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ABSTRACT 

Most multivariate calibration methods require selection of tuning parameters, such as partial 

least squares (PLS) or the Tikhonov regularization variant ridge regression (RR). Tuning 

parameter values determine the direction and magnitude of respective model vectors thereby 

setting the resultant predication abilities of the model vectors. Simultaneously, tuning parameter 

values establish the corresponding bias/variance and the underlying selectivity/sensitivity 

tradeoffs. Selection of the final tuning parameter is often accomplished through some form of 
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cross-validation and the resultant root mean square error of cross-validation (RMSECV) values 

are evaluated. However, selection of a “good” tuning parameter with this one model evaluation 

merit is almost impossible. Including additional model merits assists tuning parameter selection 

to provide better balanced models as well as allowing for a reasonable comparison between 

calibration methods. Using multiple merits requires decisions to be made on how to combine and 

weight the merits into an information criterion. An abundance of options are possible. Presented 

in this paper is the sum of ranking differences (SRD) to ensemble a collection of model 

evaluation merits varying across tuning parameters. It is shown that the SRD consensus ranking 

of model tuning parameters allows automatic selection of the final model, or a collection of 

models if so desired. Essentially, the user’s preference for the degree of balance between bias 

and variance ultimately decides the merits used in SRD and hence, the tuning parameter values 

ranked lowest by SRD for automatic selection. The SRD process is also shown to allow 

simultaneous comparison of different calibration methods for a particular data set in conjunction 

with tuning parameter selection. Because SRD evaluates consistency across multiple merits, 

decisions on how to combine and weight merits are avoided. To demonstrate the utility of SRD, 

a near infrared spectral data set and a quantitative structure activity relationship (QSAR) data set 

are evaluated using PLS and RR. 
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Multivariate calibration for quantitative purposes is becoming ever more important in 

diverse fields such as on-line process monitoring for product yield and quality, medical 

diagnostics, the pharmaceutical industry, and agriculture and environmental monitoring just to 

name a few. Many of the multivariate calibration processes, such as partial least squares (PLS) or 

the Tikhonov regularization (TR) variant known as ridge regression (RR) require selection of 

appropriate respective tuning parameter (meta-parameter) values [1-3]. Specifically, a model 

vector must be selected from a set of tuned models developed by a particular calibration method. 

The number of model vectors generated depends on the number of tuning parameter values for 

the respective method. For PLS, the number of potential models is the number of latent variables 

(LVs) determined by the data pseudo-rank. The number of ridge parameters (number of RR 

models), is essentially unlimited since the ridge parameter is continuously varied. 

Using one of several cross-validation (CV) processes [4-8], the final model vector (tuning 

parameter) is typically chosen to predict with “acceptable” accuracy (low bias) based on the one 

model merit root mean square error of CV (RMSECV) [1,2]. However, when RMSECV values 

are plotted against the tuning parameter value, the plot can resemble a RMSE of calibration 

(RMSEC) plot and thus, choosing a tuning parameter value on this one model merit is then not 

obvious [9]. One of the data sets evaluated in this paper has such a difficulty. Other single model 

merits have been developed and compared for model selection [10-19].  

A primary consideration in choosing a suitable tuning parameter value is obtaining a 

model not under- or over-fitted (good predictability in conjunction with proper model complexity 

also known as the bias/variance tradeoff). In this case, bias is the degree of prediction accuracy 

obtained from a model and variance is related to the extent of uncertainty in the prediction [20-

23]. Methods such as RR and PLS are biased methods and hence a tradeoff in the degree of 
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under- and over-fitting is mandatory to form a model with an “acceptable” bias/variance balance 

[3,21-23]. Models with acceptable bias/variance tradeoffs were recently shown to also balance 

the intrinsic model selectivity and sensitivity [23]. Selectivity is a measure of the level of unique 

analyte information in measurements, e.g., spectra, and is often identified with the net analyte 

signal (NAS) [13]. Sensitivity refers to the degree of change in signal relative to a change in the 

quantity of analyte, e.g., in analytical chemistry, a system is sensitive if a small change in analyte 

concentration generates a large change in signal [13,17].  It follows then that at least two model 

merits, each trending in opposite directions, should be simultaneously evaluated in order to 

characterize the balance between under- and over-fitting [20,21,24-28].  

Different tactics have been used to combine two model merits. One is a graphical 

approach forming L-curves by plotting RMSEC (or RMSECV) against a model complexity or 

variance measure with the better models residing in the corner region of the resultant L shaped 

curve [3,20,21.24-26,29]. The RMSEC (or RMSECV) values have been scaled and combined 

with scaled model complexity values or variance measures to convert L-curves to U-curves 

allowing automatic model selection [20,28]. Different combinations of RMSEC with RMSECV 

values have been plotted against model complexity or variance measures to form other U-curves 

[23]. Variations are possible by combining respective R
2
 values slopes, or intercepts from 

plotting model predicted values against reference values. While these most recent approaches 

have expanded beyond two the number of model merits simultaneously evaluated, there are 

many more model merits that can participate in the tuning parameter selection process [13-19]. 

The difficult part in using a collection of model merits is how to actually combine them. 

Multicriteria desirability functions are possible but these require tuning in themselves [30]. 

Several model merits have been used in a consensus approach, but again, empirical data set 
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dependent merit threshold values were needed [31]. Essentially, the user’s preference for the 

degree of balance between bias and variance ultimately decides the merits used (and potential 

weights) in any multicriteria process and hence, the tuning parameter values deemed best. 

This paper shows that the sum of ranking differences (SRD) [32-36] is a simple objective 

process to ensemble multiple model merits for ranking models (tuning parameters) allowing 

automatic selection of a consensus model or set of models. When CV is used to generate model 

merits, then SRD allows the models merits computed on each data split to be evaluated, not just 

the mean values as in the standard CV process to select a tuning parameter. Because SRD 

evaluates consistency across multiple merits, decisions on how to combine and weight merits are 

avoided. If desired for a specific data set, the flexibly of the SRD process allows concurrent 

comparisons of modeling methods in combination with tuning parameter selection. Only a few of 

the possible model merit combinations with SRD are studied in this paper and only model 

vectors estimated by PLS and RR are compared. As noted above for any tuning parameter 

selection processes, it is further verified in this paper that the user’s preference and choice of 

model merit(s) used can affect the tuning parameter value selected. 

