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Abstract

In this paper the dynamic analysis of a beam on a block–and–tackle suspension system is accom-
plished using a continuum approach. The modal shape functions and the natural frequencies of
the structure are derived in a dimensionless form for both slacked and stressed cables. A proce-
dure is developed to handle the nonlinearity originated from the consecutive slacking and stressing
of the suspension cable. Vibration analysis of the bilinear, multi–degree–of–freedom structure is
accomplished for a vortex–shedding generated lift force and for a continuous pedestrian flow.

Keywords: block–and–tackle suspension system, cable slacking, modal shape functions,
non–linear dynamics, vortex–shedding, pedestrian load

Nomenclature

u(ξ, τ) dimensionless beam deflection
ξ dimensionless coordinate
τ dimensionless time
µ beam mass per unit length
EI bending stiffness
L total length of the beam
r frequency parameter
q(ξ, τ) distributed load
qs static distributed load intensity
q0 dynamic distributed load amplitude
f forcing frequency

T transformation from active to passive modes

Tf period of vibration of the forced structure

T reference time period (1/f )

Tn,i dimensionless natural period*

fi natural frequency*

λi eigenparameter*

ui(ξ) normalized modal shape function*

Fi area of theith normalized shape function*

Rd,i deformation response factor of modei*

ηi modal displacement*

* Superscript “a” or “p” would correspond to active or passive suspension system, respectively.

Email address:kocsis@ep-mech.me.bme.hu (Attila Kocsis)
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1. Introduction

Simple suspension bridges were already used more than 1000 years ago. The oldest known
structure is from the 7th century, constructed by theMayacivilization atYaxchilan[1]. Sketches
of the first suspension bridge that resembles modern suspension and cable–stayed bridges appeared
in Fausto Veranzio’s masterwork [2] in the late 15th century. These type of structures are composed
of compressed pillars, a bridge deck, and cables. The main idea behind a suspension bridge is that
there are (usually) two main cables that hang between the pillars and are anchored to the ground at
both ends, while (vertical or inclined) suspenders connectthe deck to the main cables. The cable–
stayed bridges, on the other hand, have one or more pillars that are the main load bearing structures
and inclined suspension cables transmit forces from the deck to the pillars. There are numerous
variations of these kind of structures, see for example the comprehensive work ofKawada[3].
The length of suspension bridges varies from small footbridges, like theBoston Public Garden
Footbridge, to theAkashi Kaikyo Bridge, whose central span is almost 2000 m long.

Longer and more slender bridges have appeared as material properties, design methods and
building techniques have significantly improved. There hasalso been a strong community demand
for more interesting structures, which are more aesthetic and appealing to the public. However,
slender structures tend to be more sensitive to dynamic forces induced by wind loads [4, 5] or
traffic flow [6], for instance, resulting in vibrations of thebridge deck. These vibrations can attain
high magnitude in some cases, especially when the vortex–shedding frequency of the wind or the
pace of the traffic approaches one of the natural frequenciesof the bridge. A well–known example
of failure caused by mechanical and aerodynamic effects is the collapse of theTacoma Narrows
Bridge [7]. Pedestrian–induced vibrations of slender footbridges have also been analysed by nu-
merous authors. For a literature review of lateral vibrations see [6], while for vertical vibrations
see for example [8] and the references therein. The most well–known example for dense pedestrian
flow induced resonance of lateral vibration mode is theLondon Millennium Footbridge[9]. These
examples have revealed that a proper dynamic analysis is necessary for slender bridges subjected
to wind and traffic loads.

The application of some kind of suspension system for footbridge constructions is quite gen-
eral. The disadvantage of cable suspension systems is that some cables can be highly overstressed
while others can be slacked. High tension in cables is not desirable because it may lead to failure,
but slacking of cables is also disadvantageous. Because cables do not have any resistance to com-
pression, the dynamic behavior of suspended bridges can be highly nonlinear. Hence, a hanger
system which offers a fairly uniform stress distribution inthe cables has many advantages.

The present paper studies the dynamics of a beam hanged on a special suspension system,
which is composed of pulleys and cables, and called theblock–and–tackle suspension system.
This effective suspension system was invented by Kolozsváry [10] for supporting tensile roofs
[11, 12]. It may also be used as a suspension system of footbridges, as suggested in [13], where a
deck was suspended to a block–and–tackle suspension systemand static analysis of the structure
was accomplished. However, the dynamic behavior, which is very important in case of light and
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Figure 1: Model of a beam on a block–and–tackle suspension system

slender footbridges, has not been studied yet for such structures.
First the mechanical model is introduced in Section 2. Then in Section 3 the natural circular

frequencies and the corresponding modal shape functions are derived for two states of the bridge.
One state corresponds to slacked cables, and the other statecorresponds to stressed cables. The
obtained modal shape functions and frequencies are verified, and the modal decomposition based
continuum approach for dynamic simulations is developed inSection 4. The vertical vibration of
the structure due to vortex–shedding and passenger traffic is simulated and validated in Section 5.
Finally, conclusions are drawn in Section 6.

