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Abstract

In this paper the dynamic analysis of a beam on a block—aokletauspension system is accom-
plished using a continuum approach. The modal shape furscaad the natural frequencies of
the structure are derived in a dimensionless form for baibhk&ld and stressed cables. A proce-
dure is developed to handle the nonlinearity originatethftbe consecutive slacking and stressing
of the suspension cable. Vibration analysis of the bilinearlti-degree—of—freedom structure is
accomplished for a vortex—shedding generated lift forakfana continuous pedestrian flow.

Keywords: block—and—tackle suspension system, cable slacking, Iisbdpe functions,
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Nomenclature

u(&, ) dimensionless beam deflection T transformation from active to passive modes
¢ dimensionless coordinate T} period of vibration of the forced structure
7 dimensionless time T reference time period ( f)

1 beam mass per unit length Th; dimensionless natural period*

E1 bending stiffness £, natural frequency*
L total length of the beam t duency
A\; eigenparameter*

r frequency parameter

q(&, 7) distributed load u;(§) normalized modal shape function*

gs Static distributed load intensity F; area of theth normalized shape function*
¢o dynamic distributed load amplitude Rgy,; deformation response factor of moite

f forcing frequency n; modal displacement*

* Superscript “a” or “p” would correspond to active or pagssuspension system, respectively.

Email addresskocsi s@p- nech. ne. bre. hu (Attila Kocsis)
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1. Introduction

Simple suspension bridges were already used more than ¥08 ggo. The oldest known
structure is from the 7th century, constructed by Megya civilization at Yaxchilan[1]. Sketches
of the first suspension bridge that resembles modern suspearsd cable—stayed bridges appeared
in Fausto Veranzis masterwork [2] in the late 15th century. These type ofcttrtes are composed
of compressed pillars, a bridge deck, and cables. The maambehind a suspension bridge is that
there are (usually) two main cables that hang between tladnd are anchored to the ground at
both ends, while (vertical or inclined) suspenders contiextieck to the main cables. The cable—
stayed bridges, on the other hand, have one or more pillarata the main load bearing structures
and inclined suspension cables transmit forces from thk ttethe pillars. There are numerous
variations of these kind of structures, see for example tmprehensive work oKawadal3].
The length of suspension bridges varies from small foogasd like theBoston Public Garden
Footbridge to theAkashi Kaikyo Bridgewhose central span is almost 2000 m long.

Longer and more slender bridges have appeared as mateprpes, design methods and
building techniques have significantly improved. Theredlas been a strong community demand
for more interesting structures, which are more aestheticappealing to the public. However,
slender structures tend to be more sensitive to dynamiegoireduced by wind loads [4, 5] or
traffic flow [6], for instance, resulting in vibrations of theidge deck. These vibrations can attain
high magnitude in some cases, especially when the vortexdatg frequency of the wind or the
pace of the traffic approaches one of the natural frequentibe bridge. A well-known example
of failure caused by mechanical and aerodynamic effectseicollapse of thdacoma Narrows
Bridge[7]. Pedestrian—induced vibrations of slender footbrglgave also been analysed by nu-
merous authors. For a literature review of lateral vibraisee [6], while for vertical vibrations
see for example [8] and the references therein. The mostkvelivn example for dense pedestrian
flow induced resonance of lateral vibration mode isltbadon Millennium Footbridg€9]. These
examples have revealed that a proper dynamic analysis eéss&y for slender bridges subjected
to wind and traffic loads.

The application of some kind of suspension system for fadgjer constructions is quite gen-
eral. The disadvantage of cable suspension systems isotinatsables can be highly overstressed
while others can be slacked. High tension in cables is natatde because it may lead to failure,
but slacking of cables is also disadvantageous. Becausescabinot have any resistance to com-
pression, the dynamic behavior of suspended bridges caimghl monlinear. Hence, a hanger
system which offers a fairly uniform stress distributiorttie cables has many advantages.

The present paper studies the dynamics of a beam hanged @tialsguspension system,
which is composed of pulleys and cables, and calledblbek—and—tackle suspension system
This effective suspension system was invented by Kolaasy10] for supporting tensile roofs
[11, 12]. It may also be used as a suspension system of fdgtsj as suggested in [13], where a
deck was suspended to a block—and—tackle suspension systestatic analysis of the structure
was accomplished. However, the dynamic behavior, whiclerg important in case of light and
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Figure 1: Model of a beam on a block—and—tackle suspensitersy

slender footbridges, has not been studied yet for suchtatas:

First the mechanical model is introduced in Section 2. Time8action 3 the natural circular
frequencies and the corresponding modal shape functiendesived for two states of the bridge.
One state corresponds to slacked cables, and the othecstatsponds to stressed cables. The
obtained modal shape functions and frequencies are verdretithe modal decomposition based
continuum approach for dynamic simulations is developeBidntion 4. The vertical vibration of
the structure due to vortex—shedding and passenger tfimulated and validated in Section 5.
Finally, conclusions are drawn in Section 6.

2. The mechanical model

The mechanical model of the structure is shown in Figure lerd@hs a simply supported
Bernoulli—-Eulerbeam of lengthL.. Two pulleys are attached to this beam at equal distances.
These pulleys divide the beam into three spans of leAgthZ /3. The mass of the pulleys, and
the friction between the pulleys and their shafts are négtecThere is a rigid upper structure
at heighth, to which three pulleys are attached, as shown in Figure 1.a8sfess, inextensible
cable runs through the pulleys. The ends of the cable are fixéde ends of the beam. The
origin of a left-handed coordinate system is at the fixed stppf the beam, the-axis points
to the right and coincides with the unloaded, straight axithe beam, while the/-axis points
downward. The loads act in the— y plane, and cause uniaxial bending about#faxis. Lateral
and lateral-torsional vibrations, and structural damgrg neglected. Small displacements are
assumedy(x,t) denotes the vertical deflection of the beam.