The current versions of SRD are in Excel [37] and have data size limitations due to 

constraints imposed by Excel and other restrictions on the input SRD matrix exist. Developed for 

this paper is MATLAB code removing these restrictions [38]. The new algorithm attributes are 

described in the section overviewing SRD. Before overviewing SRD, the calibration methods 

and model merits used are briefly described.  

 

2. Calibration processes 

The multivariate calibration model for this paper is expressed by  
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eXby   (1) 

where y specifies the m × 1 vector of quantitative values of the property to be predicted for m 

calibration samples, X symbolizes the m × p calibration matrix of p predictor variables, and b 

represents the p × 1 vector of calibration model coefficients to be estimated. The m × 1 vector e 

denotes normally distributed errors with mean zero and covariance matrix 
2
I. The relationship 

in Equation (1) is common to many disciplines. However, the prediction property and predictor 

variables are quite varied across respective disciplines. A frequent situation in spectroscopic 

analysis is where y contains analyte concentrations and the measured p variables are 

wavelengths. Usually m << p with spectroscopic data and hence, methods such as PLS or RR are 

needed. If m ≥ p, then multiple linear regression (MLR) can also be used. There are many other 

methods of modeling processes, but only PLS and RR are evaluated here.  

Extensive explanations of PLS and RR are available [1-3] and only key minimization 

expressions are shown emphasizing respective tuning parameters. Tuning parameter values 

establish the bias/variance tradeoff and the corresponding model selectivity/sensitivity balance 

[23]. For least squares, there is no tradeoff (unless variable selection is involved) and the 

minimization is expressed as determining a b ( b̂ ) such that  2
min y Xb  is satisfied where 

the double brackets   indicate the L2 norm (vector 2-norm or Euclidian norm) that defines the 

model vector magnitude. The methods of PLS and RR minimize related expressions. 

  

2.1. PLS 

The PLS approach to regression can be expressed as the minimization of  2
y Xb  

subject to the constraint  , T T

dKb X X X y  where 
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    1

, span , , ,
d

T T T T T T T

dK


X X X y X y X XX y X X X y  is the span of the Krylov subspace 

based on d PLS basis vectors (latent variables (LVs)) and the superscript T indicates the matrix 

algebra transpose operation. In the process of forming the model vector, it has been shown that 

the magnitude of the estimated model vector, expressed as b̂ , increases as more PLS LVs are 

used, i.e., the model complexity or effective rank increases [39-41]. Another measure recently 

studied to characterize model complexity is the jaggedness of the model vector [28] defined by  

 
2

1

2

ˆ ˆJ =
p

i ij ij

j

b b 



  (2) 

Jaggedness is also computed for the ith model in this paper. The number of PLS LVs is the 

tuning parameter that regulates the model vector direction and size and the underlying tradeoffs.  

 

2.2. RR 

The minimization expression for the TR variant RR [24, 42-44] is

 2 22min  y Xb b  where η symbolizes the regularization tuning parameter controlling the 

penalty given to the second term and is in the range 0 η  . The value of η regulates the 

model vector direction and size of the corresponding estimated model vector. The greater the 

value, the smaller b̂  is. Other modifications of TR have been recently reviewed [44]. 

 

3. Model prediction and model evaluation (selection) merits 

With an estimate of b ( b̂ ), the amount of the calibrated property present in a new 

measured p × 1 sample vector x is predicted by ˆˆ  Ty x b . Thus, the degree of accuracy of the 
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predicted value depends on the magnitude and direction of the estimated model vector which are 

determined by the tuning parameter. Because actual reference values of new samples are not 

known, model merits relative to the calibration samples are evaluated as proxies to assist in 

selecting respective model tuning parameters to hopefully ensure acceptable predictions of new 

samples. 

 The L-curve for selecting tuning parameters [3,20,21,24-27,29] can be formed by plotting 

mean RMSEC or RMSECV against a model variance or complexity measure. Models in the 

corner region of the L-curve represent acceptable compromises for the bias/variance tradeoff, 

i.e., least risk of over- and under-fitting. These models have been found to correspond to the 

underlying model selectivity/sensitivity balance. Studied in this paper is using SRD to rank 

models based on model tradeoffs characterized by the CV split-wise values of RMSEC, 

RMSECV, b̂ , and J and others. 

As noted in section 1, approaches have been developed to remove the potential ambiguity 

in determining the corner region of an L-curve by forming U-curves with the best tuning 

parameter value at the minimum allowing automatic tuning parameter selection [20, 23,28]. Two 

specific merits to be evaluated with SRD in this study are 

  

minmin

max min
max min

ˆ ˆ
RMSEC RMSEC

C1 =
ˆ ˆ RMSEC RMSEC

       
    
 

i
i

i

b b

b b
 (3) 

and 

RMSEC RMSECV
C2

RMSEC

RMSECV

i i
i

i

i


  (4) 
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where values in C1 for the ith model are range scaled from zero to one. The RMSECV values 

can be substituted for RMSEC in C1 as can J be substituted for b̂ . Unless noted otherwise, C1 

expressed by Equation (3) is used with SRD. The goal with C2 is to minimize the numerator and 

maximize the denominator to favor the CV merit. In this way, the calibration and validation 

samples are predicted similarly with a bias towards predicting validation samples with a smaller 

error. Respective R
2
 values obtained by plotting predicted calibration values ( ˆcaly ) or the CV 

predicted sample values values such as      2 21 R 1 R RMSEC RMSECVcal cv
   
   are 

possible. Unless noted otherwise, C2 is used with SRD as written in Equation (4).  

Various other merits have been proposed and evaluated to select model tuning parameters 

when the merit values are used univariately. For example, Mallow’s Cp criterion [45], 

generalized CV (GCV) [46], AIC [47], BIC [48], trace (X
T
X)

+
 [21], and others [12,18,19]. These 

merits were not used in this paper, but their usages with SRD are also feasible. Instead, SRD 

rankings are reported using the CV split-wise combinations of RMSEC, RMSECV, respective 

R
2
, slopes, and intercepts, b̂ , J, C1, and C2. For comparison, SRD rankings are presented from 

just using the RMSECV model merit. The mean L- and U-curves are also plotted for comparison 

to SRD rankings. 

