 

Graph-theoretical methods are utilized to derive descriptors like topological descriptors, 

and are proven as powerful tools to perform biological network analysis. However, the most 

of the developed descriptors does not have the ability to take vertex- and edge-labels into 

account. Vertices in such biological networks represent proteins, transcription factors or 

metabolites etc., which are connected by edges representing interactions, concentrations or 

Complimentary Contributor Copy



Rahul Balasaheb Aher, Pravin Ambure and Kunal Roy 210 

reactions, respectively. This feature is important to characterize biological networks like 

protein-protein interaction networks, transcriptional regulatory networks, and metabolic 

networks more meaningfully instead of only considering pure topological information. 

Dehmer et al. [11] emphasized on analyzing a special type of biological networks, 

namely bio-chemical structures. In this study, first, they developed some novel information-

theoretic descriptors having the ability to include vertex- and edge-labels when measuring the 

information content of a chemical structure and then investigate some useful properties 

thereof. Second, they applied the mentioned measures combined with other well-known 

descriptors to supervised machine learning methods for predicting Ames mutagenicity. 

Moreover, the influence of reported topological descriptors was investigated on the prediction 

performance of the underlying graph classification problem. 

This study demonstrated that the application of entropic measures to molecules 

representing graphs is useful to characterize such structures significantly. It was observed that 

if one extends the measures for determining the structural information content of unlabeled 

graphs to labeled graphs, the uniqueness of the resulting indices is higher. Further 

development of such methods might be valuable and fruitful for solving problems within 

biological network analysis. 

 

 

Substructure-Pair Descriptor (SPAD) 
 

QSAR analysis is helpful for designing bioactive peptides and a descriptor for capturing 

various properties of peptides is essential for this. The atom pair holographic (APH) code has 

been designed for the description of peptides, and it represents peptides as the combination of 

36 types of key atoms and their intermediate binding between two key atoms. Osoda and 

Miyano [12] have developed a novel descriptor, substructure-pair descriptor (SPAD), which 

captures different characteristics of peptides from APH. It was proposed that the combination 

of APH and SPAD might lead to better QSAR for peptides with many types of amino acid 

inductions. The substructure pair descriptor (SPAD) represents peptides as the combination of 

49 types of key substructures and the sequence of amino acid residues between two 

substructures. The size of the key substructures is larger and the length of the sequence is 

longer than traditional descriptors. APH captures internal characters of an amino acid 

induction, while SPAD captures the relationship between two amino acid inductions. A 

comparison of scope of each descriptor shows that SPAD captures different properties from 

APH and has greater descriptive power than APH. For instance, similarity searches on C5a 

inhibitor data set and kinase inhibitor data set showed that order of inhibitors become three 

times higher by representing peptides with SPAD, respectively. Hence, it was proposed that 

SPAD [12] is a novel and powerful descriptor for studying SAR of various types of peptides.  

 

 

Ligand−Receptor Interactions Fingerprint (LiRIf) 
 

Rabal and Oyarzabal [13] described the development and implementation of a simple and 

robust method for representing biologically relevant chemical space (BRCS), independently 

of any reference space, and analyzing chemical structures accordingly. This led to 

development of a novel descriptor, ligand−receptor interaction fingerprint (LiRIf) that 
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converts structural information into a one-dimensional string accounting for the plausible 

ligand−receptor interactions (LRI) as well as for topological information. Exploiting 

ligand−receptor interactions as a descriptor enables the clustering, profiling, and comparison 

of libraries of compounds from a computational and medicinal chemistry view. The process 

for describing and clustering fragments follows four main sequential stages: (1) assigning 

atom types, (2) analysis and characterization of the direct chemical environment of the 

cleavage site or attachment point, (3) exploration of the remainder of the fragment after 

excision, and (4) generation of a fingerprint (LiRIf) encoding all extracted features that 

account for ligand−receptor interactions. 

The proposed methodology assists the following tasks, (i) definition of the BRCS, (ii) 

data organization from a LRI perspective, (iii) data visualization leading to an easy 

interpretation of trends in structure−activity relationships (SAR) by medicinal chemists, (iv) 

data analysis to enable the comparison in a reference independent space as well as the 

profiling and identification of relevant chemical features, and (v) data mining to help search 

for structures that contain key interactions or specific features. 

 

 

Extended Topochemical Atom (ETA) Indices 
 

Extended topochemical atom (ETA) indices developed by Roy et al. [14, 15], have been 

extensively applied for toxicity and ecotoxicity modeling in the field of QSAR. The extended 

topochemical atom (ETA) indices were introduced as an extension of topochemically arrived 

unique (TAU) parameters developed in the late 1980s [16]. The ETA scheme includes various 

basic parameters such as α (related to size or bulk), ε (related to the electronegativity of 

atoms) and β (related to electronic contribution). Some of the basic ETA indices have also 

been incorporated in the popular software package DRAGON (version 6) [17]. Recently, Roy 

et al. have derived additional novel indices and evaluated for modeling a range of 

fundamental physicochemical properties [14], including octanol–water partition coefficient 

(log P), water solubility (ln S) and molar refractivity (Rm). Additionally, it has been attempted 

to model different aromatic substituent constants, including hydrophobic substituent constant 

(π), molar refractivity (MR), Hammett electronic constants (σm and σp), using these newly 

derived topological parameters, together with first generation ETA parameters. 

The second-generation ETA indices are summarized in Table 1 and these are well 

described in the literature [14]. 

 

Table 1. Second generation indices under the ETA Scheme 

 

Sl. No. Definition Significance 

1 

 
V

R
A

N

 



  

A measure of count of non-hydrogen heteroatoms 

[NV stands for total number of atoms excluding 

hydrogen‘s] 

2 

 
V

R
B

N

 



  

A measure of count of hydrogen bond acceptor 

atoms and/or polar surface area 
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Table 1. (Continued) 

 

Sl. No. Definition Significance 

3 

N





1  

A measure of electronegative atom count [N stands 

for total number of atoms including hydrogen‘s] 

4 

V

EH

N





 2

 
A measure of electronegative atom count [EH 

stands for excluding hydrogen‘s] 

5 
 

R

R

N





 3  

[R stands for reference alkane] 

6 
 

SS

SS

N





 4  [SS stands for saturated carbon skeleton] 

7 

XHV

XHEH

NN 



 

 5  
[XH stands for those hydrogen‘s which are 

connected to a heteroatom] 

8 31   A  
A measure of contribution of unsaturation and 

electronegative atom count 

9 
41   B

 A measure of contribution of unsaturation 

10 43   C  A measure of contribution of electronegativity 

11 52   D  
A measure of contribution of hydrogen bond donor 

atoms 

12 



   

A measure of hydrogen bonding propensity of the 

atoms 

13 

  2

1







 V

EH

N





  

A measure of hydrogen bonding propensity of the 

molecules and/or polar surface area 

14 1714.0   A  
A measure of hydrogen bonding propensity of the 

molecules 

15 714.01   B  
A measure of hydrogen bonding propensity of the 

molecules 

16   sns   A relative measure of relative unsaturation content 

17 

VN





 /

 A measure of relative unsaturation content 

18  )(ns  
A measure of lone electrons entering into 

resonance 

19 

V

ns

ns
N


 

)(/
)(






  

A measure of lone electrons entering into 

resonance 
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Superaugmented Eccentric Distance Sum Connectivity Indices 
 

Four highly discriminating fourth-generation topological indices (TIs), termed as 

superaugmented eccentric distance sum connectivity indices, as well as their topochemical 

versions (denoted by 
SED   

 , 
SED   

 , 
SED   

  and 
SED   

 ), have been conceptualized in the 

study carried out by Gupta et al. [18]. The values of these indices for all possible structures 

with three, four, and five vertices containing one heteroatom were computed using an in-

house computer program.  

Superaugmented eccentric distance sum connectivity indices, 
SED  

 , proposed in this 

study are defined as the inverse of the summation of quotients of the product of adjacent 

vertex degrees and the product of the squared distance sum and eccentricity of the concerned 

vertex for all vertices in a hydrogen-suppressed molecular graph. It can be expressed as 

follows (eq.3): 

 
1

0
2*



 












 

n

i i
N
i

iC
N

SED

SE

M


…  (3)

 

 

 

where, Mi is the product of degrees of all the vertices (vj), adjacent to vertex i and can be 

easily obtained by multiplying all the non-zero row elements in augmentative adjacency 

matrix, Ei is the eccentricity, Si is the distance sum of vertex i, and n is the number of vertices 

in the graph, and the N is equal to 1, 2, 3, 4 for superaugmented eccentric distance sum 

connectivity indices -1, -2, -3, -4, respectively. 

Similarly, the topochemical version of superaugmented eccentric distance sum 

connectivity indices can be defined as the inverse of the summation of quotients of the 

product of adjacent vertex chemical degrees and the product of the squared chemical distance 

sum and chemical eccentricity of the concerned vertex for all vertices in a hydrogen-

suppressed molecular graph. 

It can be expressed as follows (eq.4): 

 
1

0
2*



 












 

n

i iC
N
iC

icC
CN

SED

SE

M


…  (4)

 

 

where, Mic is the product of chemical degrees of all the vertices (vj), adjacent to vertex i and 

can be easily obtained by multiplying all the non-zero row elements in additive chemical 

adjacency matrix, Eic is the chemical eccentricity, Sic is the chemical distance sum of vertex i, 

and n is the number of vertices in the graph, and the N is equal to 1, 2, 3, 4 for 

superaugmented eccentric distance sum connectivity topochemical indices -1, -2, -3, -4, 

respectively (denoted by 
SED   

 , 
SED   

 , 
SED   

  and 
SED   

 ). 

The superaugmented eccentric distance sum connectivity topochemical indices exhibited 

exceptionally high discriminating power, low degeneracy, and high sensitivity toward both 

the presence and the relative position of heteroatom(s) for all possible structures with five 

vertices containing at least one heteroatom. 
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Fast Frequent Subgraph Mining (FFSM) 
 

Khashan et al. [19] presented a novel approach to generate fragment-based molecular 

descriptors. The molecules are represented by labeled undirected chemical graph. Fast 

frequent subgraph mining (FFSM) is used to find chemical fragments (sub-graphs) that occur 

in at least a subset of all molecules in a dataset. The collection of frequent sub- graphs (FSG) 

forms dataset-specific descriptors whose values for each molecule are defined by the number 

of times each frequent fragment occurs in this molecule. 

Fragment based descriptors present an important class of molecular descriptors that have 

been used in both similarity searching and QSAR modeling. A common feature to all present 

methods is that chemical fragments are identified a priori; thus frequently the total number of 

such descriptors generated for a molecular dataset is exceedingly large and/or fragment 

descriptors are generic. 

Khashan et al. have used a novel approach to generate fragment descriptor where unique 

chemical fragments are identified based only on the dataset under study. For any dataset, 

FFSM was employed to search for common FSG that are found in at least a subset of 

molecules in the dataset. Once these FSG are identified, the frequency of each substructure in 

each molecule in the dataset is calculated; thus each common FSG serves as a chemical 

descriptor type and the frequency becomes a descriptor value. The detailed description of the 

FSG mining approach is given in the literature [19]. 

Unlike holistic molecular descriptors that characterize properties of the entire molecule, 

fragment descriptors offer the advantage of model interpretation in terms of significant 

chemical functional groups that influence compounds‘ biological activity. Such explanation 

especially with respect to the differences between active and inactive molecules might 

provide useful guidance to medicinal chemists with respect to rational design of new 

biologically active chemical entities. 

 

 

EMERGING CONCEPTS IN CHEMOMETRIC TECHNIQUES 
 

We have categorized the novel concepts in QSAR methodology under two subheadings: 

novel variable selection methods and novel QSAR modeling approaches. 

 

 

Novel Variable Selection Method 
 

Behnam et al., 2013 [20] introduced the gravitational search algorithm (GSA) for the 

selection of novel features, and applied for the anticancer potency modeling of a set of 

imidazo[4,5-b] pyridine derivatives. The GSA method is a swarm-based optimization 

algorithm, which mimics the law of gravity and the motion and interactions of masses, to 

select the descriptors for QSAR modeling. They have also compared the performance of GSA 

with the genetic algorithm (GA) and found that GSA finds the global optimum faster than GA 

and also exhibits higher convergence rate. Thus, GSA method has certain advantages over the 

GA, which is a more established heuristic search algorithm. 
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Bahl et al., 2012 [21] developed the novel variable selection method (random 

replacement method) and applied for the multiple linear regression analysis on two model 

data sets. They have also extended the application of random replacement method (RRM) for 

the selection of basis functions in the spline regression, and this approach is named as random 

function approximation (RFA). The comparison of RFA model with that of multivariate 

adaptive regression splines and genetic function approximation showed that, there are 

improvement in the quality of the models based on the coefficient of determination, R
2
 and 

Q
2
Loo. 

Khajeh et al., 2012 [22] reported the novel and efficient variable (descriptor) selection 

strategy for selecting and building the optimal linear model for predicting the entropy of 

formation by using a structurally wide variety of organic compounds in the QSPR analysis. 

This method is a combination of ―modified particle swarm optimization‖ (MPSO) and 

―partial least squares‖ (PLS) methods, and can also be used as an alternative variable 

selection technique in QSAR/QSPR studies. 