3. Natural circular frequencies and modal shape functions

Let us introduce the dimensionless coordir@agand timer as:

x=¢L — %:l,
t=77T — @—1
-7 ot T’
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Here the reference length = 3/ is set to the total length of the beam &hds a reference time
period which will be fixed later, depending on the studiedopgm. The beam deflection can be
given as function of the dimensionless variables:

u(, ) =a(LETT)/L. (2)

Then, partial differential equation that governs the fréwation of aBernoulli-Eulerbeam [14]
yields:
EIdw(¢, ) pLo*u(é,T)
I3 ¢t T2 912
HereE1 is the bending stiffness of the beam ani its mass per unit length. The solution for (3)
is searched for in the separated form

= 0. 3)

u(&, ) = Zui(ﬁ) (a;cos(2m f; T'T) 4 by sin(2w f;T'T)) . (4)

Here f; is theith natural frequency of the beam, whilg(¢) is the corresponding dimensionless
modal shapdunction. The coefficients; andb; depend on initial conditions for prescribed shape
functions. Substituting (4) in (3) leads to ordinary di#atial equations (ODES):

PLav©) — enfP nlu(e) =0, i=1.2,... -

Here prime denotes differentiation with respect thienceu!V (£) = d*u;(€)/ d€™.
Let us introduce thé&requency parameter of the beam as:

T |FEI
r=13 e (6)
Eq. (5) is solved by
w; (&) = A; cos (N&) + Bisin (&) + C; cosh (N;€) + D;sinh (A\€) (7)

where

\l r

is theith eigenparameterand the coefficientd;, B;, C;, andD; are dependent on end conditions.
Note thatu!" (¢) = Mu;(€), and that-A\? is theith dimensionless natural circular frequency
Since the suspension cable can bear only tension, it madunte nonlinearity in the dynamics
of the structure. This phenomenon is handled as follows. Jiates of the structure are distin-
guished. If the cable is under tension, then the suspengstera works as a load bearing structure.
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This is called theactive state If the tension in the cable vanishes, then the suspensgtersyis
passive, i.e. it does not play any load bearing role. Thiglled thepassive stateSince the latter
case is simpler, it is discussed first in Section 3.1, andtireactive state is studied in Section 3.2.

3.1. Passive suspension system

In this case the studied structure is a simply supported lmddemgth .. The free vibration of
such a beam is well known [14]. With our dimensionless notatheith eigenparameter and the
corresponding modal shape function are:

p_.
A =i,

ul(€) = V2sin(ir). 9)

(Note that superscript “p” refers to the passive state.)

3.2. Active suspension system

In this case the cable is under tension and the suspensiamsgentributes to the load—bearing
capacity of the structure. Eq. (7) is valid for each span afjte /. In order to compute the
coefficientsA;, B;, C;, and D; of Eq. (7) for all the three spans, one needs to defined = 12
appropriate conditions. Four conditions come from the tkiagc and kinetic boundary conditions
at the beam ends, namely the pinned support and the rolleotdallow vertical translations and
cannot bear bending moments. Another four conditions coora the continuity of the beam at
the suspended points in terms of displacements and slope$ieFtwo conditions prescribe zero
jump in the bending moment at the suspended points. Onetaamdrises from the inextensible
property of the cable. The last one condition is obtainedetsting the cable force to the jump in
the shear force at the suspension points and eliminatincpible force. Since these conditions must
be fulfilled at any time instant, the natural frequencieshaf $pans must be the same for a given
modal shape. Hence, the boundary and continuity condisoagrescribed for the modal shape
functions. Then, a frequency matrix can be compiled andyaed| leading to the eigenparameters
and the corresponding modal shapes of the active state.amhlgsis is detailed in Appendix A.
Each modal shape function is scaled so that it satisfies:

1
| e ae =1, (10)
In general, the following identities hold for the modal sedpnctions:
1 1
/0 ui(§)u;(§) A€ = 0y, /0 ui¥ (€)u;(€) dg = A} - . (11)

Hered;; is theKroneckerdelta, i.e.d;; = 1 if : = j and zero otherwise. The proof of Eq. (11) is
given in Appendix A. In this paper only the first 12 active medee used further. Figure 2 shows
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Figure 2: The first twelve normalized modal shape functldnbe)actwe state and the corresponding eigenparameters.

Note that the natural frequency can be computedfs: 5- =D (Aa) = QW L2 ,/ ! for a given beam.
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these first 12 modal shape functions of the active state r@m@daaccording to (10). Is it worth
noting that odd shape functions are skew—symmetric, whidd shape functions are symmetric.
Classification of the eigenparameters and the corresportjemmodes are thoroughly discussed
in Appendix A. Below only the main results, i.e. the trivialdanon—trivial active modes are
presented.

3.2.1. Trivial modes of the active state
If mod (¢,6) equalsl, 2,3 or 5, then theith eigenparameter and the corresponding modal
shape are:

N =(i+ 1),
ud = /2sin ((i + 1)7€) |

while the cable force is zero. Such a modal shape functioallecttrivial because it coincides
with the ¢ + 1)st modal shape function of the passive state (see Eq. (Ohjasl either a skew—
symmetric form (for odd values) or nodes at the suspended points (for thoaties that satisfy
mod (i,6) = 2 or 5, see the mid column of Figure 2). For example, modes 1 and Skang—
symmetric, mode 2 is symmetric but has nodes at the susp@uiled, while mode 5 fulfills both
conditions.

3.2.2. Non-trivial modes of the active state
If mod (7,6) equald) or 4, then the following inequalities hold for thth eigenparameter:

im < A< (i+1)m.

The corresponding cable force is non-zero and the modakshiagtion is symmetric. The first 4
non-trivial shape functions of the active state are givefsppendix A.

4. Non-linear vibrations of the bilinear structure: theory

As long as the state of the suspension system is unchangesirticture behaves as a (linear
elastic)Bernoulli-Eulerbeam, and undergoes linear vibrations under harmonicrgadiBut our
structure has different stiffness if the suspension sysseactive than if it is passive, hence it is
bilinear. Therefore, changes in the state of the suspension systemaige the vibration of the
structure non-linear, in spite of there are linear vibraibetween two consecutive state changes.

It is well known that bilinear oscillators may exhibit pedio, quasi—periodic, or chaotic mo-
tions [15]. A relevant example is the beam with non-lineaurmtary conditions [16], which was
reduced to a single—degree—of-freedom system and shovassess chaotic vibrations.

In the followings, it is shown how the linear system is anatysand the active shape functions
are verified with a static loading. Then a procedure is dgagldor handling the state changes and
simulating vibrations of the bilinear structure.
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4.1. General remarks on the vibrations in a fixed state

The partial differential equation of the forced vibratiohaoBernoulli—-Eulerbeam [14] with
dimensionless spatial and temporal variables (1) is

EI0'w(& )  pLo*u(E, )

L3 a§4 T2 a a9 9 Q(ga T)' (12)

Hereq(¢,7) = (L&, T 1), with ¢(x,t) being a time—dependent distributed load. The complete
solution for (12) is the sum of the homogeneous and the pdatticolutions. The homogeneous
solution is given by (4). The particular solution is seatha& as a time—dependent combination

of the modal shape functions:
) =D ui() (7). (13)
j=1

In both (4) and (13) those modal shape functions are usedaohnaspond to the actual state of the
suspension system (active or passive). A change in thedtétte suspension system introduces
nonlinearity to the problem. It is explained later how thenhnearity is handled. Now the time
interval while the suspension system is either active osipass studied.

