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Abstract

A pebbling move on a graph removes two pebbles at a vertex and adds one pebble at an adja-
cent vertex. A vertex is reachable from a pebble distribution if it is possible to move a pebble to
that vertex using pebbling moves. The optimal pebbling number is the smallest number m needed
to guarantee a pebble distribution of m pebbles from which any vertex is reachable. Czygrinow
proved that the optimal pebbling number of a graph is at most 4n

δ+1 , where n is the number of
the vertices and δ is the minimum degree of the graph. We improve this result and show that the
optimal pebbling number is at most 3.75n

δ+1 .

1 Introduction
Graph pebbling has its origin in number theory[8]. It is a model for the transportation of resources.
Starting with a pebble distribution on the vertices of a simple connected graph, a pebbling move
removes two pebbles from a vertex and adds one pebble at an adjacent vertex. We can think of the
pebbles as fuel containers. Then the loss of the pebble during a move is the cost of transportation. A
vertex is called reachable if a pebble can be moved to that vertex using pebbling moves. There are
several questions we can ask about pebbling. For a comprehensive list of references for the extensive
literature see the survey papers [5, 6, 7].

An interesting optimization question: How can we place the smallest number of pebbles such
that every vertex is reachable? The amount of required pebbles is called optimal pebbling number.
Even the decision version of the optimal pebbling number is NP-hard[9]. Optimal pebbling number
has been studied for some time past and it has been determined for paths, cycles [13], ladders[1],
complete m-ary trees[4] and for hypercubes[11].

There are several known lower and upper bounds on the optimal pebbling number πopt, i.e.
πopt(G) ≥ 2

3
(diam(G) + 1), πopt(G) ≤ 2diam(G) [12] or πopt(G) ≤

⌈
2n
3

⌉
[1]. Most of these bounds

are sharp.
Czygrinow observed and proved that the optimal pebbling number is at most 4n

δ+1
where δ is the

minimum degree of the graph. On the one hand, it gives a really nice bound when the minimum
degree is high, but on the other hand, we do not know a graph where equality holds. For the best
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known construction the optimal pebbling number is 8n
3(δ+1)

[3]. In the present paper we show that
Czygrinow’s Theorem is not sharp, and we give a better upper bound which is 3.75n

δ+1
.

2 Definitions
Throughout the paper, let G be a simple connected graph. We use the notation V (G) for the vertex set
and E(G) for the edge set. A pebble function on a graph G is a function p : V (G)→ Z where p(v) is
the number of pebbles placed at v. A pebble distribution is a nonnegative pebble function. The size
of a pebble distribution p is the total number of pebbles

∑
v∈V (G) p(v).

Consider a pebble function p on the graph G. If {v, u} ∈ E(G) then the pebbling move (v, v→u)
removes two pebbles at vertex v, and adds one pebble at vertex u to create a new pebble function p′,
so p′(v) = p(v)− 2 and p′(u) = p(u) + 1.

A pebbling sequence is a finite sequence T = (t1, . . . , tk) of pebbling moves. The pebble func-
tion obtained from the pebble function p after applying the moves in T is denoted by pT . The
concatenation of the pebbling sequences R = (r1, . . . , rk) and S = (s1, . . . , sl) is denoted by
RS = (r1, . . . , rk, s1, . . . , sl).

A pebbling sequence T is executable from the pebble distribution p if p(t1,...,ti) is nonnegative for
all i. A vertex v of G is reachable from the pebble distribution p if there is an executable pebbling
sequence T such that pT (v) ≥ 1. p is a solvable distribution when each vertex is reachable. Corre-
spondingly, v is k-reachable under p if there is an executable T , that pT (v) ≥ k, and p is k-solvable
when every vertex is k-reachable. We say that vertices u and v are independently reachable if there is
an executable pebbling sequence T such that pT (u) = 1 and pT (v) = 1.

The optimal pebbling number πopt(G) of a graph G is the size of a distribution with the least
number of pebbles from which every vertex is reachable.

We say that a pebble distribution q is an expansion of p, denoted by p ≤ q, when they are on the
same graph and p(v) ≤ q(v) for each vertex v. p1 ≤ p2 ≤ · · · ≤ pk is an expansion chain if pi ≤ pi+1

for each i.
The distance d(u, v) between vertices u and v is the length of the shortest path between them. The

eccentricity of a vertex v is the maximum distance between v and any other vertex of the graph. The
radius of G is the minimum eccentricity of any vertex of the graph, in contrast diameter of G is the
maximum eccentricity of any vertex of the graph.