 

4. SRD 

The SRD algorithm is a simple, powerful, general process to determine similarities 

between variables by ranking the variables (columns of the SRD input matrix) across objects 

(rows of the SRD input matrix) relative to respective object reference (target) ranking values [32-

36]. The method is well described in the literature and hence, only briefly outlined here.  
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Target reference values are required for the each object and these can be the minimum, 

maximum, median, or mean of respective rows or known reference values can be used. For each 

row (object) of the input SRD matrix, the value closest to the corresponding row target is 

identified. A target vector is created with these values sorted (ranked) from low to high and the 

respective row indexes are noted. The SRD input matrix is rearranged to this target row index 

sort and all values in each respective column (variable) are ranked from low to high. The 

absolute value of the difference between the target row ranking and each column ranking of the 

reordered rows is computed and summed for each column to form the column-wise vector of the 

final SRD ranked columns. The closer an SRD value is to zero, the closer the ranking of that 

column (variable) to the row (object) targets, and the better the variable is for that particular SRD 

evaluation. The proximity of SRD rank values shows which variables are similar. Groupings of 

variables can also be observed. The SRD rankings can also be considered dissimilarity 

assessments with the greater the SRD rank value, the more dissimilar the variable is to the object 

targets. Recently, SRD has been related to the inversion number [49] and SRD has been 

advanced to handle observations with ties [36]. 

A process has been established to validate the SRD ranking results. The validation 

involves determining if the SRD rankings are no different than random rankings [33]. The 

process is named the comparison of ranks by random numbers (CRRN). For CRRN, distributions 

are generated for random numbers and are used to evaluate how far the SRD ranked values are 

from being ranked randomly.  Random numbers are used for a small number of objects (less than 

13, or 9 if ties are present) and the normal distribution is used as the approximate for a large 

number of objects (13 or greater). The CRRN process is not the validation focus in this paper and 

the reader is referred to reference [33] for the details of CRRN. 
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Instead of CRRN, and as originally developed and available in the Excel SRD version 

[37], a CV process of the input SRD matrix can also be used with the SRD algorithm to further 

validate results. With the Excel version a 7-fold CV is used on the SRD input matrix to estimate 

uncertainties in the SRD rankings of the variables. In this situation, one-seventh of the objects 

are left out and the SRD algorithm is run on the remaining six-sevenths of the objects to obtain 

the SRD rank values. The process is repeated seven times and the variation of the SRD rankings 

across the folds can be evaluated by assigning uncertainties to the individual SRD ranks and by 

using a boxplot to visualize. With the CV of the SRD input matrix, the Wilcoxon matched pair or 

sign tests [50] can be used to provide statistical significance between SRD rankings. While both 

validation process are evaluated in this paper, graphical results are primarily presented using CV 

on the SRD input matrix, i.e., boxplots are mostly shown. 

Typically, object measures (model merits for this paper) being used in the SRD input 

matrix are not measured on the same scale. For SRD to function correctly, SRD input values 

must be scaled to have similar magnitudes. Numerous scaling approaches are possible such as 

range scaling inclusively between 0 and 1, autoscaling (or standardization) to mean 0 and 

standard deviation 1, and others [36,51]. Normalizing each row (vector) of the SRD input matrix 

to unit length is used in this study. 

The SRD process has been useful in a large number of varied situations [34,35 and 

references therein]. For example, in one study, SRD was used to compare the rankings of two 

different methods for rapidly screening the comprehensive two-dimensional liquid 

chromatographic analysis of wine [52]. Different data sets were used for the comparison. In other 

recent studies, SRD was used to compare rankings of sensory models relative to panel scores 

[53,54], different curve resolution and classification methods were compared using a variety of 
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performance merits [55,56]. Lastly, among the diverse applications, SRD has been used to 

compare several modeling methods to compare and form quantitative structure activity 

relationship (QSAR) models [34,57]. 

Other recent works investigating processes to combine rankings of variables based on a 

set of measured objects have recently been published [58,59]. In these studies, the focus is 

ranking molecules in a data base to a user defined target reference structure. The rankings are 

based on multiple intermolecular structural similarity measures. Specifically, a matrix of 

similarity values is formed where the columns (variables) are the molecules and rows (objects) 

are the similarity measures. For each row similarity measure, the columns are numerically 

ranked from 1 to the number of columns relative to the magnitude of that particular similarity 

measure. A rank of 1 is for the column molecule most similar to the target reference structure. 

The ranks in each column are summed and the columns are sorted to the respective rank sums. 

The lower the rank sum, the more similar the column molecule is to the sought reference 

structure. Other combinations of the ranked matrix besides the sum were studied. The method is 

applicable to tuning parameter selection and other areas where a subset variables need to be 

selected from a collection of variables. This approach can be considered unsupervised while the 

SRD process is supervised (a target vector is used). The SRD approach could also be used with 

molecular matching studies.  

 

4.1. New SRD features with the MATLAB code 

At the time of this writing, there are Excel versions to perform SRD with CRRN, SRD 

with 7-fold CV, and SRD to handle ties. In all cases, the number of objects for the SRD input 

matrix has been tested to 1400 and the number of possible variables is 250. These Excel versions 
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with sample input and output files are available for downloading [37]. The Excel versions 

require the same target values for each object 

For this work, MATLAB code was developed to work in the same format as the Excel 

versions as well as additional formats, albeit there is no MATLAB version of the Excel SRD 

developed for ties [32]. With MATLAB, the only limitation to the size of the SRD input matrix 

is the memory available on the computer performing the SRD computations. The MATLAB 

code including a demo is available for downloading [38]. 