Mercader et al., 2011 [23] developed the advanced replacement method (RM) and 

enhanced replacement method (ERM) method for the selection of optimal set of descriptors 

from a larger pool of variables, for the development of QSAR and QSPR models. They have 

proposed the three different alternatives for the initial steps involved in the RM and the ERM 

analysis, out of which one new alternative have shown the superior results in the selection of 

the optimum set of descriptors from the greater pool than the genetic algorithm. Both RM and 

ERM First Step Modification (RMfsm and ERMfsm) methods are more efficient than the 

older algorithms in terms of providing better statistical values and used lower computational 

demand. 

 

 

Novel QSAR Modeling Approaches  
 

Lingling et al., 2013 [24] reported a two step modeling approach to study the selectivity 

and activity of histone deacetylase inhibitors (HDACIs). They have performed the novel two-

step hierarchical QSAR modeling work on the HDAC inhibitors, in which initially the 

HDACIs were assigned to a class (1 or 2) based on their activity using binary QSAR models 

and then their activity values were predicted using class-specific continuous QSAR models. 

As per this approach, the selectivity of HDAC inhibitor can be determined initially, followed 

by the next prediction of the IC50 values from the continuous models.  

Rosenbaum et al., 2013 [25] presented the two different multi-task support vector 

regression (SVR) algorithms and their application on the multi-target QSAR models, in order 

to design a lead molecule in a multi-target drug design process. These two algorithms are top-

down domain adaption multi-task (TDMT) SVR and graph-regularized multi-task (GRMT) 

SVR. This multi-task learning is a valuable approach for inferring the multi-target QSAR 

models for lead identification and optimization, and its application would be more beneficial 

if the knowledge can be transferred from a similar task with a lot of in-domain knowledge to 

a task with little in-domain knowledge. 

Hongming et al., 2013 [26] developed the Free-Wilson like local QSAR models by 

combining R-group signatures and the SVM algorithm. They have used the R-group 

signatures as descriptors to build the nonlinear SVM models. The free Wilson QSAR analysis 

has the limitation of not predicting the activity of the compounds, which are outside the scope 
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of developed model as defined by the training set R-groups. This methodology can make the 

predictions of compounds containing R- groups, which are not present in the training set also. 

Thus, this novel method overcomes the flaws associated with the Free-Wilson methodology, 

without sacrificing the interpretability of the developed model. 

Wei et al., 2013 [27] utilized the novel regression method of multi-stage adaptive 

regression (MAR) to develop the QSAR model for predicting the activity of iNOS inhibitors. 

This method is based on the multiple regression analysis, polynomial regression and adaptive 

algorism. The obtained results revealed that the MAR model has a better predictive ability 

and more reliability as compared to the best multiple linear regression (BMLR) model. 

Verma et al., 2012 [28] reported the simple and easily interpretable 3D-QSAR formalism 

based on the comparison of local occupancies of fragments of an aligned set of molecules in a 

3D-grid space namely, Comparative Occupancy Analysis (CoOAn). This formalism extracts 

the crucial position-specific molecular features and correlates them quantitatively with their 

biological endpoints. The steps in formalism includes superimposition of the molecules, their 

hypothetical breakdown into constitutive fragments, construction of a 3D-grid around the 

aligned set of molecules, determination of the occupancies of different fragments/groups in 

the grid cells, and final correlation with the biological activities using a chemometric method. 

Akyuz et al., 2012 [29] combined the electron conformational (EC) and genetic algorithm 

(GA) method (4D-QSAR) for identifying the pharmacophoric features and predicting the 

anti-HIV activity. The purpose of EC-GA method is not only to develop a correlation 

between the molecular descriptors and activity, but also to describe the pharmacophoric group 

using the conformational flexibility of the HEPT derivatives. In EC-GA method, which 

involves conformational and alignment freedom, the heavily populated conformers at the 

room temperature are taken into consideration by using the Boltzmann weighting, for 

pharmacophore identification and bioactivity predictions of the compounds. 

Pissurlenkar et al., 2011 [30] introduced the formalism of ensemble QSAR (eQSAR). In 

this approach, the biological activity is correlated with the descriptors for a set of low energy 

conformers, rather the descriptor calculated for the single lowest energy conformation. This 

formalism is based on the assumption that chemical behavior in complex biological systems 

is context-dependent, and therefore a molecule can exist and interact in a variety of 

conformations. By using this approach, it is also possible to determine whether the structural 

changes have a favorable or unfavorable effect on the binding affinity. 

Liu et al., 2011 [31] developed the multi-target QSAR model by using HIV-1 and HCV 

datasets jointly. They have applied the accelerated gradient descent algorithm of multi-task 

learning (MTL) framework for the development of QSAR model. This novel MTL-based 

method is more efficient in terms of both convergence speed and learning accuracy. Such 

type of methodology is useful in the design of inhibitors, which are acting on the multiple 

targets. 

Shih et al., 2011 [32] proposed the first combination approach for combining the 3D-

pharmacophore model, CoMFA, and CoMSIA models for predicting the inhibitory activity 

against B-Raf kinase, and have used the same training set for the model development. Initially 

the 3D-pharmacophore models were generated, and were used to align the diverse inhibitors 

structures for generating CoMFA, and CoMSIA models. This approach could be used to 

screen inhibitor database, optimize inhibitors and to identify novel inhibitors with significant 

potency. 
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Goulon et al., 2011 [33] discussed the application of a new machine learning approach 

called Graph Machines-based QSAR approach (descriptor independent QSAR method), for 

the prediction of the adsorption enthalpies of alkanes on zeolites. In this approach, the 

molecules are considered as the structured data and are represented by the graph. This method 

is different from the classical QSAR method in which the molecules are described by using 

vectors composed of descriptors. This novel approach avoids the use of computation and 

selection of descriptors, which is often a major issue in the QSAR application. 

Hao et al., 2011 [34] developed the novel genetic algorithm-support vector machine (GA-

SVM) hyphenated approach for the development of a QSAR model by using a series of P2Y12 

(members of the G-protein coupled receptor family) antagonists. The GA-SVM approach 

showed superior results in terms of their performance when compared with the other 

approaches like GA combined with partial least squares (G-PLS), random forest (GA-RF), 

and Gaussian process (GA-GP). 

Manoharan et al., 2010 [35] proposed the concept of fragment-based QSAR approach 

(FB-QSAR). This hybrid approach incorporates both the essential elements of classical Free-

Wilson model and Fujita-Ban model. They have validated the methodology of FB-QSAR on 

a dataset consisting of 52 Hydroxy ethylamine (HEA) inhibitors as anti-Alzheimer agents. 

Such novel approach offers a weighing advantage of fragment contribution for the enhanced 

activity. 

Dong et al., 2010 [36] have presented a formalism of structure-based multimode QSAR 

(SBMM QSAR) to highlight the issue of encoding of structural information of the binding 

site into the QSAR models. In this formalism, the structure of target protein is used to 

characterize the small molecule ligand, and the issues of conformations and multiple poses of 

ligand are systematically treated with the modified Lukacova-Balaz scheme. This approach is 

mostly applicable to the QSAR analysis, when the receptor target protein structure is 

available. 

Zhou et al., 2010 [37] have presented the methodology of combining particle swarm 

optimization algorithm (PSO) and genetic algorithm (GA) to select simultaneously the 

features subset and to optimize the kernel parameters of the support vector machine (SVM). 

The logic of combining both the method is to utilize full advantage of both the methods in 

optimizing features subset and kernel parameters. This method was evaluated by predicting 

the activities of four peptide datasets and protein structural class of one of the dataset. 

Ajmani et al., 2009 [38] introduced the concept of Group-Based QSAR (G-QSAR) in 

which the fragment-based descriptor is correlated with the response variable. There are also 

other methods, which uses the information from the fragments, for the calculation of 

descriptors such as Free-Wilson approach, H-QSAR, 2-D and topological QSAR. But the 

methodology of G-QSAR differs from the other methods in two aspects. Firstly, the 

fragmentation of molecules is done with a set of predefined rules before the calculation of 

corresponding fragment-based descriptors. Secondly, the G-QSAR method also takes into the 

consideration of cross/interaction terms as a descriptors to account for the fragment 

interactions in the QSAR model, whereas the other methods does not considers the 

contribution of fragment interaction. This method provides a similar or better predictive 

QSAR model along the hints of site of improvement/modification. 

Martins et al. 2009 [39] has presented a novel 4D-QSAR formalism known as LQTA-

QSAR. This approach makes the use of molecular dynamics (MD) trajectories and topology 

information. It calculates the intermolecular interaction energies at each grid point by 
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considering probes and all aligned conformations, which are resulting from MD simulations, 

and these interaction energies are considered as the descriptors and used for the QSAR 

analysis. This paradigm is a user-friendly computational method, which involves less 

calculation consumption time. 

Mazanetz et al., 2009 [40] developed the new 3D-QSAR method based on the Active Site 

Pressurization (ASP) method, which is novel molecular dynamics methodology. This method 

helps in taking the effect of target flexibility in the computational studies of molecular 

recognition and binding. The structure-based drug design (SBDD) differs from ASP in which 

the SBDD often do not take into consideration of protein flexibility, but relies on the static 

crystal structure, whereas the ASP considers the protein flexibility. 

Cui et al., 2009 [41] developed a QSAR model using the novel adaptive weighted least 

square support vector machine (AWLS-SVM) method. This method combines the outlier 

detection approach and the adaptive weight value for the training set sample, and was 

developed in order to eliminate the influence of unavoidable outliers in the training set. This 

method takes the advantage of robust 3σ principle and adaptive weight, to detect the marked 

outliers and eliminates the effect of un-marked outliers on the model performance, and 

develops a model with good precision.  

Wendt et al., 2008 [42] proposed a novel procedure for the 3D-QSAR analyses namely 

Quantitative Series Enrichment Analysis (QSEA) based on the topomer technologies. For the 

conventional 3D-QSAR analysis, the compounds can be included in the analysis only when if 

it is possible to align the 3D conformations of their structures onto the 3D model, which may 

be either a pharmacophore or a receptor binding site. It is due to the fact that a 3D-QSAR 

analysis is 3D-alignment dependent, which is totally contrary with the 2D-QSAR analysis 

(alignment-independent QSAR).So, even if the activity data is available for the 3D-QSAR 

analyses, the model building may fail due to failure in the alignment process and due to the 

compromised SAR information. The proposed novel tool helps to overcome the limitation of 

3D-QSAR, as in the new method there is no requirement of alignment either on the 

pharmacophore or the receptor-binding site. 

 

 

NOVEL VALIDATION METRICS 
 

Among all the steps involved in QSAR model development, the validation of the models 

plays the key role for its subsequent application on new set of chemicals. A new European 

legislation on chemicals—REACH (Registration, Evaluation, Authorization and restriction of 

Chemicals) came into force in 2007, which deals with risk assessment of chemicals for their 

safe use, thus contributing to the human health and environment. This law allows and 

encourages the use of QSAR model predictions when the experimental data are not 

sufficiently available or as supplementary information, provided validity of the model is 

justified.  

According to these OECD principles [43], a QSAR model should have: (1) a defined end 

point; (2) an unambiguous algorithm; (3) a defined domain of applicability; (4) appropriate 

measures for goodness-of-fit, robustness and predictivity, and (5) a mechanistic 

interpretation, if possible. Herein, we are going to discuss some recent developments in the 

validation metrics. 
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Different Expressions of Predicted Variance (Q
2
) 

 

Whenever a QSAR model is built, it is necessary to check the ability of the model to 

predict activity/property of new compounds, which are not used in the model. Validation of 

models by means of new compounds whose data is not involved in the model development 

process is generally referred to as external validation. 
2
predR  ( 2

1FQ ) is one of the useful 

parameters utilized in external validation, which has been subjected to a lot of modifications 

in recent years.
 
 

The three different expressions for calculating the external Q
2
 as discussed by Shi et al. 

[44], Schüürmann et al. [45] and Consonni et al. [46] are noted here.  

The original version of 
2
predR   ( 2

1FQ ) (Shi et al. [44]) is given by the following equation: 
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where, Yobs(test) and Ypred(test) are the observed and predicted response values respectively for 

test set and is the mean observed response value of training set. The model is said to be 

acceptable if the value of 2
1FQ  is greater than 0.5. This parameter takes values in a 

standardized range (i.e., less than or equal to 1) thus allowing easy comparison of different 

QSAR models in terms of the performance of fitting and predictive abilities.  

Schüürmann et al., [45] via a mathematical proof demonstrated that 2
1FQ  yields a 

systematic overestimation of the prediction capability that is triggered by the difference 

between the training and test set activity means. They proposed another expression for 

calculation of Q
2
 based on prediction of test set compounds denoted by 2

2FQ  as given in eq.6. 

They suggested that 2
2FQ  provides a more reliable estimate of the external predictive ability 

and recommended that the OECD guidelines should be revised.  
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Here, testY  refers to the mean observed response of the test set compounds. 2
2FQ  differs 

from 2
1FQ  only for the mean used in the denominator.  