Eq. (13) is substituted in (12), then the result is multigli®y «;(£) and integrated with respect
to £ on |0, 1]. Using (11) it yields the following equality:

El L !
TN+ i) = [ ate (o) ds

Here dot denotes differentiation with respectrto Now let us multiply the above equality by
T?/(uL), implement the frequency parameter (6), and introducéttheodal forcing:
T2 1
@) =7 [ a6 de (14)
HL Jo

Thus, the following system of ODEs is developed:

ii(7) + (P A))mi() = Qil7), i=1,2,.... (15)

The solutions for (15) yield the dimensionless modal dispiaents, i.e. the time—dependent func-
tions in the combination (13), and so the particular sotutsd the forced vibration can also be
generated.



4 NON-LINEAR VIBRATIONS OF THE BILINEAR STRUCTURE: THEORY 9

o 13 2/3 1 101 151

44 0 : . 0 : ‘ ‘
1/3\/ 2/3 g 1/3 23 18
5
61 5
10

u [x107%] u" [x107%] fu™ [x1072)
(a) (b) (c)

Figure 3: (a) Approximate static deflection of the beattt,), under a constant distributed load using twelve modal
shapes of the active state. (b) The curvature’, which is proportional to the bending moment diagram of tearh.

(c) Opposite of the third derivative of the deflectiony’”’, which is proportional to the shear force diagram of the
beam.qgsT?/(uLr?) = 1. Note that the exact shear force diagram would be pieceimisar.

4.2. A static distributed load: verifying the modal shapéthe active state

First the case of a constant, static distributed load of ntag@qs is studied. The initial condi-
tions are set such that andb; in (4) are zero. The modal force (14) is time—independent:

QST2

1
=27 [ = E0r. (16)

Here F; is the definite integral (area) of thth modal shape function. Therefore, the modal force
is zero if the corresponding modal shape function is skemnsgtric. The solution for (15) is also
time—independent:

s QSTQ Fz

> — - = 17

772 ,LL L 7,,2 )\;1 ( )

If the load points downward, i.egs > 0, then the state is active, hence in (17) the active modal
shape functions and eigenparameters have to be used. Bidajeshows the deflection({) of
the beam fosT?/(1n L r*) = 1, using 12 modal shape functions of the active state. Figy® 3
and (c) show the opposite of the second and third derivati’es), which are proportional to the
bending moment and shear force diagrams, respectivelye that the exact shear force diagram

is piece—wise linear, and Figure 3 (c) is its best approxonawith 12 modal shapes.

4.2.1. Verification for bending moment

For the constant distributed loading the static behavitmh®@beam suspended to an inextensible
cable is identical to that of the continuous three—span bd#4emce, our results can be compared
to the known, analytic solution of a three—span beam sudgectuniformly distributed load ([17],
p. 349). A good agreement between the two solutions woulifiMie modal shape functions and
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natural frequencies of the active state. According to [i§,bending moment at a supported mid
point is:
QSL2
90

M(L/3) =
It yields the dimensionless curvature

M A

k(1/3) = —u"(1/3) = LE =50 L

For ¢s1/(uLr?) = 1, the computed curvature is0.01076 with 12 modal shapes of the active
state. The exact result is1/90, hence the relative error yields171%. (Note that this relative
error is independent of the value@f™/(1.Lr?).) This acceptable error arises from the finitization
of the function space: only a finite number of modal shapes baen taken into account.

4.2.2. A worked example for displacements

A worked example is shown now for the computation of the redlies of the displacements,
using the verified, dimensionless modal shapes of the aaisspended) state. A beam of bending
stiffnessEI = 0.3MNm? and lengthZ. = 18 m is subjected to a constant distributed lagd=
750 N/m.

From Figure 3 (a) the dimensionless displacement of the roidtf the beam iy =
0.6393 - 1075. It belongs togsT? /(1 Lr?) = 1, which, in view of Eq. (6), yields:

ulr? EI

Finally, the dimensionless displacememq is rescaled to the loag},, and its real value is com-
puted based on Eq. (2):
limia = Umig 2L = 1.678 - 10~ m. (18)
S
4.3. A distributed load with both static and dynamic compadsien

The beam is under a static distributed load of magnitdand a dynamic distributed load of
amplitudeq, varying harmonically in time with frequency. The ratio of the static load to the
dynamic amplitude is denoted ly

s = aqo.

The distributed load is thefi(x,t) = qo (o + sin(27 ft)) . The unit of timeT" is set equal to the
reciprocal of the frequency. The forcing with dimensionless variables is

q(&,7) = qo (o + sin(277)) , (29)
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hence the modal force (14) has the form of

2

Q) = L (a-+sin2nr)) [ (o) ag

_ q1”
=

F; (a + sin(277)) .

The modal force is zero if the corresponding modal shapetiiumes odd. Now (15) yields

i (7) + (MA2)2(7) = qfi Fi (o + sin(27)) | (20)

which is essentially the ODE of a spring—mass system sidgjeota static and a harmonic forcing.
The complete solution for the modal displacemeiit) is the sum of the time—dependent part of
the free vibration (4) and the particular solution of (20):

@I?* F 1 .
,qu? F Oé—FTSIH(Qﬂ'T) . (21)
; 1_(

2
rA;

ni(T) = a; cos(r A2 7) + by sin(r A7 1) +

Herea; andb; are from initial conditions. Note that if the dimension;ofs properly chosen, then
only two parameters are needed: the frequency parameted the ratio of the static to dynamic
loada.

Thesth dimensionless natural period of vibration in the unitshaf reference period is:

2T

TnJ' == , )\7/2 . (22)

It is also worth mentioning that the period of harmonic fais alwaysonein the units of7'.
If a finite numberN of modal shape functions are used, then the modal displatsmge =
[m(7),...,nn(7)]F, and the modal velocities = [, (7), ..., nx(7)]7, can be written as:

n(t) = C(r)a+ S(7)b + ah + sin(277)Rgh, (23)
(1) = A (=S(r)a+ C(7)b) + 27 cos(2n7)Rgh. (24)
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Here
C(r) = <cos(r /\% T),cos(r /\g T),...,cos(r /\?V T)> ,
S(7) = (sin(r A} 7),sin(r A3 7),...,sin(r A} 7)),
A:T</\%,/\§,...,>\%V>7 (25)

M= R e

W r/\g r)\?v
are N-by—V diagonal matrices, and
a — [al,ag,...,aN]T, b: [bl,bg,...,bN]T

are N—vectors that depend on initial conditions, while the loadter is:

QOT2 |:F1 Fy FN:|T. (26)

T UL N

Note that entry. i of Ry, denoted byR,;, is thedeformation response factéor theith mode.
If 7 and7 are given at some time instantthena andb can be computed from (23) and (24):

a= C(n — ah —sin(277)Rgh) — A™'S (1) — 27 cos(277)Rgh) ,

27
b =S (n — ah —sin(27r7)Rgh) + A™'C (9 — 27 cos(277)Rgh) . @7)

Equations (23)—(27) hold for both active and passive staiely the corresponding (active or
passive) eigenparameteysand modal shapes (£) are needed for a fixed number of modes.