The MATLAB code allows for multiple blocks of model merits. For example, an SRD 

input matrix can be composed of a block of RMSECV rows with each row being the 

corresponding CV split of RMSECV values and another block of rows with the corresponding 

CV split-wise model R
2
 values. The target reference values for the RMSECV block would be 

row minima and target reference values of row maxima for the R
2
 block. Regardless, all values 

in model merit blocks need to be scaled to similar magnitudes (or rank transformed) prior to 

analysis by SRD. The MATLAB code is flexible to allow SRD computations based on single 

object rows (considered one block and the only block for the SRD input matrix) or blocks of 

separate objects with equal or unequal number of rows in each block. 

For validation of the SRD rankings, a similar CRRN process applied in the Excel 

versions is used in the MATLAB code. For CV of the SRD input matrix, the MATLAB code 

allows the option of using n-fold CV or leave multiple out CV (LMOCV) processes to obtain a 

boxplot as previously described [33] for the Excel SRD version. With n-fold CV, the user 

specifies a value for n and this value is used for each block of model merit CV values in the SRD 

input matrix. For LMOCV, the user specifies the percent to be randomly left out of each model 

merit block of CV values and how many times each block is to be split. As noted in section 4., if 
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the SRD input matrix is based on only single object rows, then the SRD input matrix is 

considered one block for the SRD CV purpose to obtain the boxplot. In this case, all SRD input 

values in each row need to transformed to one common target value such as minimization. 

 

4.2. SRD setup for tuning parameter selection and comparisons of modeling methods 

The SRD input matrix is objects by variables and it is best to have at least seven rows to 

avoid a random ranking of the variables. In order to build up the number of rows, a CV process 

is used in this study. For example, if the goal is to select the number of PLS LVs using n-fold CV 

to form RMSECV values, the SRD input matrix would then be n by number of PLS LVs. Each 

row of this SRD input matrix would contain the corresponding RMSECV fold values for that 

particular split at the respective LVs. The input reference target RMSECV values for the SRD 

algorithm would be the row minima. The SRD algorithm uses this input matrix to rank the PLS 

LVs (models) relative to meeting target minima and presents model rankings providing the user 

with an automatic process to select the most consistent model(s). The closer a LV SRD value is 

to zero, the closer the ranking is to reference minima values. The PLS models (LVs) with similar 

SRD values are models predicting similarly. As noted, SRD values can also be considered as a 

dissimilarity measure and the greater the value, the more dissimilar to the reference minima 

values. To validate SRD results, the CRNN and CV processes described in section 4. can be used 

(in this example situation, CV of the PLS RMSECV rows in the SRD input matrix). 

The rows of this example SRD PLS RMSECV input matrix can be augmented with a 

second block of the corresponding CV split-wise b̂  values. The target reference values for this 

block would be row minima. Additional model merits can be augmented as other blocks. A 

similar tuning parameter selection process can be used to rank and select a RR model or a pool of 
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models as well as ranking and selecting other tuning parameter dependent modeling methods. 

Regardless, the SRD process ranks the tuning parameters relative to the consistency of meeting 

the respective target values across the merits being assessed. Ultimately, the final tuning 

parameter rankings are affected by what type of model merits the user has selected to use for 

rows in the SRD input matrix. To simultaneously compare modeling methods in conjunction 

with tuning parameter selection for a particular data set, the SRD input matrix is column-wise 

augmented with the corresponding model tuning parameters.  

  

5. Experimental 

5.1. Algorithms 

MATLAB 8.1 (The Math Works, Natick, MA) algorithms for RR, PLS, CV, SRD, and 

all model merits were written by the authors. The SRD Excel versions are downloadable [37] as 

is the MATLAB version [38]. In all cases, the SRD input matrix was row-wise normalized to 

unit length. 

 

5.2. Cross-validation to form PLS and RR models 

In order to assess model tradeoffs within a modeling process as well as between modeling 

methods, the LMOCV format was used. For each data set, 100 splits were used and on each split, 

a random 60 % of the samples went to form the calibration set and the remaining 40 % were used 

for validation. On each split, values for model merits such as vector L2 norm, J , RMSECV, etc. 

were computed for each tuning parameter value. The maximum number of PLS LVs was 

determined by the respective data sets mathematical ranks (min(m,p)). The number of RR tuning 

parameters and actual values differ per data set and are specified in the following data set 
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descriptions. On each CV split, all samples were column-wise mean-centered to the calibration 

set before forming respective models and predictions.  

 

5.3. SRD validation 

 The SRD CRRN results were inspected to ensure models of interest were not randomly 

ranked. A graphical example is presented for the corn data. In this case, the SRD input matrix is 

composed of mean merit values across the 100 LMOCV as single rows. Otherwise, graphical 

results displayed are boxplots from using SRD in the 7-fold CV mode for each block of model 

merits.  

 

5.4. NIR corn data 

Eighty samples of corn were measured from 1100 to 2498 nm at 2 nm intervals for 700 

wavelengths on three near infrared (NIR) spectrometers designated m5, mp5 and mp6 [60]. 

Reference values are provided for oil, protein, starch and moisture content. Presented are the 

protein results using m5. The η RR tuning parameter values exponentially decrease from 68 to 

6.7 × 10
-7

 for 150 values. 

 

5.5. Quantitative structure activity relationship (QSAR) data 

The QSAR data consist of 142 compounds with 63 molecular descriptors [61]. The 

compounds were assayed for inhibition of the three carbonic anhydrase (CA) isozymes CA I, CA 

II, & CA IV. Carbonic anhydrase contributes to production of eye humor which with excess 

secretion, causes permanent damage and diseases (macular edema and open-angle glaucoma). 
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Results are presented for CA I. The η RR tuning parameter values exponentially decrease from 

11,383 to 1.2 × 10
-4 

for 80 values. 