Consonni et al. [46] further discussed these parameters and pointed that unlike 2
2FQ , 2

1FQ  

computes the external predictive ability by including the information from the training set 

defined in terms of Y . In the expression of 2
2FQ , no information about the reference model is 

accounted, since testY  only encodes information derived from the test/external set, and this 

information changes continuously on the basis of the compounds present in the test set. It was 

suggested that to assess the predictability, predictions for all the test compounds should be 

evaluated independently of test set composition, which can be arbitrary or dependent on the 

Y
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size and distribution of the new data. Further they proposed another parameter ( 2
3FQ ) for 

validation of a QSAR model. This parameter is defined according to the following (eq.7):  
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In Eq. 7, ntr refers to the number of compounds in the training set. Here the summation in 

the numerator deals with the external test set compounds while that in the denominator deals 

with the training set compounds. Considering that the number of test and training compounds 

are usually different, divisions by next and ntr make the two values comparable. However, the 

value of 2
3FQ , despite measuring the model predictive ability, is sensitive to training set data 

selection and tends to penalize models fitted to a very homogeneous dataset even if 

predictions are close to the truth.  

Comparing the nature of Q
2 

values calculated using three different functions, Consonni et 

al. concluded that 2
1FQ  and 2

2FQ  are based on the sum of squares of the external/test set 

referring to the training set mean and test set mean, respectively; 2
3FQ  is instead based on the 

mean squares of the training set in order to be independent of the distribution of test 

compounds. 
2

1FQ  and 2
2FQ  were found to suffer from some drawbacks when the external test 

compounds are not uniformly distributed over the range of the training set. 2
3FQ  appeared 

independent of the external compounds property distribution. 

 

 

The 2

mr  Metrics  

 

Roy and coworkers [47, 48]
 
have proposed a novel metric 2

mr  as an additional validation 

parameter. This metric is calculated based on the correlations between observed and predicted 

values with (r
2
) and without ( ) intercept for the least squares regression lines as shown in 

the following equation (eq. 8): 

 








  2
0

222 1 rrrrm …  (8) 

 

The metric 2
mr  does not consider the differences between individual responses and the 

training set mean and thus avoid overestimation of the quality of predictions due to a wide 

response range. Initially, the 2
mr  metric was used for the external validation using a test set, 

but later it was used also for the internal validation employing LOO-predicted values. 

Similarly, based on the predicted response values of both the training and test sets, values of 
2

)(overallmr  could be calculated [48]. 

2

0r
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For the calculation of the 2
mr  metrics, one can plot the observed response values in the y-

axis and predicted values in the x–axis. However, the opposite may also be done, which will 

lead to a different value of the 2
mr  metric ( 2'mr ) unless the predictions are perfect, i.e., when 

there is no intercept in the least squares regression line correlating observed and predicted 

values. This is because of the fact that the correlation between the observed (y) and predicted 

(x) values is same to that between the predicted (y) and observed (x) values in presence of an 

intercept of the corresponding least squares regression lines. But, this is not true when the 

intercept is set to zero [48].
 
The 2'mr  metrics is expressed by the following (eq. 9): 

 








  2
0
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Squared correlation coefficient values between the observed and predicted values of the 

test set compounds with intercept (r
2
) and without intercept ( 2

0r ), were calculated for 

calculation of 2
mr  metrics. Change of the axes gives the 2

0'r  value. When the observed values 

of the test set compounds (y-axis) are plotted against the predicted values of the compounds 

(x-axis) setting intercept to zero, the slope of the fitted line gives the value of k and 

interchanging the axes gives the value of k
/
. The underlying formulas are as follows for 

calculation of 2
0r , 2

0'r , k and k
/
. 
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In cases where the Y-range is not very wide, either of the 2
mr  and 2'mr  metrics may 

penalize heavily the quality of predictions. However, the average of the 2
mr  and 2'mr values of 

test compounds ( 2
)(testmr ) appears to better reflect the quality of predictions than the original 

2
mr

 
metrics [47]. In general, the difference between 2

mr  and 2'mr  values i.e., 
2

)(testmr  should be 

low for good models. It has been shown that the value of 
2

)(testmr  
should preferably be lower 
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than 0.2 provided that the value of 2
)(testmr  is more than 0.5 [48]. Similarly, 2

)(LOOmr
 
and 

2
)(LOOmr  

parameters can be used for the training set, and 2
)(overallmr  and 2

)(overallmr  
can be 

used for the overall set i.e., training plus test set [48]. 

 

 

The 2
p

c R  Metric 

 

Y-Randomization is performed in order to ensure the robustness of the developed QSAR 

model. In this technique, the activity/property values of the training set compounds are 

randomly shuffled keeping the descriptor matrix unchanged and new random models are built 

based on the shuffled activity values. For an acceptable QSAR model, the average correlation 

coefficient (Rr) of randomized models should be less than the correlation coefficient (R) of 

non-randomized model. The extent of difference in the values of the mean squared correlation 

coefficients of the randomized ( 2
rR ) and that of the non-randomized (R

2
) models is reflected 

in the value of 2
pR  [47] parameter. This parameter penalizes the model R

2
 for a small 

difference between the values of the squared correlation coefficients of the non- randomized 

(R
2
) and the randomized ( 2

rR ) models as per the following equation (eq. 14): 

 

2222
rp RRRR 
…  (14) 

 

The threshold value of 
2
pR

 
is 0.5 and a QSAR model exceeding this stipulated value 

might be considered to be robust and not the outcome of mere chance only. However in an 

ideal case, the average value of R
2 

for the randomized models should be zero, i.e., 2
rR  should 

be zero. Thus, in such a case the value of 2
pR

 
should be equal to the value of R

2 
for the 

developed QSAR model. Thus, the corrected formula of 2
pR

 
(

2
p

c R ) [49] is given as (eq. 15) 

 

222
rp

c RRRR 
…  (15) 

 

 

Concordance Correlation Coefficient (CCC) 
 

Chirico et al. [50] proposed an external validation parameter CCC denoted as ĉ (eq. 16), 

which is given below. 
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where, x and y correspond to the abscissa and ordinate values of the graph plotting the 

experimental data values versus those values calculated using the model or vice versa, n is the 

number of compounds, and x  and y correspond to the averages of abscissa and ordinate 

values, respectively. 

CCC measures both precision (i.e., how far the observations are from the fitting line) and 

accuracy (i.e., how far the regression line deviates from the concordance line), thus any 

divergence of the regression line from the concordance line gives a value of CCC smaller 

than 1. The key point is that this result is obtained even if the Pearson‘s correlation coefficient 

equals 1. The greater simplicity and its independence of the axes disposition are the 

advantages over Golbraikh and Tropsha method and no training set information is involved, 

so it can be considered a true external validation measure. Studying on huge number of 

simulated dataset it was proposed that the CCC as a complementary or alternative measure for 

a QSAR model to be externally predictive. 

 

 

The 2
)(rankmr  Metric 

 

Different validation metrics like 2
FnQ  and 2

mr  etc. represent the measures for predictive 

quality of a QSAR model. However, none of them provides any information regarding the 

rank-order predictions for the test set. Thus, Roy et al. [51] have introduced a new variant of 

the 2
mr  metrics to incorporate the concept of ranking order predictions while calculating the 

common validation metrics originally using the Pearson's correlation coefficient-based 

algorithm. The ability of this new metric to perform the rank-order prediction was determined 

based on its application in judging the quality of predictions of regression — based 

QSAR/QSPR models for four different data sets.  

Unlike other 2
mr  metrics, the 

2
)(rankmr  metric is calculated based on the correlation of the 

ranks obtained for the observed and the predicted response data. In this case, the observed and 

predicted response data of the molecules are ranked and the (Pearson's) correlation 

coefficients of the corresponding ranks are determined with (
2

)(rankr ) and without intercept (

2
)(0 rankr ). The values of 

2
)(rankr  and 

2
)(0 rankr  thus calculated based on the rank-order are used to 

determine the value of the 
2

)(rankmr  metric.  

The values of 
2

)(rankr  and 
2

)(0 rankr  differ from each other based on the difference in ranking 

of the two variables. An ideal ranking where the observed and the predicted response data 

perfectly match with each other yields zero difference between the two values for each 

molecule and the 
2

)(rankmr  metric thus calculated attains a value of unity. An increase in 
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difference between the two rank-orders for different molecules is marked by a decrease in the 

value of this metric with the proposed threshold value for acceptance being 0.5.  

Different validation metrics calculated in each case were compared for their ability to 

reflect the rank-order predictions based on their correlation with the conventional Spearman's 

rank correlation coefficient [52]. Based on the results of the sum of ranking differences 

analysis performed using the Spearman's rank correlation coefficient as the reference, it was 

observed that the 2
)(rankmr  metric exhibited the least difference in ranking from that of the 

reference metric. Thus, the close correlation of the 2
)(rankmr  metric with the Spearman's rank 

correlation coefficient inferred that the new metric could aptly perform the rank-order 

prediction for the test data set and can be utilized as an additional validation tool, besides the 

conventional metrics, for assessing the acceptability and predictive ability of a QSAR/QSPR 

model. 

 

 

APPLICABILITY DOMAIN (AD) 
 

The AD of a (Q)SAR is the physico-chemical, structural, or biological space, knowledge 

or information on which the training set of the model has been developed, and for which it is 

applicable to make predictions for the new compounds [53]. During QSAR model 

development, the applicability domain of the molecules plays a crucial role for estimating the 

uncertainty in the prediction of a particular molecule‘s property based on how similar it is to 

the molecules used to build the model (i.e., training set molecules). 

There are four major classical approaches for defining the interpolation regions in a 

multivariate space: Range-based methods (descriptor ranges, principal components ranges 

etc.), Geometric methods, Distance based methods (Mahalanobis distance, Euclidean 

distance, City block distance, Leverage approach, Hotelling T
2
 test) and Probability Density 

Distribution based methods. These approaches differ from one another in the algorithm used 

to characterize the AD within the descriptor space, for the reliable prediction of the model. 

The threshold for all kinds of distance methods and Hotelling T
2
 is the largest distance 

between the training set data points and the center of the training data set. There are some 

new approaches for determining AD reported recently and these are discussed below [54]. 

A cluster-based approach to find applicability domain has been proposed by Stanforth et 

al. [55]. This method involves application of an intelligent version of the k-means clustering 

algorithm for modeling the training set, as a collection of clusters in the descriptor space, 

while the test compounds of each individual cluster are assigned a fuzzy membership from 

which an overall distance may be calculated. 

Sahigara et al., 2012 [54] compared the results of all the different AD approaches 

mentioned above by using some selected datasets. They have concluded that different AD 

approaches has their own strengths and limitations and it depends on the model builder to 

select the most appropriate approach. 

Sahigara et al., 2013 [56] also proposed the novel descriptor-based AD method, which 

uses the k-Nearest Neighbours (kNN) principle to define the AD of the QSAR model. The 

workflow of this approach includes three stages. The first stage of the approach involves a 

pattern defining of thresholds corresponding to the various training samples, which are later 
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used for deriving the decision rule. The second stage involves deciding the criteria for the 

retainment of test set sample within the AD. The third stage takes into account the different 

model statistics and error terms for checking the reliability in the derived results. The features 

that characterize the proposed AD involve adaptability to local density of samples, kernel 

density estimators (KDE), low sensitivity to the smoothing parameter and versatility to 

implement various distances measures. 

Recently, Yan et al., 2014 [57] proposed a model disturbance index (MDI) to define an 

applicability domain for QSAR modeling. 

 

 

CONCLUSION 
 

The chapter has highlighted various recent changes in the QSAR concepts emerged in 

terms of novel descriptors, novel methodologies and novel validation metrics including 

applicability domain of models. Several advances in QSAR concepts proposed in the last few 

years illustrate the great curiosity of the scientific society in this theoretical approach. The 

improvements in the current QSAR techniques are essential to recover the shortcomings of 

the classical QSAR techniques.  

This overview will help the interested readers to understand the progress in QSAR 

techniques in the recent decade and the need of such advances in near future to make the 

QSAR technique more fruitful by eliminating all types of possible errors/limitations 

associated. 
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ABSTRACT 
 

The great amount of clinical analysis carried out daily in the hospitals justifies the 

attempts to develop fast screening tools in order to avoid the confirmation analysis of 

samples far from pathological values. Infrared (IR) is a promising technique on the 

clinical field that has been used for the determination of clinical parameters in sera. 

However, serum and related fluids are complex matrices which produce overlapped 

spectra and chemometric treatment is a necessary and critical step in order to extract as 

much as possible information. This chapter focuses on the extraction of the information 

about the concentration levels of clinical compounds in serum samples through 

chemometric treatment of IR spectra. To do it we have made a revision of the regression 

algorithms used for predicting the concentration of clinical parameters and evaluated the 

diagnostic capability of attenuated total reflectance (ATR) Fourier transform (FT)-IR 

measurements of serum samples for the detection of samples with normal values of target 

analytes using discrimination methods, such as linear discriminant analysis and partial 

least squares discriminant analysis.  

 

Keywords: Clinical Diagnosis, Chemometrics, LDA, PLS-DA, Screening, Serum, 

Vibrational Spectroscopy 
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INTRODUCTION 
 

The determination of different clinical parameters, such as cholesterol, creatinine, 

glucose, High Density Lipoproteins (HDL), Low Density Lipoproteins (LDL), urea, albumin, 

globulin and immunoglobulin is essential for clinical diagnosis of several illnesses and the 

monitoring of medical treatments. Those parameters are also good indicators of the general 

state of the patient, assessing the correct function of vital organs, such as liver and kidney [1] 

Because of that, a great amount of these determinations are carried out every day at clinical 

laboratories through enzymatic methods using high-sophisticated auto-analyzers. 