We say that u is a neighbor of v if (u, v) ∈ E(G). The open neighborhood N(v) of v contains
the neighbors of v. The closed neighborhood N [v] of v contains the open neigbourhood and vertex v
itself.

A dominating set D is a subset of V (G) such that each vertex of G is either in D or a neighbor of
D. A k-dominating set D is such a subset of V (G) that for each vertex v exists a vertex u in D such
that d(u, v) ≤ k.

3 Improving Czygrinow’s theorem
Our main result is the following formula for the optimal pebbling number:

Theorem 3.1
πopt(G) ≤

15n

4(δ + 1)

Before the presentation of our results, we sketch the proof of the original Czygrinow’s theorem,
which states that πopt(G) ≤ 4n/(δ + 1). We do this for two reasons: Firstly because it is simple and
elegant. Secondly to show why it can not be improved.
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To do this we use the following statement which is very useful in graph theory:

Statement 3.2 If δ is the minimum degree of G, then G has a 2-dominating set D of size at most n
δ+1

.

It is clear that all vertices are reachable when we put four pebbles at each vertex of a 2-dominating
set. This and the statement prove the original theorem.

Such a distribution has the property that each vertex has a 4-reachable vertex in its distance-2
neighborhood. Hence, our first attempt to improve this was based on the following idea: If G is
connected and we put three pebbles on a vertex and two pebbles on the other vertices of G, then
all vertices are 4-reachable. This means that a connected 2-dominating set requires less number of
pebbles in terms of its size to assure the 4-reachability of its vertices.

Therefore, if we can show that exist a connected 2-dominating set for each graph whose size is
substantially less than 2n

δ+1
then we get an improvement for the original theorem.

Unfortunately, such a set does not exist for an arbitrary graph. A counterexample can be seen on
Fig. 1.

Figure 1: n = 26, δ = 3, but a 2-dominating set has to contain at least 14 vertices.

Our investigations led to the recognition that domination theory alone may be not sufficient to
make any improvement. We need to utilize the properties of pebbling also.

Our new tool is strengthening, which needs some definitions:
A vertex is strongly reachable under p if it and all of its neighbors are reachable. The strengthening

ratio E(p1, p2) of a distribution expansion p1 ≤ p2 is the number of the vertices newly become strongly
reachable divided by the number of pebbles newly added during the expansion. The strengthening
ratio of a distribution p is the the strengthening ratio of 0 ≤ p.

If p is solvable, then we have that:
n

E(0, p)
= |p|

For this reason, if we can show for each graph a solvable distribution whose strengthening ratio is
greater than δ+1

4
then we obtain an improved theorem.

The strengthening ratio has a very useful property:

Lemma 3.3 Let p1, p2, p3 be pebbling distributions such that p1 ≤ p2 and p2 ≤ p3. Then:

E(p1, p3) ≥ min(E(p1, p2), E(p2, p3))

Conversely, if p is a pebbling distribution and we have an expansion chain 0 = p0 ≤ p1 ≤ p2 ≤
· · · ≤ pk = p then E(0, p) ≥ min0≤i<k(pi, pi + 1).

Now we have everything to prove the improvement. The proof is by contradiction. Hence assume
that there exists a graph G such that none of the solvable distributions of G has size at most 15n

4(δ+1)
.

This is equivalent with the statement that the strengthening ratio of these distributions are lower than
4
15
(δ + 1). Let p be a pebbling distribution, whose strengthening ratio is greater than this and let p be

maximal with respect to its size. Such a distribution exists according to our assumption. Thus there
is no expansion of p with strengthening ratio at least 4

15
(δ + 1).

To obtain a contradiction, we show that such an expansion is always possible.
Classify the vertex set ofG in the following way: Let T (p) be the set of vertices which are strongly

reachable under p, H(p) be the set which contains reachable but not strongly reachable vertices, and
finally let U(p) be the set containing non reachable vertices.
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In the full proof we have to deal with 8 different cases, but now in this abstract we are only
showing two of them. One is the easiest case, the other is the hardest one.

Let S be a connected component of the subgraph induced by U(p).
Case 1: The radius of S is one.
Let v be the vertex, whose eccentricity in S is one. Put two pebbles at v. All vertices of S

become reachable. Consider u which is a neighbor of v. If u is in S then N(u) ⊆ N [S], therefore the
vertices of N [u] are reachable, which means that u is strongly reachable. Otherwise, u is reachable
under p, and with the help of the two pebbles placed at v it is 2-reachable now. Thus it is strongly
reachable again. So all neighbors and v itself are strongly reachable, hence the strengthening ratio of
this expansion is at least δ+1

2
, which is greater than the required one.