2. The mechanical model

The mechanical model of the structure is shown in Figure 1. There is a simply supported
Bernoulli–Eulerbeam of lengthL. Two pulleys are attached to this beam at equal distances.
These pulleys divide the beam into three spans of lengthℓ = L/3. The mass of the pulleys, and
the friction between the pulleys and their shafts are neglected. There is a rigid upper structure
at heighth, to which three pulleys are attached, as shown in Figure 1. A massless, inextensible
cable runs through the pulleys. The ends of the cable are fixedto the ends of the beam. The
origin of a left–handed coordinate system is at the fixed support of the beam, thex-axis points
to the right and coincides with the unloaded, straight axis of the beam, while they-axis points
downward. The loads act in thex− y plane, and cause uniaxial bending about thez-axis. Lateral
and lateral–torsional vibrations, and structural dampingare neglected. Small displacements are
assumed,̂u(x, t) denotes the vertical deflection of the beam.

3. Natural circular frequencies and modal shape functions

Let us introduce the dimensionless coordinateξ and timeτ as:

x = ξL → ∂ξ

∂x
=

1

L
,

t = τT → ∂τ

∂t
=

1

T
.

(1)
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Here the reference lengthL = 3ℓ is set to the total length of the beam andT is a reference time
period which will be fixed later, depending on the studied problem. The beam deflection can be
given as function of the dimensionless variables:

u(ξ, τ) = û(L ξ, T τ)/L. (2)

Then, partial differential equation that governs the free vibration of aBernoulli-Eulerbeam [14]
yields:

EI

L3

∂4u(ξ, τ)

∂ξ4
+
µL

T 2

∂2u(ξ, τ)

∂τ 2
= 0. (3)

HereEI is the bending stiffness of the beam andµ is its mass per unit length. The solution for (3)
is searched for in the separated form

u(ξ, τ) =
∞
∑

i=1

ui(ξ) · (ai cos(2πfiTτ) + bi sin(2πfiTτ)) . (4)

Herefi is theith natural frequency of the beam, whileui(ξ) is the corresponding dimensionless
modal shapefunction. The coefficientsai andbi depend on initial conditions for prescribed shape
functions. Substituting (4) in (3) leads to ordinary differential equations (ODEs):

EI

L3
uIVi (ξ)− (2πfi)

2 µLui(ξ) = 0, i = 1, 2, . . . (5)

Here prime denotes differentiation with respect toξ, henceuIVi (ξ) = d4ui(ξ)/ dξ
4.

Let us introduce thefrequency parameterr of the beam as:

r =
T

L2

√

EI

µ
. (6)

Eq. (5) is solved by

ui(ξ) = Ai cos (λiξ) + Bi sin (λiξ) + Ci cosh (λiξ) +Di sinh (λiξ) , (7)

where

λi =

√

2πfiT

r
(8)

is theith eigenparameter, and the coefficientsAi,Bi, Ci, andDi are dependent on end conditions.
Note thatuIVi (ξ) = λ4iui(ξ), and thatrλ2i is theith dimensionless natural circular frequency.

Since the suspension cable can bear only tension, it may introduce nonlinearity in the dynamics
of the structure. This phenomenon is handled as follows. Twostates of the structure are distin-
guished. If the cable is under tension, then the suspension system works as a load bearing structure.
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This is called theactive state. If the tension in the cable vanishes, then the suspension system is
passive, i.e. it does not play any load bearing role. This is called thepassive state. Since the latter
case is simpler, it is discussed first in Section 3.1, and thenthe active state is studied in Section 3.2.

3.1. Passive suspension system

In this case the studied structure is a simply supported beamof lengthL. The free vibration of
such a beam is well known [14]. With our dimensionless notation theith eigenparameter and the
corresponding modal shape function are:

λp
i = iπ,

up
i (ξ) =

√
2 sin(iπξ).

(9)

(Note that superscript “p” refers to the passive state.)