Unfortunately, these complex determinations imply the use of costly instrumentation and 

specific reagents, making the analysis expensive and avoiding their portability to the point-of-

care testing.  

So, a lot of studies have been made in order to propose alternatives to the commonly used 

enzymatic methods or to develop efficient screening tools. Among them one of the most 

promising techniques is vibrational spectroscopy, which provides a great amount of molecular 

information about the samples from a rapid and direct spectra acquisition [2, 3]. Infrared 

spectroscopy is nowadays widely used on the clinical field [4] and several methodologies 

have been proposed for the diagnosis [5] or determination of clinical parameters on biofluids 

[6]. Infrared (IR) provides several advantages over the classic clinical methods, being i) a 

versatile technique that can extract information from solid [7], liquid [8] and gas samples [9], 

covering all kind of samples including noninvasive measurements of thumbs [10] or 

microscopic imaging of tissues [11], ii) an excellent tool for the point-of-care analysis with 

compactable and portable instrumentation and iii) a cost-effective alternative to the reagent 

consuming enzymatic methods.  

Unfortunately, regarding the analysis of biochemical parameters of serum, IR technique 

lacks from sensitivity and selectivity. Because of that, besides the classical acquisition of the 

serum spectrum by attenuated total reflectance (ATR) or transmission measurements of dry 

films, several research groups around the globe are currently introducing technical 

improvements on IR analysis of serum; including the use of quantum cascade lasers [12], the 

introduction of microfluidics [13] for preprocessing the samples or the measurements of ATR 

of dry-films from organic extracts [14]. The selectivity problem is normally faced with 

chemometrics, i.e., the extraction of the information of the composition of the serum through 

multivariate calibration methods [3]. Figure 1 shows an overview of the problem of serum 

analysis, evidencing the complex composition of serum samples and the resultant overlapped 

bands of its spectra in the mid infrared (MIR) and near (NIR) infrared range. As it can be 

seen, serum is a heterogeneous matrix mainly composed by water, which is normally 

subtracted by drying the sample or using a water blank as a background. From the non-

aqueous part of the serum, the main compounds are proteins, whose bands dominate the 

spectra. Other compounds also present on the IR spectra provided overlapped bands on the 

900-1300 cm
-1

 region, corresponding to the ν(C-O) and ν(P-O) stretching vibrations from 

saccharides and phospholipids respectively or the bands between 2800 and 3100 cm
-1

, 

correspond to the ν(C-H) vibrations of mainly lipids. 

As we have stressed before, the use of multivariate modelling is mandatory for the 

quantification of the clinical parameters from their overlapped bands on the IR spectra. In this 

chapter we have focused on the chemometric methods used for building those models, 
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including a revision of the mainstream use of PLS regression methods and a new introduction 

of classification methods for the screening of samples with healthy parameter levels.  

 

 

Figure 1. IR spectra and main approximate composition of sera samples. Note: Mid infrared (1000-

4000 cm
-1

) spectra were obtained using an attenuated total reflectance accessory, and near infrared 

spectra (4000-9000 cm
-1

) were obtained using transmission mode. 

 

CHEMOMETRIC MODELLING OF SERA SAMPLES 
 

Chemometric modelling is normally performed through powerful software packages 

commercially available (e.g., Matlab from Mathworks, Xlstat from Addinsoft or The 

Unscrambler from Camo). Three steps are normally required, from the spectra acquisition 

until the end of the analytical procedure: 

 

i) Preprocessing. The first step is the preprocessing of data in order to adequate 

them for the modelling, with the aim of removing externals sources of variation 

such as baseline shifts, pathlength changes, noise and other spectral artefacts 

related to the experimental procedure (atmospheric contributions, scattering or 

ATR correction). The pre-treatment of data can also select the appropriate 
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variables or enhance the differences among spectra by the use of derivatives or 

mean centering of signals.  

ii) Modelling. This is the main process and intends to build a mathematical 

relationship between the spectra matrix and the reference data. The reference 

data can be a concentration vector (regression) or a class vector (classification). 

Most of the algorithms available need the optimization of several parameters as 

the spectral region selected or other specific features of each method (e.g., 

number of latent variables (LV) in PLS). The selection of those conditions is 

critical and it is normally performed using internal parameters as the root mean 

square error of cross validation (RMSECV) and the information concerning the 

bands of the analyte and other interferences. 

iii) Validation. Models need to be validated with an external set of samples (i.e., 

samples not included nor in the calibration of the model nor in the selection of 

the parameters of the model), especially when dealing with supervised methods, 

in order to obtain feasible conclusions about the relationship between spectral 

data and the composition of samples. The error measured on the validation is 

normally computed as the root mean square error of prediction (RMSEP) 

established from the regression methods or from the number of misclassified 

samples (NMC) in the case of sample classification, giving an estimation of the 

accuracy of the proposed methodology. 

 

 

REGRESSION METHODS 
 

In the same way than IR spectroscopy is used for the multicomponent determination on a 

wide range of samples [15], regression methods can be employed to extract as much as 

possible information from the IR spectra of serum thus making possible the simultaneous 

prediction of the concentration of some of the commonly required clinical parameters. Table 

1 summarizes some of the works published for the prediction of clinical parameters from the 

vibrational spectra of serum and related fluids (whole blood and plasma). As it can be seen, 

spectra from both, MIR and NIR ranges, acquired from different kind of measurement modes 

can be treated using multivariate regression algorithms for the evaluation of several clinical 

parameters through the use of regression algorithms. 

 

 

Partial Least Squares 
 

PLS regressions establish a relationship between the predictive X matrix of spectra, and 

the predicted y-vector of parameter concentrations using least squares algorithms. In short, 

those algorithms extract a set of LV, which explain the sources of variation in the spectra 

correlated to the concentrations [33, 34]. In other words, the spectra are represented in the 

space of variables in order to reveal new directions that are linear combinations of the old 

predictive variables (wavenumbers), which present the best correlation to the concentration 

vector. 
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Considering the prediction of a concentration vector of n samples from their spectra 

containing j variables, the relationship between the concentration vector y (n x 1) and the 

spectra matrix X (n x j) can be described as indicated in equation 1: 

 

         (Equation 1) 

 

where b (1 x j) is the regression vector calculated for a specific number of LVs and e (n x 1), 

is the vector of residuals. PLS can be described as a powerful predictive version of principal 

component regression (PCR), because latent variable selection is performed according to the 

covariance matrix between spectral data and the investigated parameters.  

The main drawback of PLS technique is the necessity of a robust calibration data set 

composed of representative spectra of the type of samples under analysis. This fact causes 

that the calibration procedure can be potentially time consuming and cost-extensive due to the 

need of several reference values.  

Even though, Table 1 evidences that PLS is the most popular algorithm employed for the 

determination of clinical parameters on serum, plasma and whole blood. Normally the regions 

for the modelling of each analyte are selected taking into account the absorbance bands of the 

analyte [20] or by combining different regions and selecting those which offer the best root 

mean square error of prediction [24]. However, some studies use complex algorithms for the 

selection of the spectral ranges, based for example on the loading vectors [29]. The 

chemometric selection of the spectral ranges is specially performed on the NIR range, where 

the bands are strongly overlapped and it is difficult to assign specific spectral signatures to 

each considered compound. An example of those sophisticated methods for variable selection 

is the searching combination moving window partial least squares regression, which 

according to Kang et al. [30], ―can select the optimized combination spectral region for each 

blood component successfully within the complex blood matrix over the low concentration 

range.‖ 

 

 

Locally Weighted (LW)-Partial Least Squares 
 

In order to overcome a lack of linearity of the relationship between signals and analyte 

concentrations and to facilitate the selection of proper calibration sets, LW-PLS can be seen 

as a suitable approach. Local regression approximations are based on the use of specific 

calibration equations for each sample to be analyzed, using small calibration sets tailored to 

the unknown sample from a large library of samples. 

We have evidenced the advantages and drawbacks of the application of LW-PLS to the 

direct determination of clinical compounds in human serum from the ATR-FTIR spectra [27]. 

Briefly, the LW-PLS approach consisted in four steps: (i) development of a principal 

component analysis (PCA) model at F components, (ii) computation of the Euclidean distance 

between the query and the calibration samples in the scores space, (iii) selection of the N 

nearest neighbors to the query and (iv) calculation of a local PLS regression employing the 

selected samples and LV latent variables.  
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Table 1. Published literature about determination of biochemical parameters in human serum plasma and blood based  

on the chemometric treatment of IR spectra 

 

Calibration method Matrix Analyte 
Sample Pre-

processing 
Measurement Mode Ref. 

PLS 

Serum HDL LDL MIR Transmission-Dry films [16] 

Blood GLU MIR Transmission [17] 

Serum TP, HSA,  CHOL, HDL, LDL, TRY, GLU, URE MIR Transmission-Dry films [6] 

Serum GLU MIR ATR/Transmission Dry films [18] 

Serum CRE MIR Transmission-Dry films [19] 

Whole blood TP, ALB, CHOL, TRI GLU, URE MIR ATR [20] 

Plasma CRE MIR Transmission-Dry films [13] 

Blood GLU MIR Transmission  [21] 

Serum HSA, IG, GLB, AGC MIR ATR 
[22] 

Whole blood HEM MIR ATR 

Serum TRI, GLU, LAC MIR Transmission-QCL [12] 

Plasma TP, HAS, CHOL,TRI, GLU, LAC MIR Transmission-QCL [23] 

Serum HSA, CHOL, HDL, LDL, GLU, URE MIR ATR [24] 

Serum HDL, LDL, CHOL, TRI MIR ATR-Dry films [14] 

Serum LDL NIR Transmission [25] 

Serum 
TP, HAS, TRI, CHOL, GLU, URE, HDL, LDL, 

VLDL 
NIR Transmission [26] 

LW-PLS Serum TP, TRI, GLU, URE MIR ATR [27] 

Iterative Spectra Subtraction Plasma 
16 different kinds of plasma proteins, GLU, LAC, 

URE 
MIR Transmission-Dry films [28] 

PLS Selection region based on loading vector Serum TP, HSA, GLB, CHOL, TRI, GLU, MIR Transmission [29] 

SCMWPLS Serum CHOL, GLU, URE NIR Transmission [30] 

PLS, MLR, ANN Plasma TRI NIR Transmission [31] 

SCMWPLS Serum ALB, IG NIR Transmission [32] 

Note: ALB, albumin; ANN, artificial neural network; CHOL, cholesterol; CRE, creatinine; GLB, globulin; GLU, glucose; HDL, high density lipoprotein; HEM, 

hemoglobin; IG, Immunoglobulin; ICR, independent component regression; Ig, immunoglobulin; LAC, lactate; LDL, low density lipoprotein; MIR, mid 

infrared; MLR, multiple linear regression; NIR, near infrared; PCR, principal component regression; PLS, partial least squares; SCMWPLS, searching 

moving window partial least squares; TRI, triglycerides; TP, total protein; UAC, uric acid; URE, urea. 
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The prediction of triglycerides, urea, total protein and glucose was investigated trough the 

modelling of the spectral data using PLS and LW-PLS model calculation and comparison of 

their respective prediction capabilities. Results evidenced that LW-PLS modelling improved 

between 5 and 30 % the prediction obtained using PLS. 

 

 

Other Algorithms 
 

Using an iterative algorithm developed by Petitbois et al. [28], spectra of dry films have 

been employed for the determination of numerous clinical parameters in plasma. The 

algorithm established a direct correlation of the spectra bands with concentration of the target 

analytes, selecting the analyte most correlated to one of the IR bands. The concentration of 

this analyte was determined by a simple univariate regression on this band and then a 

calculation of the contribution of this component to the spectra was established. This 

contribution was subtracted to the sample spectrum, and the remaining spectra was used for 

establishing the correlation for the determination of the next components considered one by 

one. 

In addition, in a recent study Al-Mbaideen and Benaissa [25] have used independent 

component regression (ICR) for improving the results obtained for serum analysis by NIR-

PLS. On the other hand, multiple linear regression (MLR) or artificial neural network (ANN) 

[31] are examples of other regression algorithms that can be used for the treatment of serum 

infrared spectra. 

A direct comparison of the errors obtained by using different algorithms is difficult to 

perform because the calibration and validation sets employed on each study are different. In 

general only the main compounds are predicted with comparable accuracy to the tolerance of 

the clinical hospitals, and for example errors lower than 10% were found for PLS -ATR -

FTIR prediction of glucose, urea, cholesterol, triglycerides, total proteins and albumin in 

whole blood [20]. However, the studies of our group have evidenced that using a large 

amount of samples coming from different kind of patients to build the calibration models, the 

quantification of minor compounds is dramatically affected by the high heterogeneity of 

samples and band-overlapping [24], thus being necessary to increase the number and 

variability of samples employed for calibration in order to minimize the prediction error. 