Case 2: The diameter of S is at least four, and there is a path of length four in S whose length is
also four in G. Let v1, v2, v3, v4, v5 be this path. If N [v2]∩N [v4] ≤ 2

15
(δ+1), then put 3 pebbles at v3

and 2-2 at vertices v2 and v4. It is clear that these three vertices are 4-reachable, hence their neighbors
became strongly reachable. |N [v2, v3, v4]| ≥ |N [v2]| + |N [v4]| − |N [v2] ∩ N [v4]| ≥ 28

15
(δ + 1). We

have placed seven additional pebbles, thus the strengthening ratio is at least 4
15
(δ + 1).

Now we handle the other case. So N [v2] ∩N [v4] >
2
15
(δ + 1). Put 4-4 pebbles at v1 and v5. The

neighbors of v1 and v5 become strongly reachable. Furthermore, the vertices of N [v2] ∩ N [v4] can
get a pebble from both v1 and v5, hence they also became strongly reachable. The total number of
vertices which become strongly reachable is 32

15
(δ+1) and we have placed eight more pebbles, so the

strengthening ratio is at least 4
15
(δ + 1).

The proofs of of the other cases will be given in the full version of the paper.
To bound the number of possible cases, and simplify the proof that no more cases are possible,

we assume that p is an expansion of p∗ whose properties are classified in the next lemma:

Lemma 3.4 LetG be a graph, then there is a pebbling distribution p∗ onGwhich fulfills the following
two conditions:

• If (u, v) is an edge of G and N [u, v] ≥ 29
15
(δ + 1) then u and v are reachable under p∗.

• The strengthening ratio of p∗ is at least 4
15
(δ + 1).

Here we present a construction for p∗, which is a greedy algorithm followed by an improvement.
We say that an edge is interesting if it satisfies the first condition. The main idea is that if an edge has
a large neighborhood, then if we put 3 pebbles at both ends of this edge, then its whole neighborhood,
a lot of vertices, becomes strongly reachable. This can be contunued until the neighborhoods of the
interesting edges are disjoint. When there is an intersection, we can choose to either increase the
number of vertices that are reachable from an interesting edge by putting more pebbles on it, to make
several interesting edges reachable, or put less pebbles only at one vertex of the edge. If there is no
interesting edge then the trivial distribution is good to be p∗.

Create a list for each interesting edge and also for each vertex. These lists are empty in the
beginning. So consider an interesting edge and put 3 pebbles at both of its vertices. Then consider an
other interesting edge whose vertices are not in the distance-2 neighborhood of any vertex which has
a pebble. Repeat this step until it can be repeated.

Each remaining interesting edge has the following property: Exactly one vertex of the edge is not
reachable and the other vertex v is at distance two from an other interesting edge whose vertices has
3 pebbles. Maybe there is more than one such edge. Add v to the lists of these edges, and similarly
add these edges to the list of v. Put 4 pebbles at vertex v. Do this step again until no interesting edge
remains which has a non reachable vertex. Finally, consider the lists of the edges. If a list of an edge
has length at least five, then remove a pebble from each element of the list and add five more pebbles
at the edge in the following way: Put two pebbles at one vertex and three at the other. Therefore the
distance-3 neighborhood of the edge becomes reachable. After that, delete the elements of the list
from any other lists and also delete the list itself. Choose an other list of an edge whose size is at
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least five and do the same until no more such a list remains. Let p∗ be the distribution what we have
obtained.

It is clear that each vertex of every edge is reachable under p∗. We can think about p∗ as an
expansion chain. Let an element of the chain be one of that:

• We put 6 pebbles at an edge.

• We put 4 pebbles at a vertex.

• We put 11 pebbles at an edge and 3 pebbles at each vertex which has appeared on the list of it.

A lower bound for the strengthening ratio of each distribution expansion can be given by elementary
analysis. Therefore by Lemma 3.3 we have a lower bound on the strengthening ratio of p∗, and it
gives the desired bound.

4 Conclusion
We improved the upper bound on optimal pebbling given by Czygrinow. We introduced strengthen-
ing; a new tool which could be useful to give another upper bounds on optimal pebbling number.

Despite our improvement, it is still an open question that which is the exact bound in the sense of
the minimum degree. We conjecture that the answer is cn

δ+1
where c is closer to 3 than 4.
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