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Abstract

Motivated by questions concerning optical networks, in 2003 Gargano, Ham-
mar, Hell, Stacho, and Vaccaro defined the notions of spanning spiders and
arachnoid graphs. A spider is a tree with at most one branch (vertex of de-
gree at least 3). The spider is centred at the branch vertex (if there is any,
otherwise it is centred at any of the vertices). A graph is arachnoid if it has
a spanning spider centred at any of its vertices. Traceable graphs are ob-
viously arachnoid, and Gargano et al. observed that hypotraceable graphs
(non-traceable graphs with the property that all vertex-deleted subgraphs are
traceable) are also easily seen to be arachnoid. However, they did not find
any other arachnoid graphs, and asked the question whether they exist. The
main goal of this paper is to answer this question in the affirmative, more-
over, we show that for any prescribed graph H, there exists a non-traceable,
non-hypotraceable, arachnoid graph that contains H as an induced subgraph.

1 Introduction

All graphs considered in this paper are finite, simple, and connected. For a graph G,
V (G) and E(G) denotes the set of vertices and the set of edges ofG, respectively. Let
X,Y ⊆ V (G), v ∈ V (G). Then dG(v) is the degree of v in G, dG(X,Y ) denotes the
number of edges between X and Y in G, dG(X) := dG(X,V (G)\X). The subgraph
of G induced by the vertex set X is denoted by G[X] and G−X := G[V (G) \X],
G − v := G − {v} for any v ∈ V (G) and for e ∈ E(G), G − e denotes the graph
obtained by deleting e from E(G). G∪H denotes the disjoint union of graphs G and
H. Actually, we also use this notation for the graph with vertex set V (G) ∪ V (H)
and edge set E(G) ∪ E(H) if G and H are subgraphs of the same graph.

The leaf number of a graph G, denoted by l(G) is the number of vertices of degree
1 in G. The minimum leaf number of a graph G, denoted by ml(G) is the minimum
number of leaves of the spanning trees of G. The path-covering number of G,
denoted by µ(G) is the minimum number of vertex-disjoint paths that cover the
vertices of G (a path may consist of just one vertex). The branch number of G,
denoted by s(G) is the minimum number of branch vertices (vertices of degree
at least 3) of the spanning trees of G. Each of these graph parameters play an
important role in designing cost-efficient optical networks ([6], [2]) and they are all
NP-hard to compute, because of their straightforward connection to traceability
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of graphs. Gargano, Hammar, Hell, Stacho, and Vaccaro [2] defined the notion of
spanning spiders: these are spanning trees with at most one branch. The spider is
centred at the branch vertex (if there is any, otherwise it is centred at any of the
vertices). They studied the parameter s(G) and graphs with s(G) ≤ 1. They also
defined arachnoid graphs; these are graphs that have a spanning spider centred at
any of their vertices. Traceable graphs are obviously arachnoid, and Gargano et al.
observed that hypotraceable graphs (non-traceable graphs with the property that
all vertex-deleted subgraphs are traceable, see [7], [8]) are also easily seen to be
arachnoid [2]. However, they did not find any other arachnoid graphs, and asked
the question whether they exist. The main goal of this paper is to answer this
question in the affirmative, moreover, we show that for any prescribed graph H,
there exists a non-traceable, non-hypotraceable, arachnoid graph that contains H
as an induced subgraph.

2 Path-critical graphs

First we construct graphs G for any µ ≥ 1 with the property µ(G−v) = µ(G)−1 = µ
for each v ∈ V (G) (these will be called path-critical graphs). The existence of such
graphs is far from from obvious: for µ = 1 these are the hypotraceable graphs,
whose existence was an open problem till 1975, when Horton found such a graph
on 40 vertices (see [10], [8]) disproving the conjecture of Kapoor, Kronk, and Lick
[5]. Actually, even the existence of graphs without concurrent longest paths was an
open question from 1966 to 1969 (raised by Gallai [1] and settled by Walther [9]).

For the construction we need the notion of J-cells [4].

Definition 2.1. A pair of vertices (a, b) of a graph G is said to be good if there
exists a Hamiltonian path of G between them. A pair of pairs of vertices of G
((a, b), (c, d)) is said to be good if there exists a spanning subgraph of G consisting
of two vertex-disjoint paths, one between a and b and another one between c and d.

Definition 2.2. (Hsu, Lin [4]) The quintuple (H, a, b, c, d) is a J-cell if H is a
graph and a, b, c, d ∈ V (H), such that

1. The pairs (a, d), (b, c) are good in H.

2. None of the pairs (a, b), (a, c), (b, d), (c, d), ((a, b), (c, d)), ((a, c), (b, d)) are
good in H.

3. For each v ∈ V (H) there is a good pair in H − v among (a, b), (a, c), (b, d),
(c, d), ((a, b), (c, d)), ((a, c), (b, d)).