 

 

CLASSIFICATION METHODS 
 

The general aim of the aforementioned works was to evaluate infrared spectroscopy as an 

alternative technique to the commercially available enzymatic methods by performing 

prediction models in order to obtain the concentration of as many as possible analytes in an as 

accurately as possible way. However, in our knowledge the use of ATR-FTIR as a screening 

tool in order to determine which serum or blood samples contains the parameters under 

routine study inside the so called normal values has not been evaluated in the scientific 

literature and it could be a key question for a clever use of vanguard fast analytical tools as 

IR-based ones. However, the high molecular information about the samples provided by the 

IR spectra has allowed that linear discriminant analysis (LDA) and partial least squares-
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discriminant analysis (PLS -DA) based on FTIR spectra can be used for the discrimination of 

healthy and pathological samples according to different illness as cancer and inflammation in 

gastric tissues [35, 36] or β-thalassemia in hemolisates [37]. In addition, it has been evidenced 

by the group of Khanmohammadi [38] that LDA of FTIR-ATR spectra of blood can 

discriminate between cancerous and healthy samples based on the bio-molecular changes in 

blood composition.  

On using the appropriate chemometric tool it could be possible the evaluation of the 

capability of IR serum spectra for the classification of sera samples according to the ―healthy‖ 

or ―unhealthy‖ levels of their clinical parameters. The final goal is to provide a tool for 

avoiding the need of confirmation analysis of samples far from pathological values, which are 

the majority of those obtained in the case of primary care laboratories in our societies.  

A method for the screening and diagnosis of healthy levels based on ATR -FTIR spectra 

of serum samples should take into account three important parameters: (i) the percentage of 

samples with normal values of the considered parameter classified as normal (true negatives), 

(ii) the percentage of samples classified as normal with values of the parameter out of the 

normal values (false negatives) and (iii) the concentration values of these false negatives. The 

first parameter informs about the effectiveness of the method to avoid the need of the 

confirmation analysis of samples with normal values and the other two parameters evaluate 

the associated risks of the method in sample screening. Since the evaluation of a sample as 

―healthy‖ is associated to parameter values between fixed concentration normal levels, it is 

expected that the classification of a continuous parameter in classes with arbitrary cut-offs 

can create grey zones of diagnosis in the proximities of the limit considered (see Figure 2) 

which could be the reason for false positive or false negative results. Thus, the benefits of the 

use of classification methods based on IR signals in a screening or diagnosis are strongly 

dependent on this grey zone. The narrower the grey zone was, the greater the amount of true 

negatives and the less the amount and the risk of false negatives. 

 

 

Classification Algorithms Used 
 

Two different classification methods, LDA and PLSDA have been used for the treatment 

of IR serum data. A brief explanation of the classification methods employed and the details 

of the samples used on the evaluation of serum parameters are detailed below. LDA is a 

traditional way of doing discriminant analysis introduced by R. Fisher [39]. It is similar to 

principal component analysis and it is also based on a decomposition of whole data in new 

directions, but instead of searching those that best describe the data, it searches for the vectors 

in the underlying space that best discriminate among classes. Therefore, given a number of 

independent variables which describe the observations, LDA creates a linear combination of 

the variables which yields the largest mean differences between the desired classes [40]. The 

general aim of the method is to maximize the between-class variance while minimizing the 

within-class variance. For the LDA study, routine samples obtained from clinical laboratories 

were used and reference data were obtained using an Abbott architect c16000 auto-analyzer 

(Libetrtyville, IL, U.S.A) based commercial methods described in the literature [24]. Samples 

were chosen in order to cover a large interval of different values of the considered analytes. 

1500 samples were analyzed, including 750 samples from primary care patients, 550 samples 

from hospital patients and 100 samples from pre-dialysis patients. The range of concentration 
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parameters for the samples under study were 1-4.7 g/dL for albumin, 45-545 mg/dL for 

cholesterol, 0.4-16.54 mg/dL for creatinine, 32-490 mg/dL for glucose, 5-119 mg/dL of HDL, 

14-354 mg/dL for LDL, and 9-249 mg/dL for urea.  

 

 

Figure 2. a) A priori distribution of sera parameter values according to the concentration of target 

analyte and b) reclassification expected taking into account the viability of pathological level samples. 

PLS-DA is a variant of the aforementioned PLS algorithm used when the Y vector is 

categorical, replaced by the set of dummy variables describing the categories, expressing the 

class membership of the objects under study. Normally, a number is assigned to the y value of 

each class (Normally +1 and -1) and then a classical PLS regression is performed. For the 

classification of external samples, their spectra are introduced on the model, predicting an y 

value and calculating the probability to be in a particular class as a function of this y value. 

Similar to the PLS regression, latent variables are built to find a compromise between 

describing the variables spectra (X) and the prediction of the classes (Y). This technique is 

tailored to deal with a much larger number of predictors than observations and with 

multicollineality [41]. For PLS-DA modeling of protein concentrations in sera, 320 serum 

samples provided by the Protein Analysis Department of the Doctor Peset hospital, were 

considered [22]. Reference data were obtained using a Paragon capillary electrophoresis 

equipment from Beckman-Coulter Inc. (Brea, CA, USA). Samples were chosen randomly and 

covered a wide range of concentrations; 1.90-4.89 g/dL for albumin, 0.36-2.79 g/dL for 

immunoglobulin, 2.03-4.83 g/dL for total globulin. 
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Discriminant Capability of the ATR-FTIR Spectrum 
 

It was observed that serum spectra differ as a function of the class where the sample was 

classified according to the concentration of target analytes. This effect was evidenced in the 

average spectra obtained for each class (see Figures 3 and 4). 

 

 

Figure 3. Mean spectra for samples with abnormally low values of the analyte (dotted line), abnormally 

high values of the analyte (solid line) or inside the normality values (dashed line) before (bottom) and 

after (top) preprocessing. Dash-dotted lines represent spectra of standards of 3 g/dL of an albumin 

suspension, 1 g/dL of glucose, 3 g/dL of urea and 0.3 g/dL of creatinine. Only the regions employed for 

model building are shown. 
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Figure 4. Mean spectra for samples with abnormally low values of the considered analyte (dotted line), 

abnormally high values of the considered analyte (solid line) or inside the normality values (dashed 

line) before (bottom) and after (top) preprocessing. Only the regions employed for discrimination 

model building are shown. 
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Although this visual differentiation was detected in the raw spectra only for major 

compounds as albumin, globulin, immunoglobulin and cholesterol, the application of a series 

of preprocessing treatments clarifies the differentiation among classes of samples. The 

differentiation was found to be important in the amide I and amide II bands (1500-1700 cm
-1

) 

in all the cases. For analytes related to proteins; such as albumin, globulin and 

immunoglobulin or lipoproteins LDL and HDL, the influence of the aforementioned region in 

the discrimination between normal and abnormal values of these parameter concentrations 

should be logical, since the shape and position of these bands contain information about the 

secondary structure of the proteins present in the sample [42]. However, for the other 

considered analytes a strong differentiation in this wavenumber interval could be caused by a 

correlation of the target analyte with the proteins. Nevertheless, when comparing the average 

spectra of the different classes and the standard spectra measured for creatinine, urea and 

glucose, it was found strong differences in the absorbance regions of these analytes (see 

Figure 3). However, for cholesterol (see Figure 4), it is unclear to ensure that the differences 

in the average spectra are due to correlations of cholesterol content with other components of 

the sample. 

From the aforementioned figures it can be concluded that the preprocessing of sera ATR-

FTIR spectra strongly improves the clinical information provided by the spectra and 

contributes to a clear diagnosis of their content in target analysis. 

 

 

LDA Classification 
 

LDA treatment reclassified successfully between 71 and 83% of serum samples, 

depending on the analyte under study (see Table 2). For all the analytes for which three 

classes were considered, the first function could differentiate around 80-95% of the whole 

discrimination.  

An example of the distribution of samples in the space generated by the discriminant 

functions is shown in Figure 5, which refers to the classification of samples based on their 

urea content. The first function discriminated among the three classes of samples whereas the 

second function differentiated samples with values inside the normal range and samples with 

abnormal values of urea. Samples with an abnormally high level of urea were reclassified 

very far for the other classes (see arrows in Figure 5); thus evidencing the manifested 

discrimination capability of the ATR-IR spectra of serum samples. For analytes with two 

classes, a Receiver Operator Characteristic (ROC) curve was built in order to evaluate the 

quality of the classification, providing areas under the curve around 0.87. 

Tables 3 and 4 show the confusion matrix obtained in the evaluation of LDA models 

through cross validation. The percentage of samples well classified in all the cases was found 

to be between 70 % for creatinine and 79% for LDL. The best predictions were found for 

classes with a low number of samples such as samples with low values of urea, cholesterol 

and glucose (less than 100 samples), possibly due to the automatic weight correction applied. 

As it was anticipated in Figure 2, it was observed that the proximate Gaussian 

distribution of analyte values for samples under study splits in two or three Gaussians 

corresponding to the different predicted classes.  
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Table 2. Parameters of LDA classification of sera samples from their ATR-FTIR spectra regarding different target analysis 

 

Analyte Preprocessings useda Range (cm-1) 
Variance Captured 

Area under ROC Curve % of Samples well reclassified 

F1 (%) F2 (%) 

Cholesterol FD/MSC 
1776-1684 

1591-864 
96.36 3.66  83.3 

Creatinine FD 
1816-1728 

1641-935 
84.35 15.74  71.0 

Glucose FD 
1170-956 

987-896 
84.35 15.65  74.7 

Urea FD/SNV 
1126-1681 

1591-864 
83.28 16.42  78.9 

HDL FD/SNV 
1753-1664 

1492-883 
  0.886 80.0 

LDL FD 

1591-1451 

1388-1291 

1172-981 

  0.874 77.0 

Notes:  Preprocessing methods: FD (First derivate), MSC (Multiplicative scattering correction) and SNV (Standard normal variate). F1 and F2, considered 

functions and ROC: Receiver Operator Characteristic. 
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This effect is exemplified in Figure 6 which shows the distribution of the real values 

(Figure 6a) of urea and the distribution of the different classes provided by cross validation 

(Figure 6b, 6c and 6d) of the LDA models using the IR data. It can be observed that 

pathological classes of samples present a wide grey zone of diagnosis, being classified 

samples with urea values around 128 mg/dL as abnormally low and samples with values of 28 

classified as abnormally high. On the other hand, the grey zone for samples with normal 

values was less wide that the other ones. From samples classified by the model as samples 

with urea values inside the normal range, only 12% corresponded to false negatives with 

abnormal values. This behavior was found to be similar for all the analytes, being the 

percentage of miss-classified samples always less than 18%.  

 

 

Figure 5. Canonical coordinates for LDA discrimination of sera samples based on urea values. Note: 

samples indicated with arrows correspond to those with concentrations from 193 till 249 mg/dL. 

Table 3. Confusion matrix of Cross Validation for sample discrimination regarding 

analytes for which two levels were considered 

 

HDL  

From/to Normal Low Total % Correct 

Healthy 425 100 525 80.95% 

Low 60 177 237 74.68% 

Total 485 277 762  

% Correct 87.63% 63.90% 
 

79.00% 

LDL  

From/to High Normal Total % Correct 

High 163 43 206 79.13% 

Healthy 131 388 519 74.76% 

Total 294 431 725  

% Correct 44.56% 90.02% 
 

76.00% 

 

Results obtained for sample classification according with sera ATR-FTIR spectra are 

comparable to those obtained by other screening studies for diagnosis based on LDA-FTIR 

spectra as the diagnosis of cancer in whole blood which raised 90-100% [38] of accuracy with 

a small number of samples or the detection of β-thalassemia in blood were made through dry 

films which could discriminate healthy and pathological samples [37]. The diagnostics of 
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diverse illness in gastric tissues afforded between 66 and 90% of well classified samples 

using ATR the spectra of 100 samples [35, 36]. 

 

Table 4. Confusion matrix of Cross Validation for sample discrimination regarding 

analytes for which three levels were considered 

 

Analyte From/to Low Normal High Total % Correct 

Cholesterol 

Low 10 0 0 10 100.00% 

Normal 5 534 174 713 74.89% 

High 0 80 263 343 76.68% 

Total 15 614 437 1066  

% Correct 66.67% 86.97% 60.18% 
 

75.70% 

Creatinine 

Low 117 47 1 165 70.91% 

Normal 210 579 33 822 70.44% 

High 18 36 146 200 73.00% 

Total 345 662 180 1187  

% correct 33.91% 87.46% 81.11% 
 

70.94% 

Glucose 

Low 22 2 0 24 91.67% 

Normal 102 580 96 778 74.55% 

High 22 112 244 378 64.55% 

Total 146 694 340 1180  

% correct 15.07% 83.57% 71.76% 
 

71.69% 

Urea 

Low 42 9 0 51 82.35% 

Normal 136 680 31 847 80.28% 

High 16 85 184 285 64.56% 

Total 194 774 215 1183  

% correct 21.65% 87.86% 85.58% 

 

76.58% 

 

 

Evaluation of LDA as Screening Tool for the Detection of Samples  

with Parameter Values Inside the Normal Range 
 

The comparison of LDA results obtained in the described study from those of other 

studies for the determination of biochemical parameters in serum is difficult because in this 

last work we have renounced to the quantitative information and we have just tried to detect 

pathological values of the analytes considered. In addition, this study uses a great number of 

samples in comparison with the regular size of the calibration sets used for other reported 

works (100-300 samples). However, taking into account prediction errors acquired by PLS 

models and errors obtained by LDA classification it can be concluded that LDA cannot 

compete with PLS quantification in extracting information from sample spectra about their 

content in glucose, urea, cholesterol, HDL and LDL. On the contrary, this fact is unclear in 

the case of creatinine because this parameter concerns a minor analyte whose low 

concentration does not allow its direct quantification by using FTIR spectra [20, 24]. New 

developments have been applied based on laminar fluid diffusion interface in order to isolate 

the creatinine for major compounds for its correct determination [13, 43]. However, in the 

classification study it has been evidenced that LDA can discriminate between samples with 
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normal and abnormally high values of creatinine, being all the samples that contained more 

than 2.45mg/dL classified as samples with an abnormal high level. 