4.4. Nonlinearity induced by activating and inactivating ttuspension system

4.4.1. Transformation between active and passive states
The displacement of the beam is a linear combination of thdainshape functions. If the
suspension system is active, then the displacement is:

u(é,7) = ZU?(f)ma(T) = ()2

Here the vector of infinite depth?, = [u2(&), u3(€),. .., v (£)]T collects the modal shape func-

tions of the active state, argf. = [n2(7),n3(7),...,n2 (7)]* stores the corresponding time—
dependent functions. If the suspension system is pashe the displacement function is

u(é,7) = Zuf(f)nf(ﬂ = (u)"n?,.
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At a transition, i.e. at a time instant when the suspensistesy is activated or inactivated, the
deflection of the beam can be described by the modal shapeshostates, i.e.

(ugo)Tngo,tr = (ugo)Tngo,tr' (28)

Multiplying the above formula by, from the left and integrating it with respect §oover [0, 1]
yields:
Mootr = TooNio - (29)

Here the time—independent transformation mattiy is the following definite integral:

1
TOO:/ ugo(ugo)Tdf.
0

Similarly, if (28) is multiplied byu?2, from the left and integrated with respectdover|0, 1], then
the inverse transformation is obtained:

77<ilo,tr = Tg;ngo,tr- (30)
From (29) and (30) it can be seen thf T, = T, TL = I, is the (infinite—by—infinite) identity
matrix.
The dimensionless mechanical energy, associated wittilthmodal shape, is:

1 ) 7"2 )\;4

Yi= ()" +

9 9 (77i)2-

At atransition, when the suspension system is inactivaitednechanical energy of an active mode
should be all transfered to the corresponding passive mhdgéing Eq. (29) the conservation of
the total mechanical energy can be formulated at the transit

1. ) 1 1. . 1
Yrot = 5 (ni‘o,tr)T ngo,tr + B (nﬁo,n)T (Aa)2 nio,n ) (né’o,tr)T né’o,tr + 5 (nﬁo,tr)T (Ap)2 n&,tr
1, , 1
= 2 (nﬁo,tr)T TZoToongo,tr + B ("&,tr)T Tfo (Ap)2 Toongo,tr'

SinceT? T, = I, the mechanical energy is preserved, there is no energy aralissipation
during a state change of the suspension system.

However, in numerical analysis it is not possible to use l&l infinitely many modal shape
functions. Only a finite numbei? of active modal shapes and® of passive modal shapes can
be implemented, which leads to afP—by—-N2 matrix T. In that case, th&/®-by-N?2 matrix T? T
differs from the unit matrix and some mechanical energyipliges from the system each time
the suspension system is activated (and so when it is imdetly. The closesE” T is to the unit
matrix (i.e. the closest the eigenvaluesIofT are to one), the less energy loss occurs during a
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transition. The optimal numbers of active and passive maded andN + 1, respectively, since
theith trivial active mode corresponds to the+ 1)st passive mode. In our numerical examples
N2 =12 and NP = 13 modal shapes are used, leading to Affe-by—V? transformation matrix:

r0 0 0 0.7661 0 -03326 0 0 0 03141 0 -0.1717 7
1 00 0 0 0 0 0 O 0 0 0
01 0 0 0 0 0 0 O 0 0 0
0 0 1 0 0 0 0 0 O 0 0 0
0 0 O 0.6343 0 05286 0 0 0 —-0.3342 0 0.1764
0 0 O 0 1 0 0 0 O 0 0 0

T=|0 0 0 -01023 0 07795 0 0 0 0408 0 -0.1911 | . (31)
0 0 O 0 0 0 1 00 0 0 0
0 0 O 0 0 0 01 0 0 0 0
0 0 O 0 0 0 0 0 1 0 0 0
0 0 0 001508 0 -0.04317 0 0 O 0.7666 0 0.4499
0 0 O 0 0 0 0 0 O 0 1 0
L 0 0 0 —-0.007657 0 0.02081 0 0 0O -0.1795 0 0.8330

Note that columns 4, 6, 10, and 12, that correspond to neiaitective modes, are not unit vectors.

Although the conservation of the total mechanical energyakted by using a finite number
of modes, it can be thought of as a contribution of the suspersystem to the dynamics of the
structure. The cable has not only kinematic and static tffééeken into account in the modal
shapes and frequencies), but it dissipates some energy adiivated or inactivated.

4.4.2. Transition conditions
The jump in the dimensionless shear force diagram at thedsftension point,

jump=u"(1/3+¢) —u"(1/3 —¢), (32)

is proportional to the cable force. (Hetes a sufficiently small number.) If the structure is in
the active state and the sign of the cable force turns frontiy®$o negative, then the suspension
system becomes passive.

The inextensibility condition is:

inext=u(1/3) + u(2/3). (33)

If the structure is in the passive state and the above vatas ftom negative to positive, then the
suspension system becomes active.

4.4.3. Switching between active and passive states

The procedure of the numerical simulation is as followss B$sumed that in the beginning of
the simulation the structure is unloaded and the suspesible is neither stressed nor slacked.
The simulation starts with a chosen state, the active stati@is case. First initial conditions are
set. For simplicitya® = b? = 0 are prescribed. A sufficiently small time stéypr is also set.
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Starting atr = 0 the dimensionless timeis increased by small steg@sr andn?(r) is computed
from (23) at each step. There, eigenparamet@and modal shapes(¢) of the active state are
used. After each time step it is checked whether the cabbe foas become compressed or not. It
can be done by evaluating (32). The cable has become coregrbesveen steps— 1 andk if
jump,_, > 0and jump < 0. If so then a time step smaller thé is used after thei(— 1)st step.
This time step is approximated B A7, wheresP is from piece—wise linearization:

g = jump, _,

= - : . (34)
jump,._; — jump,

At the time instant of transitiony, = (k — 1+ P)Ar, bothng andng are computed from (23) and
(24). Then a switch between active and passive states ismptishied by using the transformation
(29), which holds for both the displacements and the veexit

M =Tng, e = Tnf.

Before continuing the simulation with the passive state efghspension system, the actual
initial conditionsaP andbP are computed from (27). There the previously determingdind
7y are used with the eigenparametePsand modal shapeg (&) of the passive state. Then the
numerical integration is continued and the valuegbire computed at each time step from (23).
The length of the first step is set o — 5°)A7 in order to have the solution in equidistant time
steps. After each iteration, it must be checked whetherubpension system becomes active or
not by evaluating (33). The cable should have been activateldthe suspension system should
have already been bearing loads somewhere betweenrsteps andm if inext,,_; < 0 and
inext,, > 0. In that case a smaller time step, denoteddfxr, is needed, where

B inext,,_;
"~ inext,_; —inext,,’

/Ba

The modal displacements and velocitigsand) are computed at this time instant of transition,
T = (m— 1+ f®)Ar. Then the suspension system is activated by using the mtenssformation
(30) for both the displacements and the velocities:

nd =T"nh, n2=T"n.