3.2. Active suspension system

In this case the cable is under tension and the suspension system contributes to the load–bearing
capacity of the structure. Eq. (7) is valid for each span of length ℓ. In order to compute the
coefficientsAi, Bi, Ci, andDi of Eq. (7) for all the three spans, one needs to define3 × 4 = 12
appropriate conditions. Four conditions come from the kinematic and kinetic boundary conditions
at the beam ends, namely the pinned support and the roller do not allow vertical translations and
cannot bear bending moments. Another four conditions come from the continuity of the beam at
the suspended points in terms of displacements and slopes. Further two conditions prescribe zero
jump in the bending moment at the suspended points. One condition arises from the inextensible
property of the cable. The last one condition is obtained by relating the cable force to the jump in
the shear force at the suspension points and eliminating thecable force. Since these conditions must
be fulfilled at any time instant, the natural frequencies of the spans must be the same for a given
modal shape. Hence, the boundary and continuity conditionsare prescribed for the modal shape
functions. Then, a frequency matrix can be compiled and analysed, leading to the eigenparameters
and the corresponding modal shapes of the active state. Thisanalysis is detailed in Appendix A.
Each modal shape function is scaled so that it satisfies:

∫

1

0

ua
i(ξ)u

a
i(ξ) dξ = 1. (10)

In general, the following identities hold for the modal shape functions:

∫

1

0

ui(ξ)uj(ξ) dξ = δij,

∫

1

0

uIVi (ξ)uj(ξ) dξ = λ4i · δij. (11)

Hereδij is theKroneckerdelta, i.e.δij = 1 if i = j and zero otherwise. The proof of Eq. (11) is
given in Appendix A. In this paper only the first 12 active modes are used further. Figure 2 shows
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Figure 2: The first twelve normalized modal shape functions of the active state and the corresponding eigenparameters.

Note that the natural frequency can be computed as:fa
i = 1

2π
r·(λa

i
)2

T
= 1

2π
(λa

i
)2

L2

√

EI
µ

for a given beam.
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these first 12 modal shape functions of the active state normalized according to (10). Is it worth
noting that odd shape functions are skew–symmetric, while even shape functions are symmetric.
Classification of the eigenparameters and the correspondingeigenmodes are thoroughly discussed
in Appendix A. Below only the main results, i.e. the trivial and non–trivial active modes are
presented.

3.2.1. Trivial modes of the active state
If mod (i, 6) equals1, 2, 3 or 5, then theith eigenparameter and the corresponding modal

shape are:

λa
i = (i+ 1)π,

ua
i =

√
2 sin ((i+ 1)πξ) ,

while the cable force is zero. Such a modal shape function is called trivial because it coincides
with the (i + 1)st modal shape function of the passive state (see Eq. (9)). It has either a skew–
symmetric form (for oddi values) or nodes at the suspended points (for thosei values that satisfy
mod (i, 6) = 2 or 5, see the mid column of Figure 2). For example, modes 1 and 3 areskew–
symmetric, mode 2 is symmetric but has nodes at the suspendedpoints, while mode 5 fulfills both
conditions.

3.2.2. Non–trivial modes of the active state
If mod (i, 6) equals0 or 4, then the following inequalities hold for theith eigenparameter:

iπ < λa
i < (i+ 1)π.

The corresponding cable force is non-zero and the modal shape function is symmetric. The first 4
non–trivial shape functions of the active state are given inAppendix A.

4. Non–linear vibrations of the bilinear structure: theory

As long as the state of the suspension system is unchanged, the structure behaves as a (linear
elastic)Bernoulli–Eulerbeam, and undergoes linear vibrations under harmonic loadings. But our
structure has different stiffness if the suspension systemis active than if it is passive, hence it is
bilinear. Therefore, changes in the state of the suspension system can make the vibration of the
structure non–linear, in spite of there are linear vibrations between two consecutive state changes.

It is well known that bilinear oscillators may exhibit periodic, quasi–periodic, or chaotic mo-
tions [15]. A relevant example is the beam with non–linear boundary conditions [16], which was
reduced to a single–degree–of–freedom system and shown to possess chaotic vibrations.