 

 

Figure 6. a) Distribution of the urea values of the samples under study, b) distribution of sample values 

classified as Pathologically Low by cross validation, c) distribution of sample values classified as 

Normal by cross validation and d) distribution of samples classified as Pathological High by the cross 

validation. Dashed lines indicate the limits of the classes. 

Although the LDA-ATR-FTIR method cannot classify successfully all the samples in 

their corresponding classes, the classification made could be useful to identify the majority of 

serum samples with normal values. Table 5 summarizes results obtained for the analysis made 

with the aim of detecting samples with values inside the normal range and its exclusion of the 

confirmation analysis.  

 

 

 

 

d) 

c) 

 

) 

a) 

b) 

Complimentary Contributor Copy



 

Table 5. Confirmation analysis saved and errors made considering the cross validation for LDA as a screening tool of abnormal 

concentration of sera parameters based on ATR -FTIR spectra 

 

Analyte 
Total 

Samples 

Classified 

as Normal 

Analysis 

saved (%) 

False 

negative 

(%) 

Cut-off Values 

(mg/dL) 

False negative by excess False negative by excess 

N 
X±S 

(mg/dL) 
N‘ 

X±S 

(mg/dL) 

Cholesterol 1066 614 57.60 13.0 80-200 80 221±24 0 
 

Creatinine 1187 662 55.77 12.5 0.7-1.2 36 1.50±0.44 47 0.62±0.06 

Glucose 1180 694 58.81 17.9 70-105 122 116±12 2 60±1 

HDL  762 485 63.65 12.3 >40 
  

60 35±4 

LDL  725 431 59.45 9.9 <130 43 151±18 
  

Urea 1183 762 64.41 12.3 19-50 85 59±9 9 16±3 
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In all the cases the percentage of samples classified as normal and consequently the 

number of analysis saved was higher than 55 %. However, inside this group of samples 

classified as samples with normal values, which not need to be analyzed, we found between 

10 and 18% of false negatives with concentration of the analytes outside the normal ranges. 

Nevertheless, the concentrations values of these false negatives were not far from the 

reference normal values, thus reducing the risk of a bad diagnosis. 

 

 

PLS -DA of ATR -FTIR Spectra of Serum Samples According to Their 

Protein Contents 
 

The parameters of the PLS-DA models built for each analyte in serum samples after 

classification based on the differences of ATR-FTIR spectra between samples with 

pathologically low and high values and samples with values inside the normal range are 

reported in Table 6. As the distribution of samples was different for each considered 

parameter, the number of samples of the calibration and validation sets was different in each 

case. The classification for the diagnosis of samples with pathological high values of albumin 

was not tested due to the absence of samples of this type. In Some cases the number of 

pathological samples was very low and the models were built with only 19 objects as in the 

class of gamma globulin high. However, for the main part of parameters, discrimination 

models were built with more than 25 samples, leaving approximately 200-300 samples for 

validation. In all the cases the number of optimal latent variables was found to be less than 

three.  

The validation of PLS-DA models provided probabilities of samples to be classified in 

each considered class that can be plotted versus the actual concentration value of the samples 

(see Figure 7). In all the cases it was found a similar behavior; corresponding the lowest 

concentration values to samples with a minimum probability to be classified in the non-

pathological group by PLS-DA. Around the normal value, which divides the samples between 

those with and without a normal content of globulin there was a reduced interval for which 

samples were not clearly classified. This thin diagnostic grey zone was found for all the 

parameters considered, being that the bottleneck of this classification technique and limiting 

its application as a screening tool. 

In the case of PLS-DA, in order to identify samples with a normal value of each 

considered analyte and to avoid the need of a confirmation analysis, it must be selected a cut-

off value of probability to classify the analytical level of the considered parameters of the 

sample as healthy, being samples with probabilities under this value considered as 

pathological ones. On increasing the cut-off value, it was obtained a reduced number of false 

negatives but also a reduced number of analyses saved. In this study we selected a cut-of 

value of 0.8, obtaining results summarized in Table 6.  

In all cases, and taking into account an independent validation set of more than 200 

samples, the number of samples undoubtedly classified by the method was found to be around 

60%. Any false negative result was found except for the detection of low immunoglobulin 

levels, where less than 10 % of pathological samples were classified as healthy. So, it can be 

concluded that, additionally than to provide quantitative results for many of the parameters 

under study, the use of PLS-DA offers a good way to reduce the cost and time of diagnosis of 

different illness associated to proteins. 
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Table 6. Protein parameters evaluated and results obtained by PLS -DA discrimination 

of serum samples based on their ATR -FTIR spectra 

 

Analyte 

(level) 

Latent  

Variables 
SET 

Healthy 

Level 

Pathological 

Level 

%False 

Negatives 

% Analysis 

Saved 

Albumin 

(Low) 
2 

Calibration 32 31 0% 69% 

Validation  222 31 0% 67% 

Globulin 

(High) 
2 

Calibration 15 19 0% 73% 

Validation  256 19 0% 70% 

Globulin 

(Low) 
2 

Calibration 13 14 0% 85% 

Validation  278 12 0% 75% 

Gamma 

(High) 
1 

Calibration 11 8 13% 100% 

Validation  298 4 0% 85% 

Gamma 

(Low) 
3 

Calibration 14 12 0% 71% 

Validation  184 11 9% 59% 

Note: Errors indicated for the calibration set correspond to cross-validation ones. 

 

 

Figure 7. Probabilities to not be included in the concentration group obtained in the classification of 

serum samples as a function of the globulin concentration. Probabilities obtained by cross validation (a) 

and by prediction (b) are represented as a function of their globulin concentration. Blue triangles and 

red crosses represent samples above or below the low normal value (2.5 g/dL), respectively. 
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CHALLENGES ON THE CHEMOMETRIC TREATMENT 

OF SERUM SPECTRA 
 

This chapter evaluates the current chemometrical methods in due use for extracting 

information from the IR spectra about the level of clinical parameters in sera. First it has been 

performed a revision of the current regression methods and then we have evaluated the use of 

discriminant chemometric models, LDA and PLS-DA, to evaluate ATR-FTIR spectra of sera 

in order to detect samples with normal values of different biochemical parameters. Results 

reported on literature evidences that ATR-FTIR is ready to compete with the reference 

methods. However, the most difficult task for convincing the clinical community is to 

perform clinical studies comparable to those performed for validating the reference methods, 

because the parameters used for evaluate those methods are normally based on univariate 

determinations. Thereby, the most challenging issue is to make compatible figures of merit 

from univariate and multivariate methodologies. For this purpose, it is anticipated than 

chemometric methodologies; such as net analytical signal [44] or science based calibration 

[45] could be a good starting point in multivariate method evaluation. The implementation of 

this methodology for the screening and diagnosis situations where an important amount of 

samples from healthy patients should be analyzed, as in the case of primary-care hospitals, 

could avoid a large amount of expensive analysis. The developed technique could also be 

employed to provide point-of-care tools in pharmacies, doctor‘s practice and in special 

situations, like in the third world and poor environments, in order to obtain direct, quick and 

cheap information about the patients.  
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ABSTRACT  
 

An outlier is an observation that appears to deviate markedly from other observations 

in the sample as to arouse suspicions that it was generated by a different mechanism. 

Outlier detection is known as one of the most important tasks in data analysis. The 

outliers describe the abnormal data behavior, i.e., data which are deviating from the 

natural data variability. Some other terminologies e.g., abnormalities, discordants, 

deviants, or anomalies are also commonly used in the data mining and statistics literature. 

Outliers are categorized in two sectors: some of them are unusual data and should be 

omitted by one of the outlier detection methods; however there are points which do not 

belong to bad data category clearly. These data points are due to random variation in 

measurements or may be scientifically interesting due to something informative inside 

them. Thus considering a suitable procedure to make decision about them is necessary. 

Anyway, it is not suggested to eliminate the data point without sufficient consideration 

and in any case, utilizing outlier detection methodologies would be helpful. This chapter 

would discuss the most popular methods of outlier detection in chemometrics and 

analytical chemistry with consideration of their trend and applications. 

 

 

INTRODUCTION 
 

In most chemical research activities, the data set is created via evaluation of one or more 

generating approaches or sample sets, which could either reflect the aim parameter in the 

system or observations collected about entities. When the target media which is considered as 
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the generating approach would demonstrate an unusual behavior, outliers are created. In spite 

of troubles with the outliers in a data set, it should be noticed that they often contain useful 

information about abnormal characteristics of the data set and entities, which impact the data 

generation approach. Outlier detection techniques are widely applied in data processing 

procedures. There are several applications for these techniques in chemical science. 

Development of novel biodiagnostic methods in medical science is an interesting trend for 

chemical science researchers. Spectral data collected from a variety of devices such as MRI 

and MRS may consist of some unusual patterns. Analytical and bio sensors are often used to 

track various environmental and chemical parameters in many real applications. Unexpected 

variations in the analysis condition and sudden changes in the underlying patterns may 

represent outlier outputs. Another field of interest for investigation of outliers is the 

environmental earth science, in which satellites and remote sensing tools are employed to 

collect the spatiotemporal data about weather patterns, climate changes, or land cover 

patterns. Outliers in these types of data sets provide significant insights about hidden 

environmental trends, which may have caused them [1-3].  

Dealing with the spectrochemical data sets, differentiation between noises and outliers is 

of high importance. As shown in figure 1, data point A is supposed as an outlier in the left 

side plot. On the other hand, presence of random data points in the right side plot, disables the 

abalysts to directly decide about the situation of data point A. The initial proposal is to 

consider both A and B data points as noise. However, more precise evaluations are necessary 

to make a better decision. 

 

 

Figure 1. Difference between outlier and noise. 

In the next sections, the general classification of outlier detection techniques will be 

indicated, describing the most common ones. 

 

 

HOW DOES AN OUTLIER DETECTION APPROACH WORK 
 

In order the abnormal cases, most outlier detection methods would provide a quantitative 

output as score which determines the distance between the studied case and the overall 

dataset. This score would demonstrate the level abnormality for a data point. This score is a 
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useful parameter by which the rank of all data points in terms of their outlier tendency would 

be determined. In spite of the noticeable capability for this score it cannot provide a concise 

definition for data points which should be considered as outliers. Another output for the 

outlier detection methods is a binary label which would indicate whether a data point is an 

outlier or not. For the techniques which are able to provide the binary labels directly, the 

outlier score for a data point is converted into binary labels by imposing thresholds on outlier 

scores, based on their statistical distribution. It is a useful result which is often needed for 

decision making concerning practical applications of outlier detection. Usually, outlier 

detection algorithms tend to create a model based on normal patterns in the dataset, and then 

determine the outlier score of a given data point, according to the deviations from the normal 

patterns. Normal behavior of a data points depends on the model which may be Gaussian, 

regression or proximity-based case. Considering the type of data model, different assumptions 

are made about the ―normal‖ behavior of a given data point. The routine pocedure define the 

model is to employ an algorithmically strategy. For example, nearest neighbor-based 

algorithm, makes a model for the outlier tendency of given data points, based on distribution 

of their k-nearest neighbor distance. Thus, in this case, the assumption is that outliers are 

located at large distances from most of the data [1,4]. 

Most common outlier detection strategies are fundamentally classified in 3 categories:  

 

 

Class A: Unsupervised 
 

Unsupervised techniques determine the outliers with no prior knowledge of the dataset. 

The simple explanation of such technique is similar to clustering where the dataset is process 

as a static distribution, allocating the most remote points, which will be then flagged as 

potential outliers. These techniques assume that errors are separated from the ‗normal‘ data 

and will thus appear as outliers (similar to left part of Figure 1). It is noticeable that the main 

cluster of data points may be subdivided if necessary into more clusters to enable 

classification goals (similar to right part of Figure 1). It is necessary to prepare the whole data 

before processing and that the data is static. However, in case of large data sets with good 

coverage, constructed model can compare new data points with the existing ones. 

 

 

Class B: Supervised  
 

Supervised techniques require pre-labelled data points, in which normal or abnormal 

cases are determined. The same as supervised classification methods, the area of each class is 

defined by the borderline of its members. The entire area outside whole classes represents the 

outlier cases. Classifiers are best suited to static data as the classification needs to be rebuilt 

from first principles if the data distribution shifts unless the system uses an incremental 

classifier such as an evolutionary neural network. Supervised outlier detection is useful for 

on-line classification, where the classifier learns the classification model and then classifies 

new imported cases. Considering the abovementioned procedure, if a newly imported case 

lies in a region of normality it is classified as normal, otherwise it is flagged as an outlier. 

Classification algorithms require good area coverage of both normal and abnormal data 
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points. In the other words, the data set should cover the most possible distribution, enabling 

the classifier to globalize the model. 