J-cells can be obtained by deleting two adjacent cubic vertices of a hypohamil-
tonian graph (non-hamiltonian graph, such that all vertex-deleted subgraphs are
hamiltonian, see [3]), as was observed by Thomassen, who used J-cells to construct
3-connected hypotraceable graphs [8]. Here we generalize this construction. The
smallest J-cell is obtained from the Petersen graph by deleting two adjacent vertices.

Let Fi = (Hi, ai, bi, ci, di) be J-cells for i = 1, 2, . . . , k. Now we define the graphs
Gk as follows. Gk consists of vertex-disjoint copies of the graphs H1, H2, . . . ,Hk,
the edges (bi, ai+1), (ci, di+1) for all i = 1, 2, . . . k−1, and the edges (bk, a1), (ck, d1).
We will consider the graphs Hi as (induced) subgraphs of Gk.

Now we explore some useful properties of spanning trees and paths of Gk.

Claim 2.3. Let T be a spanning tree of Gk. Then there are at most two indices i,
such that all vertices in V (Hi) has degree 2 in T .
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Proof. Suppose that all vertices in (say) V (H1) has degree 2 in T . Then dT (H1)
must be even (since dT (H1) =

∑
v∈V (H1)

d(v) − 2|E(T [V (H1)])| = 2|V (H1)| −
2|E(T [V (H1)])|), thus dT (H1) is 2 or 4. If dT (H1) = 2, then T [V (H1)] is a hamil-
tonian path of H1 and by the second property of J-cells the endvertices of the path
are either a1 and d1 or b1 and c1 (w.l.o.g. assume they are a1 and d1). Therefore the
edges leaving V (H1) in T are (bk, a1) and (ck, d1), thus there are no edges between
V (H1) and V (H2) in T . If dT (H1) = 4, then T [V (H1)] is a spanning subgraph of
H1 consisting of two vertex-disjoint paths. By the second property of J-cells, the
endvertices of one of the paths are a1 and d1 and the endvertices of the other path
are b1 and c1. Thus in this case there is no path between a1 and b1 in T [V (H1)].
It is clear now that if there is an index i 6= 1, 2, such that all vertices in V (Hi) has
degree 2 in T , then T is not connected, a contradiction. 2

Claim 2.4. Let l ≥ 2. Then ml(G2l+1) ≥ l + 1.

Proof. Assume to the contrary that G2l+1 has a spanning tree T with at most l
leaves. Then the number of vertices of degree at least 3 in T is at most l − 2, thus
the number of vertices not having degree 2 is at most 2l− 2. This means that there
are at least three indices i, such that V (Hi) only contains vertices of degree 2 in T ,
a contradicition by Claim 2.3. 2

Claim 2.5. G4 has a hamiltonian path P , such that there is no edge of P between
H1 and H4 and for any vertex v ∈ V (G5) there is a hamiltonian path P of G5 − v,
such that there is no edge of P between H1 and H5.

Proof. The first part of the claim is easy to see: there is a hamiltonian path of Hi

between bi and ci and a hamiltonian path of Hi+1 between ai+1 and di+1, by the
first property of J-cells, thus H1 ∪H2 and H3 ∪H4 are hamiltonian, therefore there
is a hamiltonian path P1 of H1 ∪ H2 starting at b2 and a hamiltonian path P3 of
H3 ∪H4 starting at a3. Now E(P1) ∪ (b2, a3) ∪ E(P3) is a hamiltonian path of G4

without edges between H1 and H4. Let now F = (H, a, b, c, d) be any of the J-cells
used in the construction of G5 and let us check whether (a, b), (a, c), (b, d), (c, d),
((a, b), (c, d)), or ((a, c), (b, d)) is good in H − v. Let us number the J-cells used to
construct G5, such that H3 = H in the first four cases, and H2 = H in the last two
cases. If (a, b) = (a3, b3) is good in H3−v, then let P be a hamiltonian path of H3−v
between a3 and b3. We have seen that Hi∪Hi+1 is hamiltonian, therefore Hi∪Hi+1