 

6. Results and discussion 

6.1. Corn 

Shown in Fig. 1 are images of the PLS and RR CV split-wise RMSECV results for the 

100 LMOCVs. Plotted in Fig. 2 are the mean PLS and RR RMESCV plots against the respective 

tuning parameters as well as PLS and RR graphics plotting mean RMSECV and RMSEC values 

against the mean model L2 norm and J values. Also plotted are C1 and C2 (where C2 has been 

inverted for maximization). The images in Fig. 1 show the discrete nature of PLS versus the 

continuous aspect of RR. This difference is further exemplified in the corresponding plots shown 

in Fig. 2. From the expanded mean RMSECV plots in Figs. 2a and d, it is observed that 

empirically selecting appropriate tuning parameter values is not obvious. Fig. 2b for PLS shows 

that by plotting the mean RMSECV or RMSEC values against the model complexity measure L2 

norm, the tradeoff becomes discernible in the corner regions of the L-curves assisting in 

selecting the number of LVs. Note that in Fig. 2b, the models are no longer equally spaced across 

the x-axis compared to Fig. 2a. While models in the corner regions are those balancing the 

tradeoff, the plots of C1 and C2 allow automatic selection with 9 LVs chosen using C1 and 11 

LVs from the C2. These two models are in the corner regions of the L-curves. Using J values 

(jaggedness or roughness) of the model vectors instead of the L2 norms does not provide any 

additional insight in the graphics other than the early LV models change little in jaggedness 

while the other model merits are adjusting. A similar discussion can be formed for Figs. 2d-f. 
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From the mean C1 and C2 plots, ridge parameters 60 (η = 1.0 × 10
-2

) and 65 (η = 4.8 × 10
-3

) are 

chosen.  

While mean C1 and C2 values are useful in selecting a tuning parameter for PLS and RR, 

these composite merits are limited in the number of specific model merits evaluated and the 

individual CV values are not assessed. Using SRD can alleviate these restrictions. Evaluated first 

are the SRD 7-fold CV results using the split-wise PLS and RR RMSECV matrices imaged in 

Fig. 1 as the SRD input matrix. These results are presented as boxplots in Figs. 3a and 3b. It is 

not surprising from the mean RMSECV plots in Figs. 2a and d that using row minima as the 

SRD targets results in lower SRD rank values starting at 25 LVs and the 80th ridge parameter (η 

= 5.6 × 10
-4

). Thus, additional model merits are needed as these models are overfitted. Including 

the block of respective 100 LMOCV L2 norm results in the SRD 7-fold CV boxplots presented in 

Figs. 3c and d. By including the L2 norm for a model complexity and variance indicator, the SRD 

process now ranks 11 LVs the lowest for PLS (ignoring the 1 LV model) and ridge parameter 61 

(η = 8.8 × 10
-3

) for RR (ignoring approximately the first twenty ridge parameters). Substituting J 

for the L2 norm results in similar plots to Figs. 3c with no change in the lowest ranked PLS 

model and the lowest ranked RR model is now ridge parameter 68 (η = 3.1 × 10
-3

). Results from 

combining the RMSECV and L2 norm CV blocks for PLS and RR into one SRD are displayed in 

Fig. 4. These plots indicate that PLS and RR are modeling equivalently. 

Other model merits can be included in the SRD process. Shown in Fig. 5 are the PLS and 

RR SRD results using only calibration information based on the RMSEC, C1, J, and L2 norm 

values. In this case, 17 PLS LVs and ridge parameter 65 (η = 4.8 × 10
-3

) obtain clear lowest 

rankings. The change in rankings of the tuning parameters is due to including more model merits 

and SRD assessing a consensus in the rankings relative to row wise target values. To further 
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characterize the consensus nature of SRD, shown in Fig. 6a is an image of the SRD input matrix 

for RR. This SRD input matrix sorted to the SRD rankings from low to high is imaged in Fig. 6b. 

From this image, the models sustaining consistency to the targets are ranked lowest. The image 

in Fig. 6c is the RMSECV image in Fig. 1b sorted to the SRD rankings showing that the SRD 

ranked tuning parameters provide consistently low RMSECV values.   

Augmenting the previous calibration merits with the split-wise CV results for RMSECV 

and C2 provides SRD results similar to that shown in Figs. 5a and b with the lowest ranked 

model for PLS moving to 15 PLS LVs and the ridge parameter remained at 65. Combining these 

additional model merits with the previous ones into one SRD for PLS and RR showed that PLS 

and RR are performing consistently similar.  

Another variation of the SRD input matrix generated the boxplots shown in Fig. 7 for 

PLS and RR. In this variation, 18 blocks of model merits were used consisting of RMSEC,
2Rcal , 

slopecal, interceptcal, RMSECV,
2R cv , slopecv, interceptcv, C1, using J in C1, the corresponding two 

variation of C1 using RMSECV, C2, using respective R
2
 values in C2, and two other variations 

of C2 missing R
2
 with RMSE values, J, and L2 norm. With these model merits, the 14 PLS LV 

model is ranked lowest and the ridge parameter model 65 (η = 4.8 × 10
-3

) is ranked lowest. 

Depending on the actual merits used in SRD, the lowest ranked models can vary, but remain in 

close proximity to each other indicating that there is probably not one best model and a 

collection of models can be useful and are essentially equivalent. The final model choice of the 

user depends on the tradeoffs desired for the final model. Using these 18 model merits to 

evaluate PLS and RR together provided similar results to that presented in Fig. 4 with the PLS 

and RR modeling equivalently. 
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Rather than using all the respective individual LMOCV results for different merit blocks 

in the SRD input matrix, the corresponding mean LMOCV merit values can be used as single 

rows provided that enough model merits are included to reduce the chance of random rankings 

(typically 7 or more rows for the SRD input matrix, but more are better). In this case, the SRD 

input matrix is considered one block. Shown in Fig. 8 is an example of the CRRN result based on 

an SRD input matrix composed of one block with 18 rows with each row being the respective 

mean CV values of the 18 model merits previously used. As a reminder, the CRRN process 

involves random distributions based on random numbers for a small number of objects and the 

normal distribution, as used in this case, for a large number of objects. The reader is referred to 

reference [33] for the details of CRRN.  Listed are the SRD top five rankings for PLS and RR. 

The results are essentially the same as those ranked best by the SRD evaluation of the same 

merits in block format and validated by the CV of the SRD input matrix to form the boxplots. 

Listed in the outlined boxes shown in Fig. 8 are the PLS LVs and RR ridge parameters followed 

by the SRD normalized rankings and then the probabilities. From the listed probabilities in 

conjunction with the plotted probability functions, it can be observed that the model rankings are 

by no means random rankings because these SRD model rankings are not located within the 

plotted random distributions. 