Integrating the system continues then with the active mode®sy Eq. (23). The initial values
a® andb? are computed from (27), using the freshly determin@andnZ, along with the eigen-
parameters? and modal shapes (&) of the active state. The length of the first time step is only
(1 — f?)Ar in order to keep the time intervélT between consecutive steps.
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5. Non-linear vibrations of the bilinear structure: numerical simulations

In the followings, the above described numerical simutat®applied. The dynamics of the
structure due to the lift drag of vortex—shedding and a pedesflow is studied. The simulations
are carried out witiMaple 9.0 computer algebra system [18].

5.1. Vertical vibrations due to vortex—shedding

There are several effects that wind can exert on structsues, as vortex—shedding, flutter and
buffeting [4]. Here the vertical force exerted on the beanvimtex—shedding [19, 20, 21, 22, 23,
24, 25] is discussed.

Itis assumed that the cable is neither stressed nor slackled initial (no—wind) state. The load
has no static component, which implies= 0 in Eq. (23), hence only a harmonic lift force occurs
at the vortex—shedding frequency. This lift force can attezi upward or downward, varying
harmonically in time with the vortex—shedding frequency48]:

_StU (35)

D
HereSt is theStrouhalnumber (normally between 0.05-0.2) s the wind flow velocity, and is
the width of the frontal area of the deck. In the next sectimnethsionless numerical simulations
are accomplished. The studied dimensionless time int&wak [0, 10] in the units ofT’, which
is the forcing period. Then, the obtained results are vadlavith approximate hand calculations.

5.1.1. Results

In the following examplesa = b = 0 in the initial time instant- = 0. For a linear system it
would imply harmonic, steady—state vibration with the fogcperiod. However, our structure is
bilinear, and the lift force of the vortex—shedding may klte suspension cable, which may lead
to non-linear vibrations. Note that only the symmetric madeapes play a role in the dynamic
response of the structure. It is because of the zero iniéileles, the symmetric loading, and also
because of symmetric modes are transformed into symmetidesduring state changes.

The unit ofy is chosen such that7? /(L) = 1. Hence only the frequency parameteran be
varied. Six different values are studied, namely: 0.125,0.25, 0.5, 1, 2 and4. A smaller value of
r corresponds to a softer beam. Table 1 shows the dimenssoméésral periods of the symmetric
active and passive modes for the studied values ®ote that the dimensionless natural periods
are in the units of’, and the dimensionless forcing period is one in the units.of he frequency
parameter is inversely proportional to the natural per{gée Eq. (22)). If a dimensionless natural
period is greater than one, i.e. it is greater than the fgrpiariod, then the forced vibration of
the corresponding mode is out of phase. Note that in the dase-00.125,0.25 and0.5 the 1st
passive mode is out of phase.

Figure 4 shows the displacement of the mid point of the begigversus dimensionless time
7, while Figure 5 shows the velocity of the mid point of the beaensus its displacement for
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Dimensionless natural periods of symmetric active andipassodes

r state - T3, T”;‘* Tf;ajﬁ Tngg T,Elo Tn;u
Tr?,l Tr?,B Tn,5 Tn,7 Tn,9 Tn,u Tn,13
0125 active - 0.5658  0.3024 0.1241  0.06287  0.04997  0.03309
' passive 5.092 0.5658  0.2037 0.1039  0.06287 0.04209  0.03013
0.25 active - 0.2829 0.1512  0.06206 0.03143 0.02498  0.01654
' passive 2546 0.2829 0.1018 0.05196 0.03143 0.02104 (60150
05 active - 0.1414 0.07560 0.03103 0.01571 0.01249 0.008274
' passive 1273  0.1414 0.05092 0.02598 0.01571 0.01052 %BBO7
1 active - 0.07073 0.03780 0.01551 0.007859 0.006246 0.00413
passive 0.6366 0.07073 0.02546 0.01299 0.007859 0.005260D03766
5 active - 0.03536  0.01890 0.007758 0.003929 0.003123 068020
passive 0.3183 0.03536 0.01273 0.006496 0.003929 0.00263001883
active - 0.01768 0.009450 0.003879 0.001964 0.001561 03301

passive 0.1591 0.01768 0.006366 0.003248 0.001964 0.601810009417

Table 1: Dimensionless natural periods of the relevant sgtrimactive and passive modes in the unitgofor the
studied values of the frequency parametemNote that the 4th, 6th, 10th and 12th modes are the noraltaetive
modes.

the studied values of the frequency parameteBince the initial values o andb are zero, only
forced vibration of the active modes occur in the beginnimgjfaee vibration is absent. Hence only
in—phase, forced vibration of the active modes can be obdanatil~ = 1/2 in all the diagrams.
Then the cable force vanishes and, due to the transitiongsiygamodes, a combination of free
and forced vibrations of symmetric passive modes evolves.

The smallerr is the softer the structure is. For smalthe free vibration of the first (few)
mode(s) governs the slow dynamics of the structure, whiéehiigher modes and the forced re-
sponse are the source of fast oscillations. Howeveridflarger (which means a stiffer structure),
then the slow dynamics is governed by the forced respon$eatitucture, and the fast oscillations
are originated from the free vibrations of the modes.

Figures 4 (a) and 5 (a) correspond-te- 0.125. The first passive dimensionless natural period,
Trffl = 5.092, can be well identified in the slow dynamics of the system \paissive suspension:
in the upward displacements in Figure 4 (a) and in the laigeselin Figure 5 (a). The next period
that is well observable is the unit period of the forcinggorating from the out—of—phase forcing
of the passive modes. Natural vibrations of higher modeslaepresent as fast oscillations, but
they are less apparent in the given scale. At approximatelyl /2+T,'1°71 /2 the suspension system
becomes active again, and a combination of free and fordedtions of the active modes occurs.
The suspension remains active for abouta/2 time period, and it is inactivated again at about
T = 1/2+4 T}, /2 + T2,/2. Then vibration occurs in the passive state for aboiif g2 time
period, then the suspension system is activated again,@nd.sSincer is small, and because
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Figure 4: Vortex—shedding generated displacement of tldgowint of the beamnig as the function of dimensionless
time 7 for frequency parameters= (a) 0.125, (b) 0.25, (c) 0.5, (d) 1, (e) 2, and (f) 4. Blue ardicelors belong to
active and passive suspension, respectivgly?/(uL) = 1, AT = 0.0005.
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Figure 5: Vortex—shedding generated velocity—displacgndeagrams of the mid point of the beam for frequency

parameters = (a) 0.125, (b) 0.25, (c) 0.5, (d) 1, (e) 2, and (f) 4. Blue amdieelors belong to active and passive
suspension, respectivelyyT?/(uL) = 1, AT = 0.0005.
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the structure is approximately 10 times stiffer in the acstate than in the passive state, it spends
around 10 times less time in the active state than in the ymassate. Hence, the period of this
forced vibration, for = 0.125, is roughly:

o (36)

Tf:2_0 n1-

Figures 4 (b) and 5 (b) correspondsto= 0.25, whereTr'?,l = 2.546. This natural period can
be clearly seen in the large ellipse in Figure 5 (b). The upvwehsplacement is not a pure half
sine wave with periotT,ff1 /2, but distorted slightly by the forced response of the passiedes.
The free vibrations of higher passive modes are the sour&asobscillations. The time period
that the structure spends in the passive state varies afiouhlde vibration of the structure in the
active state is mostly dominated by the 1st symmetric aatiwde, which has the natural period of
TR, = 0.2829.