has a hamiltonian path starting at any of its vertices. Let P1 be a hamiltonian path
of H1∪H2 starting at b2 and let P4 be a hamiltonian path of H4∪H5 starting at a4.
Then E(P1)∪ (b2, a3)∪E(P )∪ (b3, a4)∪E(P4) is the edge set of a hamiltonian path
of G5−v and does not contain any edges between H1 and H5. The cases when (a, c),
(b, d), or (c, d) is good is dealt with similarly. If ((a, b), (c, d)) = ((a2, b2), (c2, d2))
is good in H2 − v, then let Q be the union of the vertex-disjoint a − b and c − d
paths that cover all vertices of H2 − v. Let furthermore Q1 be a hamiltonian path
between b1 and c1 in H1, and Q3 be a hamiltonian path between d3 and either b3 or
c3 (say w.l.o.g. b3) in G3 − a3. Q1 and Q3 exist since F1 and F3 are J-cells. Then
E(Q1) ∪ (b1, a2) ∪ (c1, d2) ∪ E(Q) ∪ (b2, a3) ∪ (c2, d3) ∪ E(Q3) ∪ (b3, a4) ∪ E(P4) is
again the edge set of a hamiltonian path of G5 − v that does not contain any edges
between H1 and H5. The case when ((a, c), (b, d)) is good is dealt with similarly. 2

Theorem 2.6. For any v ∈ V (G4k+5) we have µ(G4k+5−v) = µ(G4k+5)−1 = k+1,
thus G4k+5 is path-critical for k ≥ 1.

Proof. Let us denote G4k+5[∪mi=nV (Hi)] by G(n,m) for 1 ≤ n < m ≤ 4k + 5. It
is obvious that if n 6= 1 or m 6= 4k + 5, then G(n,m) is isomorphic to some graph
Gm−n+1 − (bm−n+1, a1) − (cm−n+1, d1), thus G(n,m) is traceable if m = n + 3
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and G(n,m) − v is traceable for any v ∈ G(n,m) if m = n + 4 by Claim 2.5.
Since G(1, 4), G(5, 8), . . . , G(4k − 3, 4k) and G(4k + 1, 4k + 5)− v are all traceable,
the vertices of G4k+5 − v can be covered by k + 1 vertex-disjoint paths, that is
µ(G4k+5 − v) ≤ k + 1 for any v ∈ V (G). On the other hand, we show that
µ(G4k+5) ≥ k + 2. Assume to the contrary that there are at most k + 1 vertex-
disjoint paths that cover the vertices of G4k+5. Since G4k+5 is connected, it is
possible to add some (at most k, but it is irrelevant) edges to these paths to obtain
a spanning tree of G4k+5 with at most 2k+2 leaves. On the other hand, by Lemma
2.4, ml(G4k+5) ≥ 2k+3, a contradiction. Since for any graph G, µ(G) ≤ µ(G−v)+1
is obvious, we have k+ 1 ≤ µ(G4k+5)− 1 ≤ µ(G4k+5− v) ≤ k+ 1, and the theorem
is proved. 2

The graphs Gk possess some other interesting properties; these are omitted here,
due to lack of space.

3 Arachnoid graphs

Now it is not difficult to find non-traceable, non-hypotraceable, arachnoid graphs.
Let Gj

k be the graph obtained from Gk by adding j new vertices u1, u2, . . . , uj and
edges between ui and every vertex of Gk to Gk for i = 1, 2, . . . , j.

Theorem 3.1. Gk
4k+5 is an arachnoid graph that is neither traceable, nor hypo-

traceable for any k ≥ 1.

Proof. Let G = Gk
4k+5. We have to show that for any w ∈ V (G), G has a spanning

spider centred at w. Let v be a neighbour of w, such that v ∈ G4k+5 (such a v
clearly exists). Now by Theorem 2.6, the vertices of G4k+5 − v can be covered by
k+1 vertex-disjoint paths, thus using the vertices u1, . . . , uk (that are all connected
to all vertices of G4k+5) a hamiltonian path of G − v is easy to obtain. Now by
adding the edge (v, w) to this path we obtain a spanning spider of G centred at w,
therefore G is arachnoid, indeed.

Now we show that G is not traceable. Assume to the contrary that there exists a
hamiltonian path P of G and let us delete the vertices u1, . . . , uk from P . We obtain
at most k+1 vertex-disjoint paths, such that they cover the vertices of G4k+5, which
is a contradiction, by Theorem 2.6.

Finally, we have to show that G is not hypotraceable. It is easy to see that G− ui
is not traceable, the proof is the same as the proof of the non-traceablity of G (by
deleting the ui’s we would obtain at most k paths, instead of at most k + 1). 2

It is easy to see that adding any edges between the ui’s does not make the graph
either traceable or hypotraceable (while the arachnoid property is obviously pre-
served), therefore we can obtain a non-traceable, non-hypotraceable, arachnoid
graph that contains any prescribed graph H as an induced subgraph.

Gargano et al. also proposed the more general problem whether there exist arach-
noid graphs containing a vertex v, such that v is the center of only spanning spiders
S, for which dS(v) ≥ 4. This question is still open. Now that we have seen new
arachnoid graphs, it is worth asking whether there are arachnoid graphs containing
several vertices v, such that v is the center of only spanning spiders S, for which
dS(v) ≥ d for some fixed d ≥ 4.
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