 

 

Class C: Semi-Supervised  
 

By these techniques the normal class is taught but the algorithm learns to recognize 

abnormality. Also here it is necessary to define the initial classification but the model is 

trained only for normal data points. Semi-supervised techniques are suitable for static or 

dynamic data as they only get trained for a class which provides the model of normality. It is 

noticeable that these techniques would learn the model incrementally as new data points are 

added to the initial set, tuning the model to improve the fit as each new cases become 

available. The final aim is to define a boundary of normality. Most of the approached 

employed for outlier detection would map the whole data onto mono- or multi-type vectors 

which will comprise numeric and symbolic features, representing all types of data. The 

outliers are determined from the distance of vectors using some suitable measurement tools. 

Different approaches work better for different types of data. It is important to selecting an 

algorithm which can accurately model the data distribution and accurately highlight outlying 

points for a clustering, classification or recognition type technique. The desired algorithm 

should also be scaled to the studied data set. Also selecting a suitable non-trivial 

neighbourhood of interest for an outlier is an important task. Usually, some boundaries 

aredefined around normality during processing by the algorithm and autonomously induce a 

threshold. However, these approaches need the user to define the number of clusters.  

 

 

ROLE OF DATA MODEL 
 

As mentioned previously, the data model which may be Gaussian, regression or 

proximity-based would make different assumptions about the ―normal‖ behavior of the data 

inside it. However, incorrect choice of data model may lead to unreliable results. The whole 

dataset must fit the generative assumptions of the model and also sufficient number of data 

points should be available to train the model and its parameters appropriately. In case of 

multi-dimensional data, it is difficult to define data location correctly. Thus, reliable model 

construction is to be performed after precise evaluation of modeling characteristics of the 

desired domain. Type of the data set and its size, availability of relevant typical outliers and 

interpretability in a model are the most important factors, affecting the decision about 

choosing an outlier detection approach. The analyst must realize the reason for which a 

particular data point is called as an outlier in terms of its relative properties with respect to the 

remaining members of the data set.  

 

 

Statistical Models Based on Probability 
 

Probability related statistical models tend to model the data in the form of probability 

distribution to train the model parameters. Thus, the most effective task is to choose the data 
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distribution with which the modeling is performed [5]. Gaussian mixture models are 

generative and organize the dataset in the form of a process consisting of Gaussian clusters. 

Usually, expectation-maximization algorithm is utilized to train the parameters of 

distributions on the data set. The main result of this technique is membership probability of a 

given data point to different clusters, as well as the density-based fit to the modeled 

distribution. Thus outliers will be modeled due to their very low fit values.  

 

Advantages Disadvantage 

easily applied to any data type 

an appropriate generative model is available for 

each mixture component 

for a mixture of different types of attributes, a 

product of the attribute specific 

 

generative components may be used 

provides a generic framework, which is 

relatively easy to apply 

try to fit the data to a particular kind of 

distribution, which may often not be 

appropriate for the underlying data 

as the number of model parameters 

increases, over-fitting becomes more 

common 

some models are hard to interpret, 

especially when the parameters of the model 

cannot be intuitively presented to an analyst 

in terms of underlying attribute 

 

 

Extreme Value Analysis 
 

This is known as the most basic type of outlier detection, especially for 1-dimensional 

datastes. For a 1-D dataset, outliers are the data points which their values are either too large 

or too small along the data series. The main step in outlier detection is to determine the 

statistical tails of the underlying distribution. If there is a normal distribution along the data 

set, then analysis would be easy, because most statistical tests can be interpreted directly in 

terms of probabilities of significance.  

 

Advantages Disadvantage 

value analysis is directly helpful 

many variables are often tracked as statistical 

aggregates, in which extreme value analysis 

provides useful insights about outliers 

can also be extended to multivariate data 

applicable only where outliers are known to 

be present at the boundaries of the data 

have often not found much utility in the 

literature for generic outlier analysis 

unable to discover outlier in the sparse 

interior regions of a data set 

 

It is important to understand the difference between extreme value statistics and 

traditional definition of outliers which consider them as detected objects by their generative 

probabilities rather than the extremity in their values [6]. Confusions between extreme value 

analysis and outlier analysis are common for chemometricians, especially in the context of 

multivariate data analysis. Chemometric application of extreme value analysis is naturally 

designed for univariate data. Nonetheless, it is also possible to be globalized for multivariate 

data sets, by determining the points at the multidimensional borders of the data. In case of 

multi-dimensional data sets, during the outlier detection procedure, a vector of outlier scores 
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may be obtained of extreme values which enables the conversion of multiple outlier scores 

into a single value, and also generate a binary label output. 

 

 

Linear Models 
 

Linear models tend to reflect the data into lower dimensional subspaces by linear 

correlations. General steps are: 

 

 performing a least squares to determine the optimal lower dimensional subspace 

 determination of distances of the data points from drown plane in the data space 

 extreme values analysis on obtained deviations to determine the outliers. 

 

Dimension reduction would also be conducted by principal component analysis (PCA), 

which can be derived through multivariate regression analysis, by determining the plane 

which optimizes the least squares error of representation in terms of the normal distance to 

the plane. PCA provides the subspaces, such that by projecting the data into these subspaces, 

the aggregate least square errors of the residuals are minimized. The absolute sizes of these 

residuals can be analyzed in order to determine the outliers. Data points, which have large 

residuals, are more likely to be outliers, because their behavior does not conform to the 

natural subspace patterns in the data set. 

 

 

PCA Supported Approach 
 

PCA is an unsupervised dimension reduction method which can retain those 

characteristics of the data set that contribute most to its variance by few principal components 

which are in lower orders while contain the most important informative part of the data. 

Eigenvalue decomposition in the covariance matrix of the data is the main part of PCA. Only 

few components would remain in the data space (high eigenvalues) to represent the overall 

data. Output of PCA is sensitive to outliers and the direction of first few principal 

components will be influenced seriously if the dataset contain some outliers. Figure 2 

demonstrates how the existence of an outlier would influence the PC direction. Graph A is a 

data set free of outlier while graph B contains 1 outlier. 

Leave one out is an appropriate strategy for detection of probable outliers. In this 

procedure, the PCA will be modeled, omitting one of the data points. If an extremely small 

angle would be formed between the old first principal direction and the new one, then the left 

out data point is not an outlier. Else, it can be considered as outlier. The only concern for 

leave one out procedure is when the analyst deals with an extremely large sized data set 

because the computation in estimating the PC directions will be heavy due to necessity for 

considering all the probabilities. 

Duplicate sampling would be employed to overcome this problem. In order to identify an 

outlier via leave one out strategy, the target data point is duplicated instead of being removing 

it. If it is an outlier, the deviation of PC direction would become more severe and if it is a 
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normal data point the observed change would be slight. Figure 3 demonstrates this strategy 

schematically.  

 

 

Figrue 2. Role of outliers in PCA output. 

 

 

Figure 3. Role of duplicate sampling in PC direction for normal data point (A) and outlier (B). 

In order to avoid the heavy computation and calculations procedures, two strategies can 

be proposed to accelerate the estimation of PC directions. The first one is fast updating for the 

covariance matrix. The other one is to solve the eigenvalue equation via the power method. 

During the PCA computation, it is unnecessary re-compute the covariance matrix in the leave 
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one out procedure, completely. The difference of covariance matrix can be easily adjusted 

while only one data point is duplicated. Thus PCA could be a powerful and easy to perform 

approach by which the outlier data points are detected [7-9]. 

 

 

Cook’s Distance 
 

Cook's distance is useful for identification of outliers in the observations for predictor 

variables so it is employed to estimate the influence of a data point when we are performing 

least squares regression analysis [10]. It is named after the American statistician R. Dennis 

Cook, who introduced the concept in 1977. [11] In a regression model, high effective points 

cause high changes in the model equation, this high impact value is outlier and we can 

remove it based on its cook‘s distance. 

In this method, first a data point with high residual in the regression model is removed, 

then the rate of changes of regression line is surveyed by Cook‘s distance .[12] 

 

               COOK‘distance = 
  
 

    
[

   

        
] 

 

Hii i s the i
th

 diagonal element of the hat matrix which shows the residual (i.e., the 

difference between the observed value and the value fitted by the proposed model). MSE is 

the mean square error of the regression model; P is the number of fitted parameters in the 

model. In case of significant variations, evaluated data point is considered as an outlier 

(Figure 4) [12-14].  

 

 

Figure 4. Typical Case order plot of Cook‘s distance. 
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Welsch and Kuh improved cook‘s distance by scale selection [15]. Modifications for 

cook‘s distance technique were reported [16] by different approaches e.g., evaluation of local 

Influence [17] extended cook‘s distance[18] forward plot based on modified cook‘s distance 

[19], asymptotic distribution of Cook's distance in logistic regression [20] and development of 

scaled Cook‘s distances[21]. 

Cook‘s distance as a basic method has been employed to identify outliers in many 

research fields e.g., in biological data of child growth, biological data of animals agricultural 

datasets, survey dataset of Mental Health Organizations and logistic regression models. 

 

Advantages Disadvantage 

Powerful in detection of highly influential 

observations 

Unable to detect several outliers with same 

value 

 

 

K-Nearest Neighbors 
 

This method is a nonparametric one introduced by Fix and Hodges 1951, which does not 

need to estimate parameters such as in the regression [22]. In this method there is a criterion 

(k) to compare objects distance with each other in the data space. In this way a cell is created 

with x center and let the radius of the cell partly extent which includes K
th

 data. These 

samples are the nearest neighbors of x. If the density of the training points around x is high, 

cells would become small and therefore a better result is obtained and if the density of points 

around x is low, cell will be large. Actually the density distribution for each point of x is 

calculated by its equations [23]. 

The method states that those objects with the largest distance to their k
th
 nearest 

neighbors are likely to be outliers respective to the data set, because it can be assumed that 

those objects have many scattered neighborhoods in compare with the average of all of 

objects. As this effectively provides a simple ranking over all the objects in the data set 

according to the distance to their k
th
 nearest neighbors, the user can specify a number of n 

objects to be the top-n outliers in the data set. 

Employing k-nearest neighbor algorithm for outlier detection needs to estimate optimal 

distance based on measuring of distance. Some of the most common approaches for this aim 

are Euclidean distance and Mahalanobis distance [22,23]. Euclidean distance is usually used 

to determine the distance when there is j objects in data space ;in Cartesian coordinates, 

if p = (p1, p2,..., pn) and q = (q1, q2,..., qn) are two points in Euclidean n-space, then the 

distance from p to q, or from q to p is given by [24]: 

 

Euclidean distance =√    −                   −    
 
    

                      √  −             −    

 

where x is data vector, m is vector of mean values of independent variables, C
-1

 is inverse 

covariance matrix of independent variables and T is indicate vector should be transposed. 

How many neighbors is the best amount? This is a challenge of this approach. [25]. We 

can utilize k and realize that unknown object belongs to which class. Actually in this method 
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the data have normal distribution and we can classify them. This method involves two 

important factors:  

 

- Selection of the function and their weights  

- Choosing the best number of neighbors 

 

In order to investigate the quality of assessment, root mean squared error, correlation 

coefficient, mean size and the error estimates are determined. One of the challenges of this 

algorithm is its running time. In order to overcome this defect, we can reduce data space by 

sampling of initial data. [23]. Another possibility is to is to split the data set into clusters, then 

detecting the outliers in each cluster. 

Over the years, several reported papers have been published, dealing with developments 

for this method e.g., proposing mutual k nearest neighbor graph for outlier detection, 

introducing an optimized k-nearest neighbor algorithm to identify outliers, using new 

algorithm basis of k-nearest neighbor for rapid outlier detection and presenting approximated 

k-nearest neighbors search algorithm [26-28]. 

Recently various techniques of k-nearest neighbors have been demonstrated as useful 

approaches for detection of outliers in different domains. Some of the most important 

examples are: 

 

 direct application in mammographic images [29] 

 in combination with model graph for statistical data analysis of players performance 

[30] 

 optimized algorithm in network connections [31] 

 reverse algorithm for credit card fraud detection [32] 

 novel algorithm b in real-life NBA database [24] 

 

Advantages Disadvantages 

Its simplicity 

Yields competitive results 

when cleverly combined with prior knowledge, 

it has significantly advanced the state-of-the-art 

Ability of it to scale to large datasets 

Analytically tractable 

simple implementation 

Uses local information, which can yield highly 

adaptive behavior 

better performance is observed on most of 

the large data sets. 

Computationally intensive recall 

Highly susceptible to the curse of 

dimensionality 

The number of model parameters grow 

exponentially with number of locations 

spatial dependency also needs to be 

captured 

 

 

Leverage Value 
 

In statistics, leverage is a manner used in connection with regression analysis introduced 

in 1978 by D.C. Hoaglin and R. Welsch [32]. In particular, it is used in analytical 

chemometric data processing to identify those observations that are far away from 
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corresponding average predictor values. Leverage points do not necessarily have a large 

effect on the outcome of fitting regression models [33]. 

Leverage points are those observations, if any, made outlying values of the independent 

variables such that the lack of neighboring observations means that the fitted regression 

model will pass close to that particular observation [33, 34]. Standardized coefficients or refer 

to how many standard deviations a dependent variable will change, per standard deviation 

increase in the predictor variable. Standardization of the coefficient is usually done to answer 

the question which of the independent variables has a greater effect on the dependent variable 

in a multiple regression analysis, when the variables are measured in different units of 

measurement [35]. If the leverage of points is high, our estimate of the 𝞫 coefficient will be 

wrong. Leverage is a tool to survey extreme variables. 