When using the SRD process to evaluate model tuning parameters as in this paper, it is 

important to have merits balancing model tradeoffs such as the bias/variance tradeoff. For 

example, with PLS, if the only model merits used in an SRD analysis minimize towards the 

maximum number of LVs (the overfitted region) such as with RMSEC, 
21 Rcal  , etc., then the 

SRD algorithm with minima set as the target reference values will sort these overfitted models 

with the lowest SRD rank values. 
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Tabulated in Table 1 are final model merits for those models with low ranks from all the 

above variants of model merits with and without SRD. The “best” model with the lowest SRD 

ranking is going to depend on which specific models merits are used. As more model merits are 

included in an SRD analysis, the less variation there is in the listed model merits. For PLS, this 

tends to be the higher number of LVs in Table 1 and the smaller ridge parameter values for RR. 

For a more specific statistical comparison between models, the uncertainties computed by 

the SRD CV process can be evaluated by a Wilcoxon signed rank test at a given significance 

level. For example, testing RR models 67 and 68 in Fig. 7b at the 5 % significance level shows 

that there is no difference between the models. Testing models 66 and 67 results in a statistical 

difference. Testing the low ranked PLS models in Fig. 7a reveals that the models are all unique. 

While not studied in this paper, the Wilcoxon signed rank test can also be used to compare PLS 

models to RR models.  

Models with low SRD rankings can be used in a consensus approach. To successfully 

utilize consensus modeling, a high degree of prediction accuracy is desired in combination with a 

small but noteworthy difference between the selected models (model diversity) [31,62-60]. Once 

a collection is selected, various methods exist to form the composite prediction from these 

models such as the simple approach of using the mean prediction. The collection can be a mix of 

PLS and RR models as well as from a single modeling method. This approach was not evaluated 

in this study. 

 

6.2. QSAR 

 Rather than showing RMSECV blocks as images as done with the corn data, drawn in 

Fig. 9 are the 100 individual and mean RMSECV plots for PLS and RR. From these plots, 



22 

 

models to select are more obvious than with the corn RMSECV graphics. Displayed in Fig. 10 

are the PLS and RR graphics plotting mean RMSECV and RMSEC values against the mean 

model L2 norm. Also plotted with these graphics are mean C1 and C2 (where C2 has been 

inverted for maximization) as well as C2 with respective R
2
 values replacing the RMSE values. 

Using J values instead of the L2 norm values produces similar plots. As expected from the block 

of individual RMSECV values and mean plots in Fig. 9, selecting the tuning parameters from the 

other mean model merits results in similar selections. For PLS, the minimum RMSECV is at 15 

LV and the C2 merit in both formats forms minima at 13 LVs. The range from 13 to 15 LVs is in 

the corner region of the RMSEC L-curve. Models based on 16 through 20 are also in the corner 

region. While not apparent in Fig. 10a, the mean C1 merit minimizes for PLS at 34 LVs and 

provides an overfitted model selection. Replacing RMSEC in C1 with RMSECV, produces a 

minimum at 15 LVs.  

Similar trends are present for RR in Fig. 10b. Ridge parameters selected using the plots 

from mean RMSECV, C2, and C2 with R
2
 values are 36 (η = 1.6), 33 (η = 3.4), and 33 

respectively. These ridge parameters are in the corner regions of the mean RMSEC L-curve. The 

mean C1 merit identifies ridge parameter 50 (η = 4.6 × 10
-2

) at the minimum and replacing 

RMSEC with RMSECV in C1 ascertains ridge parameter 36 at the minimum.  

Evaluated first with SRD are the 7-fold CV boxplots in Fig.11 based on using the PLS 

and RR RMSECV blocks plotted in Fig. 9. Interesting that with SRD, the 19 LV model is 

deemed lowest rank relative to target minimization and hence, the most consistently minimized 

LV across the 100 LMOCV. Using the Wilcoxon signed rank test at the 5 % significance level 

reveal no difference between LVs 19 through 22. There appears to be a local minimum from 15 
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through 17 LVs and this is the region identified in the single merit plots in Fig. 10. For RR in 

Fig. 11b, the model with ridge parameter 36 is the lowest consistently ranked model.  

 Including blocks of the respective model complexity measure L2 norm for PLS and RR 

forms the plots shown in Figs 11c and d. The same models are ranked the lowest as with just the 

RMSECV blocks, but for PLS, models 13 through 17 have similar ranks. Unlike with the corn 

data, when PLS and RR RMSECV and L2 norm values are combined into one SRD, Fig. 12 

shows that RR provides lower ranked models than PLS. With the corn data, PLS and RR 

essentially performed equivalently as portrayed in in Fig. 4.  

 As with the corn data, other merits can be combined for an SRD evaluation. Which 

merits depend on what the user defines as best for their purposes. For this QSAR data set and 

prediction property, using only calibration merits pushes the tuning parameters to the overfitted 

regions. Unlike with estimating the protein prediction property with the corn data, some form of 

CV appears necessary in this QSAR instance. Presented in Fig. 13 are boxplots for PLS and RR 

from using the 18 blocks of model merits used with the corn data composed of RMSEC, 
2Rcal , 

slopecal, interceptcal, RMSECV, 
2R cv , slopecv, interceptcv, C1, using J in C1, the corresponding 

two variations of C1 using RMSECV, C2, using respective R
2
 values in C2, and two other 

variations of C2 missing R
2
 with RMSE values, J, and L2 norm. Using this mix of calibration and 

validation merits results in 14 LV being ranked the lowest for PLS and ridge parameter model 33 

for RR. As with the corn data, the boxplot box sizes are substantially reduced indicating better 

regularity in the SRD rankings. Using these 18 model merits for an SRD analysis of PLS and RR 

simultaneously showed PLS to have a smaller SRD ranking by one unit than RR at the respective 

lowest ranked models of 14 LVs and ridge parameter 33.  
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Tabulated in Table 2 are final model merits for those models with low ranks from the 

different SRD input matrices as expressed above as well as the described signal merits. As with 

the corn data set, the better models listed in Table 2 are those deemed “best” by using multiple 

model merits compared to those models selected by single merits. As a reminder, the user can 

use Wilcoxon signed rank tests to evaluate uniqueness of specific models whether the goal is 

between different modeling methods or within a modeling method. 