Figures 4 (c) and 5 (c) correspondite= 0.5. The 1st passive natural peridﬂﬁf1 = 1.273,is
not far from the unit forcing period. Here the free and the-ofitphase forced vibrations of the
1st passive mode compete in the large upward displacenvenils, the free vibrations of higher
modes can be observed as short “ripples” (fast oscillatioAs animation of the vibrating beam
can be found online, see Appendix A.

Figures 4 (d) and 5 (d) belong to= 1. HereTr‘]”1 = 0.6366, which is smaller than the forcing
period, thus all the forced vibration modes are in phase. pened of the large tongues upward
is approximately one, and these forced responses of thevpagstem compete with the free
vibration modes. An animation of the vibrating beam is alal# online, see Appendix A.

In the previous two examples it is not possible to give a gqmut@imation for the period of
the vibration, since the vibration does not seem to be pieridds rather quasi-periodic or chaotic.

The next two diagrams correspond to fairly large values ag. to stiffer structures. Figures 4
(e) and 5 (e) correspond to= 2. Here the forced vibration of unit period dominates the oese
of the structure both in the active and in the passive staibs.forced response of the structure
is apparent in the slow dynamics, while the free vibratiordesare present as fast oscillations.
The same pattern can be observed for the case-oft. This is shown in Figures 4 (f) and 5 (f).
The structure is even more rigid. The time interval betweateshanges apparently tendd 1@,
indicating that the slow dynamics is governed by the forasponse of the structure. Hence, in
these two examples the period of vibration is approximately

T; = 1. (37)

Finally, it is concluded that the dynamics of a soft suspenbeam subjected to harmonic
vertical excitation is governed by the natural vibrationitsffirst passive mode. The structure
spends much less time in the active state than in the padaieg and its period of vibration tends
to (36) asr decreases. However, if the suspended beam is stiffer, thelymamics is dominated
by the forced vibration, the system spends about the samergmbtime in the active state as
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in the passive state, and the period of vibration tends tp 437 increases. If the structure is in
between these two extremities, then it can undergo contptiaaon—linear vibrations.

5.1.2. Verification

In this section the numerical simulation is validated bylgipyy basic formulas and concepts
from the literature [14, 27, 26] to a realistic structure andchparing the results with the numerical
outcomes of the previous section. A simple foot bridge wathltlengthL = 18 m, widthw = 4 m,
and height of frontal ar® = 0.75 m is studied. There are two main girders, each equipped by a
block—and—tackle suspension system. Because the flexansibral and the lateral vibrations are
restricted, only one half of the bridge is analysed: oneagjrthe half of the deck and secondary
structures, and one suspension system. The girder is ary (P§@el beam with bending stiffness
EI = 12MNm?. The mass per unit length, including half of all the load bepand secondary
structures, is taken to e = 455 kg/m. TheStrouhalnumber,St = 0.1, and the lift coefficient,
Cp = v/2-0.6 = 0.85, are set according to [26] p. 29.35-29.37. The studied weldoity is
U = 7.5m/s, the density of air iy = 1.29kg/m?. The vortex—shedding frequency fs= 1 Hz,
according to (35), and so the reference time period of ourehisd

T=1/f=1s

The harmonic lift load per unit length is given by [26]:
1
qv(t) = EpUzCLD sin(27 ft) = quo - sin(27t), where gy = 23.13N/m. (38)

The vibration of the structure without suspension system tuthe upward lift load (38) is
approximated by a single—degree—of—freedom model. Thigénvith slacked cable is a simply
supported beam, which has the fundamental natural perid [1

. L? [

and the static mid—point deflection ([27], p. 536):
. 5 quo - L* _
app v 10-3
g’ = < = 2635107 m.

The deformation response factor (or magnification factdj)[¢ields:

1

= ———— = —1.6316.
1= (To/T)?

Finally, the approximate dynamic deflection of the mid pahthe beam, considering only the
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particular solution and the fundamental mode of the fordbcation is:
dgen = |R| - Gigf® = 4.299 - 10~ m. (40)

Now the dynamic deflection of the model is computed, usingctirecepts developed in the
paper for passive suspension system. The frequency paaai¢he structure is from (6):

T |EI
r=13 = 0.5012. (41)

Hence, the results in Sec. 5.1.1 for= 0.5 can be directly applied. The first natural period of
passive state for this frequency parameter is given in Tabtethe units of the reference time
periodT'. Its real value is:

TP =1P - T =1273s. (42)

Note that the difference between (39) and (42) is causeddwgitiall deviation of (41) from =
0.5. Figure 4 (c) shows the dimensionless displacement of tltepwmint of the beam versus the
dimensionless time. The maximum upward displacement thaésponds to the passive state of
the structure is:

Ugyn = 0.08185. (43)

Sinceq,T? /(L) = 1 was set in the simulations, the distributed load amplitus the above
result corresponds to is:

wL
'
Finally, the obtained displacement (43) is scaled to thddiice amplitude (38) and its real value
is computed:

q = 8190 N/m.

flgyn = uggn% — 4.161-107% m. (44)
0

There is about 3% difference between Egs. (40) and (44). dhawing reasons lie behind it.
First, the approximate analysis incorporated the fundaahesbration mode, while our model
also took into account higher modes, which are in—phasedtamrto the first mode, which is out—
of-phase. Second, our simulation inherits a slight nurabdamping at each transition. Third,
our simulation takes into account the free vibration of thhecture, too. In view of these, the two
results are in a surprisingly good agreement. Of coursee tban be huge differences in other
guantities, like the internal forces.