Actually this method is useful for outlier detection by survey of points with large 

residuals or high leverages [34]. Each sample‘s leverage is considered to detect outliers in the 

space of x matrix. Leverage of a sample is defined as its distance from the main samples 

distance in the x matrix space (Figure 5).  

 

 

Figure 5. Typical plot of leverage based outlier detection (Threshold is 0.7 here). 

This value shows that if a unique sample is an outlier, how is it effective on the estimate 

of parameters? 

For given information in the x matrix with M × N dimension, the leverage at the I
th

 

sample is given by the diagonal elements (pii) of the leverage matrix (P), calculated according 

to following equation [34, 36]: 

 

P=X〖〖(XX〗^T)〗^(-1) X^T 
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Samples with h greater than hlimit from the set of processed points are eliminated and 

model will be repeated again. For a spectroscopic data set: 

 

M = number of samples 

N = number of wavelength 

 

In the next step, by forming a matrix, its diagonal elements are compared with the hlimit 

and if they were given greater distractions, they would be eliminated. The diagonal elements 

of P matrix are considered to realize whether the leverage is high or not and this points 

(points with high leverage) are very effective on the estimate of parameters .Thereby much 

attention must be paid to them [36, 37]. 

Since application of k-clustring over modified hat matrix to identify influential sets [38], 

there are several developments in this technique e.g., proposing elemental sets [39], using the 

off diagonal elements of hat matrix and the modified hat matrix [40], and recently presented 

discriminative hat matrix for detection of outliers [41].  

Simplicity and efficiency of this method has resulted in various domains to attend it. 

Leverage based procedures have shown very good results for detecting outliers for example in 

ecosystem dataset [43, 44], spectroscopy [45, 46] , statistic dataset [47] or fuel data 

set[48,49]. 

 

Advantages Disadvantages 

Understanding leverage is essential in 

regression because leverage exposes the 

potential role of individual data points 

combines distance and leverage to identify 

unusually influential observations 

High leverage observations might don‘t be 

influential observation. 

Influential observations might don‘t not be 

outliers. 

 

 

Mahalanobis Distance 
 

The Mahalanobis distance is a descriptive statistic topic that provides a relative measure 

of a data point's distance (residual) from a desired point. It is a unit less measure introduced 

by P. C. Mahalanobis in 1936]50]. Mahalanobis distance is defined versus Euclidean 

distance.  

In this distance it is assumed that there is a normal distribution curve for data in it (it 

means these data are predictable). In mathematics, the Euclidean distance between two points 

is a typical distance which is obtained from Pythagorean theorem. The distance between two 

points (p and q) is the linear segment that connects them to each other. In Cartesian 

coordinates,if p=(          ) and q=           ) are two points in a dimensional 

Euclidean space, then the distance between them is defined as: [51,52] 

 

D (p, q) = √                             √          
    

 

This distance is calculated so quickly and easily, but includes some problems: 
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 In terms of geometric aspects, all variables are measured in the same units while the 

real variables may be in different scales and natures, such as temperature, pressure, 

etc. which are not comparable. 

 Euclidean distance does not take into account the correlated variables. As an 

example, assume a dataset that contains five variables which one of them is exactly 

replicates of another variable, then these two variables must have correlation, but 

Euclidean distance does not give us any information about this correlation. 

Consequence of this matter is that Euclidean distance only determines the distance 

between two points the same as measured distances by a ruler. The identity matrix 

can be entered in the Euclidean distance which does not affect the calculation of the 

distance. Mahalanobis distance is the same as Euclidean distance with this difference 

that inverse of covariance matrix is used instead of identity matrix in its equation. 

This matrix poses the weight matrix‘s properties, i.e., all entries are positive 

[50,52,53].  

 

Mahalanobis distance‘s features (This items enter into the calculation) are: [54] 

 

 the variance is different in each direction 

 covariance between variables is computed. 

 

A function to evaluate that the data is outlier or not is defined now. The realted equation 

defines the maximum and minimum values which are inside the normal data. Thus the 

equation relies that largest amount is 

 

 
   

 
  

n: number of observations 

p: number of dimensions 

 

and if the function output for a data point is out of this value, it will be an outlier. In order to 

perform an easier comparison, the function result is scaled and weighted locally between 0 

and 1 [53].  

Distance is calcualted by: 

 

     −         −    

 

where 

                           

 

D is matrix with m*n dimensions (m is number of samples and n is number of classes) 

x is the data vector 

m is the vector of mean values of independent variables 

                                                              

T is the indicate vector that should be transposed 
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In recent years, the Mahalanobis distances based approaches have been utilized along 

with robust estimators in order to provide appropriate measuring of the mean and covariance 

matrix for outlier detection. Some of the most interesting examples are minimum covariance 

determinant (MCD) estimator [54,55], minimum volume ellipsoid (MVE) [56], fast MCD 

[57,58], hybrid method [59], modified Stahel-Donoho estimators [60], resampling by half-

means (RHM) and smallest half volume (SHV) [62] which have been in improvement of this 

technique. However there had been a growing attentions towards this technique and recently 

locally centered squared Mahalanobis distance was introduced for outlier detection in 

complex multivariate data sets [53]. 

Several reports have illustrated the practical application of Mahalanobis distance based 

appraoches for outlier detection. It has been successfully applied for the linear and logistic 

regression [65]. Mahalanobis distance using modified Stahel-Donoho estimators has been 

used in domain industrial information [61], locally centered squared Mahalanobis distance 

has been examined in treatment of biological data [53]. The technique in combination with 

MCD has been employed in medical imaging [57], and in combination with fast MCD in 

satellite observations [60]. RHM and SHV have been coupled with it for dataset of blast 

furnace. [66] 

 

Advantages Disadvantages 

considers the correlations between the variables 

that is very important in pattern recognition 

 

The region of constant Mahalanobis distance 

around the mean forms an ellipse, ellipsoid or 

hyper ellipsoid for multidimensional datasets 

 

It is useful for time domain data and 

observations  

Possible to use robust and independent choices 

for the centroid and covariance matrix values 

provides an alternative to regression techniques 

when there is no obvious value to be predicted 

if the number of observation of each class be 

less than dimension number, a singular 

covariance matrix will be obtained  

equal adding up of the variance normalized 

squared distances of the feature which makes 

troubles for noisy data sets 

 

Difficult to detect individual outliers 

 

If the clusters are not well defined , its 

measure would not be well defined  

 

 

Regression 
 

The concept of regression comes from genetics and was popularized by Sir Francis 

Galton during the late 19
th
 century with the publication of Regression towards mediocrity in 

hereditary stature [67-70].  

Usually the main part of our information about two or several participating variables is 

achievable in terms of the relationship between them. Depending on the variables nature, 

checking can be performed by regression analysis or their correlation with each other should 

perform to assess the association between two or more variables. It is very important to know 

whether the distribution of dependent variables is normal or not and also if variance for 

different values of the independent variables is constant [71]. 
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Several important parts of regression analysis are 

 

 investigation of the linearity assumption 

 normality 

 immutability of variance 

 independence of observations 

 

While a model is fitted to data, the residuals play a very important role. By examining the 

distribution of residuals and their relationship with other variables can be determined the 

exactness of regression assumptions [72].  

Generally, the difference between the observed value of dependent variables and the 

value which is predicted by the regression line is residual. If we survey in 2 variables state, 

first all the data points are drawn, then the line is crossed while pass from all points (by 

scatter plot) [70]. In the multivariate regression, the equation which predicts the response 

variable as a linear function of p variable is estimated by data. Regarding the statistical 

aspect, we can write multiple regression equation as follows [71]: 

 

                        

 

Y: dependent variable 

X: independent variable 

e: error term (a vector of random variables) 

 

The estimate of β vector is selected such that the sum of squares becomes minimum. 

Probable existence of outlier would cause some trouble due to its influence on slope and 

intercept of the regression line.  

Outliers pull the regression line towards themselves [70,71]. During the regression line 

fitting, the data points which are far from the estimated line and demonstrate high residual 

value are known as outlier data. There are also some data points for which the value of 

independent variable in far from mean value after regression. These data points are known as 

leverage. Actually high leverage up warnings that their related data points can impact on the 

regression line (Figure 6) [70]. 

Nowadays there are several methods to deal with outlying data in regression models. The 

most commonly used are least absolute values (LAV) regression [72], ordinary least squares 

(OLS) regression, least median of squares (LMS) regression, the least trimmed squares (LTS) 

regression [73]. 

Regression models have been widely applied in different fields but about the removal 

outliers in regression models can be point to use least median square regression in calibration 

data of electrochemistry for outlier detection[74], statistic information[75], LMS regression 

and forward search have been applied in physical chemistry data [76], difference algorithms 

have been compared in air pollution dataset [77] ans several multiple outlier detection 

procedures have been used in children‘s performance management [71]. 

 

 

 

Complimentary Contributor Copy



Amir Bagheri Garmarudi, Keyvan Ghasemi, Faezeh Mozaffari et al. 268 

Advantages Disadvantages 

Capable of detecting multiple outliers 

suitable for the cases in which most of the data 

is distributed along linear correlation planes 

can also be used in a limited way over discrete 

attribute values, when the number of possible 

values of an attribute is not too large 

 

In case of almost linear relationship between 

independent and dependent variables, shows 

optimal results 

difficult to formulate an exact procedure for 

the multiple outlier case 

in multivariate regression 

may work poorly, if the underlying data is 

clustered arbitrarily 

only helpful when the relationship between 

variables is linear 

severely depends on the assumption about the 

error distribution 

Partitioning the independent and dependent 

variables is mandatory 

 

 

Figure 6. Regression strategy for outlier detection. 

 

M-Estimators 
 

M-estimators use maximum likelihood formulations by deriving optimal weighting for 

the data set in non-normal conditions. It was introduced by Huber [78, 79] as a generalization 

of the familiar least squares criterion [80]. The maximum likelihood estimator is robust and 

can calculate the distribution center and for data that are far from center takes less weight .In 

statistics maximum likelihood estimators are a large range of estimators that obtain as the 

minimum sum of functions of the data. In fact it is verfied maximum likelihood estimators 

that use a weight function to down weight, extreme values [79, 81]. 

The least square estimator, is the estimator of the type of maximum likelihood estimators 

[81], and M estimator is the same as the least square estimator which in the robust case define 

a new case to it [78,79] i.e., least-squares estimators are M-estimators. It is obtained as the 

minima of sums of functions of the data. We can use M-estimates to find a balance between 
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efficiency and the resistance of the unusual observations [78,79] which is an important class 

of robust estimates [82].  

When the model is Gaussian one, the mean is not very efficient, and in order to make a 

comparison between robustness and efficiency we can use M- estimator. M- estimator is more 

mathematically complex, but that‘s what computers are good to the center of the distribution 

and give less weight to values that are further away from center. Different M-Estimators give 

different weights for deviating values e.g., MM estimation which is a sub-method of 

estimation MM estimation is a special type of M-estimation which performs the best overall 

against a comprehensive set of outlier conditions [83,84]while high breakdown estimation 

and efficient estimation are combined. It is known as the first estimate with a high breakdown 

point and high efficiency under normal error [85]. Maximum likelihood estimation to the 

minimization of           
 
    where ρ is a function with certain properties (see below). The 

solution is [86]: 

 

 ̂=                
 
     

 

The function ρ, can be chosen in such a way to provide the estimator desirable properties 

when the data are aright from the assumed distribution, and 'not bad' behavior when the data 

are generated from a model that is, in some understand, close to the assumed  

distribution. [87,88]. Hampel in 1986 introduced   function with three part M-estimators [89] 

which was later modified by bi-weight estimators that biweight is one member of the family 

of m-estimators used to estimate locations. [90]. Later new ρ-function was proposed with its 

corresponding   and w-functions, thus giving development to a new weighted least square 

method [91]. Modified robust M-estimate has been also applied to find the outliers in 

leverage points [91]. Redescending M-estimators are Ψ-type M-estimators which have   

functions that are non-decreasing near the origin, but decreasing toward 0 far from the origin. 

Due to properties of the   function, these kinds of estimators are very efficient, have a high 

breakdown point and, unlike other outlier rejection techniques, they do not suffer from a 

masking effect. They are efficient because they completely reject gross outliers, and do not 

completely ignore moderately large outliers (like median). Recently a new descending M-

estimator, called Alamgir redescending M- estimator has been introduced that is based on a 

modified tangent hyperbolic (tanh) type weight function [92,93].  

Several reports of successful applications of this method to remove outliers can be found 

in the literature. Re-descending M-estimator has been used in statistics data for price growth 

studies [80], a in medical data dealing with cardiovascular diseases [91]. The other examples 

are modified M-estimator used in biological data [89], or a new robust algorithm used in real 

image data [95]. Also M-estimator has been compared with other methods in satellite images 

processing for outlier detection [96]. 

 

Advantages Disadvantages 

robust techniques to estimate location and scale 

in the presence of outliers 

Combining robustness with efficiency under 

the regression model with normal errors 

robust against any type of outliers 

not very resistant to leverage points 

does not have rigorous statistical basis 

unable to identify multiple leverage points 
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