 

7. Conclusions and SRD recommendations 

The goal of this paper is not to show that one modeling method is better than another, but 

to develop SRD as a tool for selecting tuning parameters and comparing models. Using SRD 

allows multiple model merits to be used for selection of model tuning parameters. The lowest 

ranked model can be selected or, alternatively, a collection of models with low SRD rankings 

can be used in a consensus approach. The collection of models can be for a single modeling 

method as well as a mix of different modeling methods such as PLS and RR. The SRD 

corresponds to the principle of parsimony and the SRD CV process to form boxplots provides 

uncertainties for the variables (columns) and the differences can be tested in a statistically correct 

way. 

The better models are those having the most consistency across the different model 

merits evaluated. When a CV process is used to generate the model merits, then SRD allows the 

models merits computed on each data split to be evaluated, not just the mean values as in the 

standard CV proves of selecting a tuning parameter. The more model merits included to 

characterize the bias/variance tradeoffs, the less variation in the SRD CV boxplots for the lowest 

ranked models. Only a limited set of combinations of model merits were evaluated with SRD in 
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this study. Not studied in this paper was using other model merits such as Mallow’s Cp criterion, 

AIC [42-45], etc. to build up the number of objects for SRD. Which actual tuning parameters are 

ranked lowest by SRD depends on which model merits are used. As with any tuning parameter 

selection process, it is up to the user to decide which model merit(s) is to be used to evaluate the 

tuning parameters. The SRD process allows rapid comparison of the consistency of tuning 

parameters as model merits vary by the user.  

As noted, evaluation of the consistencies of model tuning parameters can be enhanced by 

increasing the number of model merits. In this study only the composite split-wise merit values 

were used, e.g., one row of RMSECV values for each CV split.  Additional SRD blocks can be 

included using the actual predicted values of all samples in each respective split. For example, 

for each RMSECV row, a block of ˆ
cvy  values (r by number of tuning parameters for r validation 

samples) could be included. Target reference values would be the corresponding reference values 

yval. Alternatively, the SRD input values could be ˆ
cv cvy y  with target values of row minima. 

Similarly, additional blocks for the SRD input matrix could be added based on different types of 

CV splits as well as perturbing the data with noise and creating sets of merit blocks for each 

noise perturbation.  

The SRD process described in this study is generic and should be applicable to other 

multivariate calibration methods involving selection of single tuning parameters such as the TR 

variant known as least absolute shrinkage and selection operator (LASSO), principal component 

regression (PCR), and others. Under current study is using SRD with multivariate calibration 

processes that involve multiple tuning parameters. The SRD process is a simple general method 

that is finding more uses.  
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With multivariate calibration, variable selection (wavelength selection with optical 

spectroscopic data) is often used to reduce prediction errors and improve robustness. In this 

paper, full wavelengths were used with the corn data and all the provided variables were used 

with the QSAR data. Using SRD, it is possible to select tuning parameters for models generated 

by variable selection processes. Various variable selected models can also be compared to full 

variable models by SRD. The SRD process provides a natural way to impartially compare 

different modeling methods. 

The reader should note that SRD has two operational modes. That is, for many 

applications, the SRD input matrix can be transposed where the objects are now the variables and 

the variables are now the objects. Transposing the SRD input matrices for the situations studied 

in this paper was not investigated. Such an operation should allow comparison of the model 

merits. That is, the merits would be ranked by how consistently the respective merits meet the 

respective target values. The lowest ranked merits could be deemed “best”. 
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Table 1. Corn data mean PLS and RR LMOCV model merit values for  

models with low SRD rankings based on different SRD input model merits 

Method 

PLS LV or 
Ridge 

Parameter 
(η) 

RMSECV R2 Slope Intercept 
2

b̂
 

PLS 9 0.137 0.926 0.94 0.53 63.3 

PLS 10 0.133 0.930 0.95 0.46 68.3 

PLS 11 0.123 0.940 0.96 0.35 83.0 

PLS 12 0.118 0.945 0.96 0.30 98.8 

PLS 13 0.113 0.949 0.96 0.28 109 

PLS 14 0.108 0.954 0.97 0.26 125 

PLS 15 0.109 0.954 0.97 0.23 146 

PLS 16 0.108 0.955 0.97 0.21 171 

PLS 17 0.108 0.955 0.98 0.20 193 

RR 
60 

(1.0 × 10-2) 
0.136 0.927 0.91 0.79 56.9 

RR 
61 

(8.8 × 10-3) 
0.131 0.933 0.92 0.70 61.1 

RR 
62 

(7.5 × 10-3) 
0.126 0.937 0.93 0.63 65.8 

RR 
63 

(6.5 × 10-3) 
0.122 0.942 0.93 0.57 70.9 

RR 
64 

(5.6 × 10-3) 
0.118 0.945 0.94 0.51 76.6 

RR 
65 

(4.8 × 10-3) 
0.114 0.948 0.95 0.46 82.9 

RR 
66 

(4.1 × 10-3) 
0.111 0.951 0.95 0.42 89.8 

RR 
67 

(3.6 × 10-3) 
0.109 0.953 0.95 0.39 97.6 

RR 
68 

(3.1 × 10-3) 
0.107 0.955 0.96 0.35 106 
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Table 2. QSAR data mean PLS and RR LMOCV model merit values for 

models with low SRD rankings based on different SRD input model merits 

Method 

PLS LV or 
Ridge 

Parameter 
(η) 