Finally, let us fix the period of tim&", and masg: and lengthL of the beam, and give the
bending stiffnesg’1 corresponding to the frequency parameters studied in thaqus section.
The bending stiffness values are 0.75, 3, 12, 48, 192 and M#i\orresponding to the frequency
parameter values 0.125, 0.25, 0.5, 1, 2, and 4, respectively
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5.2. Pedestrian flow induced vertical vibrations

The passenger traffic load has both static and dynamic coemp®@n According to technical
guidelines [28, 29], the step frequency of normal walkingpproximatelyf = 2 Hz, although
there are also higher harmonics [30]. Here a continuousgbede stream is considered: the
passenger traffic load is modelled by a static plus a harndisicbuted load. Guidelines [28, 29]
suggest that the amplitude of the dynamic load is 10% of tgcdbad. It implies thaty = 10 in
Eq. (23). It is assumed that the cable is neither slackedtnessed when the beam is free from
pedestrians. The static component of the pedestrian floheappstatic tension in the suspension
cable, while the dynamic component may make the cable mm@es&d, less stressed, or slacked.
If the effect of the dynamic load is small, then it cannot kldee cable and the suspension system
remains active during vibration. However, if the dynamitzef is large enough, then non-linear
vibrations can occur due to consecutive cable slacking &iedssng. Such a resonant behavior
typically happens when the walking frequency is close to ohthe natural frequencies of the
structure. In the next section dimensionless numericalilsitions are accomplished. The studied
dimensionless time interval is € [0, 50] in the units of7’, which is the forcing period. Then, the
obtained results are validated.

5.2.1. Results

The unit of x can be chosen such that7T?/(uL) = 1. The ratio of the static component to
the dynamic amplitude is already set—= 10. Therefore, only the frequency parametaran be
varied. Because of the loading is symmetric, and the inigdlies are zero, only the symmetric
modal shapes appear in the structural response. Note th&iriting period is always one in the
units of 7', according to (19).

The first non—trivial active mode is the 4th mode, which is Bygtric. The natural frequency of
this mode coincides with the forcing frequency/ff = 1/7 in (8). The corresponding frequency
parameter is:

Tres = 0.03780.

Then the dimensionless natural periods of vibration in thiéeswof 7" are 7y, = 16.84 for the 1st
passive model 2, = T,V; = 1.871 for the 2nd active and 3rd passive modes, @fig= 1 for the
(resonant) 4th active mode.

In the following examples the frequency parametes tuned close to this resonant state and
numerical simulations are accomplished with initial valae= b = 0. The deformation response
factor (25) of the 4th active mode is prescribed/gs, = 10, 15,20, —20, —15 and —10. The
corresponding frequency parameters are computed from:

Table 2 shows the studied frequency parameter values amtbtbamation response factors of the
symmetric active and passive modes.
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Deformation response factors of symmetric active and passodes

r state - Ri, Ry, R3s Ris Rii R3 .,
Rg’l Rgﬁ Rg,5 Rgﬁ Rg,g Rg,n Rg,w
0.03985 active - -0.4648 10 1.178 1.040 1.025 1.011
' passive -0.003932 -0.4648 1.690 1.119 1.040 1.017 1.009
0.03912 active - -0.4408 15 1.186 1.042 1.026 1.011

passive -0.003792 -0.4409 1.735 1.124 1.042 1.018 1.009

0.03878 active - -0.4298 20 1.190 1.043 1.026 1.011

' passive -0.003725 -0.4298 1.758 1.126 1.043 1.019 1.009
0.03689 active - -0.3736 -20 1.215 1.047 1.029 1.013

) passive -0.003369 -0.3736 1.910 1.141 1.047 1.021 1.010
0.03660 active - -0.3656 -15 1.219 1.048 1.030 1.013

' passive -0.003316 -0.3656 1.938 1.144 1.048 1.021 1.010
0.03604 active -0.3506 -10 1.227 1.050 1.031 1.013

passive -0.003215 -0.3506 1.997 1.149 1.050 1.021 1.011

Table 2: Deformation response factors of symmetric actig@assive modes for the studied values of the frequency
parameter. Note that the non-trivial active modes are the 4th, 6th) 80d 12th ones.

For the studied values of the frequency parametéfigure 6 shows the displacement of the
mid point of the beamu,ig versus the dimensionless timewhile Figure 7 shows the velocity of
the mid point of the beam,q versus its displacement,g. The dynamics starts with the initial
static deflection and the velocity corresponds to zeroahitalues ofa andb. Forced vibration
of the active modes occurs, free vibration is absent. If yfetesn is close enough to the state of
resonance, then the cable force vanishes after a while amsligpension system becomes passive.
Some time later the suspension system will be active agatrit, dan be inactivated later, and so on.
These consecutive transitions between active and pagates snay lead to non—linear vibrations.

Figures 6 (a) and 7 (a) correspond &g, = 10 (r = 0.03985). A steady-state harmonic
vibration occurs in this case with the unit (dimensionlgssiiod of the forcing. The dynamic
effect of the pedestrian flow is not enough to slack the cadnheshence do not cause non-linear
vibrations.

Figures 6 (b) and 7 (b) correspond to a slightly more flexitttecture: 7§, = 15 (r =
0.03912). At the beginning of the time—displacement diagram ¢fox 10), one may assume a
harmonic vibration with the unit time period of the forcinbhe colors, however, reveal that trab-
sitions between active and passive states occur, and asortplitude of the displacement slightly
increases with time. Later the variation in the amplitudenisre apparent. The displacement—
velocity diagram is not an ellipse, as in the previous exanput some deviation is observed.
Hence, this forced vibration has a non—linear nature.

Figures 6 (c) and 7 (c) correspondfid , = 20 (r = 0.03878), i.e. to a structure slightly more
flexible than the previous one. The period of vibration clp$ellows the unit forcing period. In
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Figure 7: Pedestrian flow induced velocity—displacemeatydims of the mid point of the beam for frequency pa-
rametersr = (a) 0.03985, (b) 0.03912, (c) 0.03878, (d) 0.03689, (e) @603 and (f) 0.03604. A box denotes the
initial state ¢ = 0). Blue and red colors belong to active and passive suspgnsgispectivelygs7?/(uL) = 1,a =

10, At = 0.001.
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the time—displacement diagram the time intervals betwleecdnsecutive zeros axel/2, but the
curve is not a pure sine wave, the amplitude varies, thetsftddransitions and the free vibration
modes can be observed. In the displacement—velocity dragreaveraged ellipse could be drawn
around which faster oscillations occur. Note how mixed tbéva and passive states are in this
diagram.

Figures 6 (d) and 7 (d) correspondig, = —20 (r = 0.03689). The deviation of the dynamics
from a simple harmonic motion is still apparent, but the sysspends a shorter time in the passive
state and transitions occur less frequently than in theipuewcase. A possible reason of it is that
the 4th active mode is out of phase now, while the higher mades phase, and they can partially
compensate the effect of the 4th resonant mode. (Althougiild active mode is out of phase, it
has a much smaller deformation response factor than thehigbdes.) In the previous example,
however, the dynamic effect of the resonant in—phase 4trensoglipported by the in—phase higher
modes.