In the followings, it is shown how the linear system is analysed, and the active shape functions
are verified with a static loading. Then a procedure is developed for handling the state changes and
simulating vibrations of the bilinear structure.
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4.1. General remarks on the vibrations in a fixed state

The partial differential equation of the forced vibration of a Bernoulli–Eulerbeam [14] with
dimensionless spatial and temporal variables (1) is

EI

L3

∂4u(ξ, τ)

∂ξ4
+
µL

T 2

∂2u(ξ, τ)

∂τ 2
= q(ξ, τ). (12)

Hereq(ξ, τ) = q̂(L ξ, T τ), with q̂(x, t) being a time–dependent distributed load. The complete
solution for (12) is the sum of the homogeneous and the particular solutions. The homogeneous
solution is given by (4). The particular solution is searched for as a time–dependent combination
of the modal shape functions:

uq(ξ, τ) =
∞
∑

j=1

uj(ξ) · ηj(τ). (13)

In both (4) and (13) those modal shape functions are used thatcorrespond to the actual state of the
suspension system (active or passive). A change in the stateof the suspension system introduces
nonlinearity to the problem. It is explained later how this nonlinearity is handled. Now the time
interval while the suspension system is either active or passive is studied.

Eq. (13) is substituted in (12), then the result is multiplied byui(ξ) and integrated with respect
to ξ on [0, 1]. Using (11) it yields the following equality:

EI

L3
λ4i ηi(τ) +

µL

T 2
η̈i(τ) =

∫

1

0

q(ξ, τ)ui(ξ) dξ.

Here dot denotes differentiation with respect toτ . Now let us multiply the above equality by
T 2/(µL), implement the frequency parameter (6), and introduce theith modal forcing:

Qi(τ) =
T 2

µL

∫

1

0

q(ξ, τ)ui(ξ) dξ. (14)

Thus, the following system of ODEs is developed:

η̈i(τ) + (r λ2i )
2ηi(τ) = Qi(τ), i = 1, 2, . . . . (15)

The solutions for (15) yield the dimensionless modal displacements, i.e. the time–dependent func-
tions in the combination (13), and so the particular solution of the forced vibration can also be
generated.
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Figure 3: (a) Approximate static deflection of the beam,u(ξ), under a constant distributed load using twelve modal
shapes of the active state. (b) The curvature,−u′′, which is proportional to the bending moment diagram of the beam.
(c) Opposite of the third derivative of the deflection,−u′′′, which is proportional to the shear force diagram of the
beam.qsT

2/(µLr2) = 1. Note that the exact shear force diagram would be piece–wiselinear.

4.2. A static distributed load: verifying the modal shapes of the active state

First the case of a constant, static distributed load of magnitudeqs is studied. The initial condi-
tions are set such thatai andbi in (4) are zero. The modal force (14) is time–independent:

Qs
i =

qsT
2

µL

∫

1

0

ui(ξ) dξ =
qsT

2

µL
Fi. (16)

HereFi is the definite integral (area) of theith modal shape function. Therefore, the modal force
is zero if the corresponding modal shape function is skew–symmetric. The solution for (15) is also
time–independent:

ηs
i =

qsT
2

µL r2
· Fi

λ4i
. (17)

If the load points downward, i.e.qs > 0, then the state is active, hence in (17) the active modal
shape functions and eigenparameters have to be used. Figure3 (a) shows the deflectionu(ξ) of
the beam forqsT

2/(µL r2) = 1, using 12 modal shape functions of the active state. Figure 3(b)
and (c) show the opposite of the second and third derivativesof u(ξ), which are proportional to the
bending moment and shear force diagrams, respectively. Note that the exact shear force diagram
is piece–wise linear, and Figure 3 (c) is its best approximation with 12 modal shapes.

4.2.1. Verification for bending moment
For the constant distributed loading the static behavior ofthe beam suspended to an inextensible

cable is identical to that of the continuous three–span beam. Hence, our results can be compared
to the known, analytic solution of a three–span beam subjected to uniformly distributed load ([17],
p. 349). A good agreement between the two solutions would verify the modal shape functions and
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natural frequencies of the active state. According to [17],the bending moment at a supported mid
point is:

M(L/3) = −qsL
2

90
.

It yields the dimensionless curvature

κ(1/3) = −u′′(1/3) = L
M

EI
= − 1

90
· qsT

2

µL r2
.

For qsT
2/(µLr2) = 1, the computed curvature is−0.01076 with 12 modal shapes of the active

state. The exact result is−1/90, hence the relative error yields3.171%. (Note that this relative
error is independent of the value ofqsT

2/(µLr2).) This acceptable error arises from the finitization
of the function space: only a finite number of modal shapes have been taken into account.

4.2.2. A worked example for displacements
A worked example is shown now for the computation of the real values of the displacements,

using the verified, dimensionless modal shapes of the active(suspended) state. A beam of bending
stiffnessEI = 0.3MNm2 and lengthL = 18m is subjected to a constant distributed loadqp =
750N/m.