RMSECV R2 Slope Intercept 
2

b̂
 

PLS 13 0.470 0.777 0.84 0.52 0.58 

PLS 14 0.462 0.786 0.85 0.48 0.63 

PLS 15 0.461 0.788 0.85 0.46 0.69 

PLS 16 0.464 0.788 0.86 0.44 0.74 

PLS 17 0.463 0.789 0.87 0.43 0.80 

PLS 18 0.463 0.790 0.87 0.41 0.88 

PLS 19 0.462 0.790 0.87 0.41 0.95 

PLS 20 0.461 0.790 0.87 0.42 1.04 

PLS 21 0.466 0.786 0.87 0.42 1.14 

RR 
30 

(7.3) 
0.505 0.740 0.73 0.84 0.29 

RR 
31 

(5.7) 
0.482 0.762 0.76 0.76 0.36 

RR 
32 

(4.4) 
0.464 0.779 0.78 0.68 0.43 

RR 
33 

(3.4) 
0.452 0.791 0.81 0.62 0.52 

RR 
34 

(2.6) 
0.445 0.798 0.82 0.56 0.60 

RR 
35 

(2.0) 
0.441 0.802 0.84 0.52 0.69 

RR 
36 

(1.6) 
0.440 0.804 0.85 0.49 0.80 

RR 
37 

(1.2) 
0.440 0.805 0.85 0.46 0.93 

RR 
38 

(0.96) 
0.442 0.804 0.86 0.44 1.10 
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FIGURE CAPTIONS 

 

Fig. 1. Corn data images of (a) PLS and (b) RR CV split-wise RMSECV values for the 100 

LMOCVs and respective tuning parameters. Ridge values range from 68 at ridge parameter 1 to 

6.7 × 10
-7

 at ridge parameter 150. 

 

Fig. 2. Mean corn model merit graphics for PLS plotting (a) RMESCV against LVs and (b) and 

(c) are model merit values plotted against the model L2 norm and J values, respectively. For both 

(b) and (c), RMSECV (blue triangles), RMSEC (red circles), C1 (green diamonds), C1 with J 

replacing the L2 norm (cyan stars), and C2 inverted (brown squares). Values plotted in (b) and (c) 

are scaled to fit in the plots. Numbers in PLS plots correspond to number of LVs. Also shown are 

the corresponding mean RR model merit graphics for (d) RMESCV against ridge parameters, (e) 

merits plotted against the model L2 norm values and (f), against the J values. Numbers in the RR 

plots correspond to ridge parameter number. Ridge values range from 68 at ridge parameter 1 to 

6.7 × 10
-7

 at ridge parameter 150 in (d) and the same range trends are shown from left to right, 

respectively, in (e), and (f).  

 

Fig. 3. Corn data SRD boxplots using 7-fold CV on the (a) PLS 100 LMOCV RMSECV block in 

Fig. 1a, (b) respective RMSECV RR block in Fig. 1b, (c) PLS RMSECV and L2 norm blocks, 

and (d) respective RR RMSECV and L2 norm blocks. 

 

Fig. 4. Corn data SRD boxplots from combing the PLS and RR RMSECV and L2 norm values 

into one SRD. 
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Fig. 5. Corn data SRD boxplots using model calibration merits RMSEC, C1, J, and L2 norm for 

(a) PLS and (b) RR.  

 

Fig. 6. Corn data images for the situation in Fig. 5 with (a) the input SRD matrix, (b) the input 

SRD matrix in (a) sorted to the SRD rankings from low on the left to high on the right, and (c) 

the RMSECV matrix in Fig. 1b sorted to the SRD rankings. For (a) and (b), the four CV blocks 

with 100 matching splits each are in the order RMSEC, C1, J, and L2 norm. Each row of the 

SRD input matrix was scaled to unit length. The RMSECV matrix in (c) are actual values. 

 

Fig. 7. Corn data SRD boxplots for (a) PLS and (b) RR using 18 blocks of model merits 

consisting of RMSEC, 
2Rcal , slopecal, interceptcal, RMSECV, 

2R cv , slopecv, interceptcv, C1, using J 

in C1, the corresponding two variation of C1 using RMSECV, C2, using respective R
2
 values in 

C2, and two other variations of C2 using R
2
 with RMSE values, J, and L2 norm. 

 

Fig. 8. Differences between random and actual corn model rankings (SRD corn CRRN plots) for 

(a) PLS and (b) RR with the respective five lowest rank models. For PLS, the first number in 

each box is the PLS LV model and the first value in the parenthesis is the SRD ranking followed 

by the probability density function value. It is similar for RR except the first numbers in each 

box are the RR ridge parameters with actual ridge values of 65 (4.8 × 10
-3

), 66 (4.1 × 10-
3
), 64 

(5.6 × 10
-3

), 67 (3.6 × 10
-3

), and 68 (3.1 × 10
-3

). 
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Fig. 9. QSAR CV split-wise RMSECV plots for (a) PLS and (b) RR for the 100 LMOCVs and 

respective tuning parameters. Starting at ridge parameter 1, 80 ridge values range from 11,383 to 

1.2 × 10
-4 

at ridge parameter 80. Black lines are the mean RMSECV values.  

 

Fig. 10. Expanded QSAR model merit graphics of (a) PLS and (b) RR mean model merits 

plotted against the mean model L2 norm values for RMSECV (blue triangles), RMSEC (red 

circles), C1 (green diamonds), C2 (brown squares), and C2 with respective R
2
 values replacing 

the RMSE values (black right facing triangles). Values are scaled to fit in plot. Numbers in (a) 

correspond to number of LVs and in (b), the ridge parameters. Ridge values trend from large on 

left to small on the right. 

 

Fig. 11. QSAR data SRD boxplots using 7-fold CV on the (a) PLS 100 LMOCV RMSECV 

block in Fig. 9a, (b) respective RMSECV RR block in Fig. 9b, (c) PLS RMSECV and L2 norm 

blocks, and (d) respective RR RMSECV and L norm blocks. 

 

Fig. 12. QSAR data SRD boxplots from combing the PLS and RR RMSECV and L2 norm values 

into one SRD. 

 

Fig. 13. QSAR boxplots of (a) PLS and (b) RR SRD results from using 18 blocks of model 

merits consisting of RMSEC, 
2Rcal , slopecal, interceptcal, RMSECV, 

2R cv , slopecv, interceptcv, C1, 

using J in C1, the corresponding two variation of C1 using RMSECV, C2, using respective R
2
 

values in C2, and two other variations of C2 missing R
2
 with RMSE values, J, and L2 norm. 
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Figure 2(a-c) 
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Figure 2(d-f) 
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Figure 12 
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Figure 13 
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