Figures 6 (e) and 7 (e) belong to an even more flexible stractuhereRy, = —15 (r =
0.03660). Here it can be observed that the structure undergoes adpemotion with unit time
period, although the suspension system is activeggdlarly for aboutl /10 long time within each
period. This is an exceptional case: the structutalisear, but the cable stressing and slacking,
and the structural vibration aperiodic. A possible reason behind this phenomenon can be that
the higher, in—phase active modes balance the 4th resanangf—phase mode.

Figures 6 (f) and 7 (f) correspond to the most flexible studiedcture, wherd?g, = —10
(r = 0.03604). Here the out—of—phase forced vibration of the 4th actieglenis not large enough
to slack the cables. Hence harmonic vibrations of the astates occur with a unit (dimensionless)
time period, which appears to be a sine wave in the time-atigphent diagram and an ellipse in
the displacement—velocity diagram.

Whether the cable force vanishes or not determines if thetstiei may exhibit non—linear
vibrations or not. The question is if the tensile cable fdroen the static load is enough to keep
the suspension system active during the vibration. Cabtefarises from non—trivial active modes
only. An approximate condition for cable slacking estinsatee cable force from the static and
dynamic loads and compares them. This condition can beanrés:

D h<| > Ran.

non-triv. non-triv.

«Q <

Here h? and i3, are given by (26) and (25), respectively. If the above inétyuholds, then
transitions between active and passive suspension statdsecexpected, which are the source of
the non-linear dynamics.

5.2.2. Verification
In this section the numerical simulation is verified. A simpbot bridge is analysed with total
length L = 18 m and widthw = 4m, composed of two main (fairly flexible) girders and two
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suspension systems. The static pedestrian surface lops{285 N/m?. Ten percent of this load
is the dynamic load amplitude. One half of the bridge is €ddione girder, the half of the deck
and secondary structures, and one suspension system. fithiadpstiffness of the girder is taken
to beEI = 0.3 MNm?, the mass per unit length js= 450 kg/m. The static line load is the surface
load timesw/2:

qp = 750 N/m.

The time period of the dynamic load component correspondBeavalking frequencyf =
2Hz, hence
T=1/f=0.5s

The frequency parameter of the structure is computed aicgpta Eq. (6):

T |EI

Based on the corresponding result of the simulation, showrigare 6 (a), the dimensionless
initial static displacement igsi: = 0.004027, while the maximal dynamic displacementig,, =
0.04346. SinceqsT?/(nL) = 1, the dimensionless results correspond to the lpae 32400.
Therefore, the real values of the static (initial) and dyitagmaximal) downward displacement of
the mid point of the beam are:

s = w82, — 1,678 - 1072 m, (45)
gs

fayn = w9, — 181110 m. (46)
ds

Note that Eq. (18) gives the same static displacement ofaime structure for the same distributed
load level, and so it verifies Eq. (45).

It is a bit more difficult to verify the maximal dynamic displment. since the resonant fourth
mode has the most important dynamic effect, the other modgeseaylected. The fourth active
modal shape coincides with the third mode shape of a conismtlwee—span—beam. The natural
frequencies of such a beam are tabulated in [26] at p. 7.24thencorresponding period verifies
our result based on (22):

T2, =T, T = 0.9487s,

The deformation response factor for this mode is:

1
1 (12,/T)?

a

2, = 9.999.

The normalized fourth shape function of the active statéuewed at the mid point of the beam is:
u = 2.098. (See Figure 2.) Using Eq. (17%)§ = 4.176 - 10~ with the dynamic load amplitude
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go = 75N/m. (The integral of the fourth modal shape functionfsi§ = 0.7916.) Thus, the
dimensionless static displacement due to the dynamic ptre@edestrian load, corresponding to
the resonant mode isisiats = ns-uP = 8.761-107°. If multiplied by L, its real value is obtained:

Ustara = 0.001577 m.

Finally, the approximate maximal displacement of the mithpof the beam, due to the static
and dynamic parts of the pedestrian flow is:

500 = Gstar+ R34 - Gistaga = 1.745 - 1072 m. (47)

The terms before the last equal sign are the followings. Tisetiérm is the static displacement
due to the static part of the pedestrian flow. The second tertimei displacement caused by the
dynamic part of the pedestrian flow, taking into account dhky resonant mode. Eq. (47) is a
good approximate for Eq. (46), regarding that it negleatsdynamic deformations from the non—
resonant modes. Thus, it validates the numerical algorithm

6. Conclusions

In this paper the dynamics of a simply supporBatnoulli—-Eulerbeam equipped with a block—
and-tackle suspension system was studied. It is an effeadtimovative suspension (foot)bridge
model, which allows a uniform cable force distribution. A tsuspension cable cannot resist
compression, the suspension system can be either in actgassive state. Because of this, the
studied structure can be described by a piece—wise linssergy which can be a source of non—
linear vibrations. The frequency parameter of the strectuais introduced, and the dimensionless
natural frequencies and modal shape functions were defordabth stressed and slacked cable.
A procedure was developed to handle the nonlinearity catgig from the bilinear stiffness char-
acteristic of the structure. A numerical damping phenomenas revealed during the transition
between active and passive states, which was caused by itieafion of the space of the modal
shapes. Then semi—analytical simulations were accongalishhree types of loadings were stud-
ied: a static distributed load for verification purposesaenonic distributed load for modelling a
vortex—shedding generated lift force, and a static plumbaic distributed load for modelling the
dynamic effects of a pedestrian flow. In the case of the vedb&dding load non-linear vibrations
were observed, which were induced by consecutive slackidgtessing of the suspension cable.
It was pointed out that the frequency parameter is the ongmater that determines the structural
vibration qualitatively. It was revealed that for a softustiure the slow dynamics was governed
by the free vibration, and fast oscillations evolved frora torced vibration. On the other hand,
for a stiff structure, slow dynamics originated from thecked vibration while the fast oscillations
were due to the free vibrations of the natural modes. Estisnfair the period of vibration of these
two extremities were given. In the case of the pedestrian thgwiixing the ratio of the static and
dynamic load components as given by guidelines, only treuteacy parameter was needed for the
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dimensionless analysis of the vibrations. It was shownttiehatural frequency of one non-trivial
active mode had to be close enough to the step frequency &ingah order to slack the cable,
otherwise harmonic motion occurred. Six different frequeparameter values were studied. Two
of them led to linear vibrations, but in the other four cases-#inear vibrations occurred. The
outcomes of the numerical simulations were thoroughlyuised and a necessary condition for
cable slacking was developed. The numerical results wdidatad by hand calculations, and it
was demonstrated how to apply the dimensionless forms tstre@tures.

In future works it would be worth studying the effects of stiwral damping, the mass of the
cable, the friction at the pulleys, or different arrangeiset the pulleys. By taking into account
fewer natural modes, a global non—linear dynamic analysisatso be an interesting continuation
of the present work.
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