From Figure 3 (a) the dimensionless displacement of the mid point of the beam isumid =
0.6393 · 10−5. It belongs toqsT

2/(µLr2) = 1, which, in view of Eq. (6), yields:

qs =
µLr2

T 2
=
EI

L3
= 51.44N/m.

Finally, the dimensionless displacementumid is rescaled to the loadqp, and its real value is com-
puted based on Eq. (2):

ûmid = umid
qp

qs
L = 1.678 · 10−3 m. (18)

4.3. A distributed load with both static and dynamic components

The beam is under a static distributed load of magnitudeqs, and a dynamic distributed load of
amplitudeq0 varying harmonically in time with frequencyf . The ratio of the static load to the
dynamic amplitude is denoted byα:

qs = αq0.

The distributed load is then̂q(x, t) = q0 (α + sin(2πft)) . The unit of timeT is set equal to the
reciprocal of the frequencyf . The forcing with dimensionless variables is

q(ξ, τ) = q0 (α + sin(2πτ)) , (19)
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hence the modal force (14) has the form of

Qh
i (τ) =

q0T
2

µL
(α + sin(2πτ))

∫

1

0

ui(ξ) dξ =
q0T

2

µL
Fi (α + sin(2πτ)) .

The modal force is zero if the corresponding modal shape function is odd. Now (15) yields

η̈i(τ) + (rλ2i )
2ηi(τ) =

q0T
2

µL
Fi (α + sin(2πτ)) , (20)

which is essentially the ODE of a spring–mass system subjected to a static and a harmonic forcing.
The complete solution for the modal displacementηi(τ) is the sum of the time–dependent part of
the free vibration (4) and the particular solution of (20):

ηi(τ) = ai cos(r λ
2

i τ) + bi sin(r λ
2

i τ) +
q0T

2

µL r2
· Fi

λ4i
·











α +
1

1−
(

2π

r λ2i

)2
sin(2πτ)











. (21)

Hereai andbi are from initial conditions. Note that if the dimension ofµ is properly chosen, then
only two parameters are needed: the frequency parameterr, and the ratio of the static to dynamic
loadα.

Theith dimensionless natural period of vibration in the units ofthe reference periodT is:

Tn,i =
2π

r λ2i
. (22)

It is also worth mentioning that the period of harmonic forcing is alwaysonein the units ofT .
If a finite numberN of modal shape functions are used, then the modal displacements,η =

[η1(τ), . . . , ηN(τ)]
T , and the modal velocities,̇η = [η̇1(τ), . . . , η̇N(τ)]

T , can be written as:

η(τ) = C(τ)a+ S(τ)b+ αh+ sin(2πτ)Rdh, (23)

η̇(τ) = Λ (−S(τ)a+C(τ)b) + 2π cos(2πτ)Rdh. (24)
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Here

C(τ) =
〈

cos(r λ2
1
τ), cos(r λ2

2
τ), . . . , cos(r λ2N τ)

〉

,

S(τ) =
〈

sin(r λ2
1
τ), sin(r λ2

2
τ), . . . , sin(r λ2N τ)

〉

,

Λ = r
〈

λ2
1
, λ2

2
, . . . , λ2N

〉

,

Rd =

〈

1

1−
(

2π
r λ2

1

)2
,

1

1−
(

2π
r λ2

2

)2
, . . . ,

1

1−
(

2π
r λ2

N

)2

〉

(25)

areN–by–N diagonal matrices, and

a = [a1, a2, . . . , aN ]
T , b = [b1, b2, . . . , bN ]

T

areN–vectors that depend on initial conditions, while the load vector is:

h =
q0T

2

µL r2

[

F1

λ4
1

,
F2

λ4
2

, . . . ,
FN

λ4N

]T

. (26)

Note that entryi, i of Rd, denoted byRd,i, is thedeformation response factorfor theith mode.
If η andη̇ are given at some time instantτ , thena andb can be computed from (23) and (24):

a = C (η − αh− sin(2πτ)Rdh)−Λ
−1
S (η̇ − 2π cos(2πτ)Rdh) ,

b = S (η − αh− sin(2πτ)Rdh) +Λ
−1
C (η̇ − 2π cos(2πτ)Rdh) .

(27)

Equations (23)–(27) hold for both active and passive states, only the corresponding (active or
passive) eigenparametersλi and modal shapesui(ξ) are needed for a fixed number of modes.

4.4. Nonlinearity induced by activating and inactivating the suspension system

4.4.1. Transformation between active and passive states
The displacement of the beam is a linear combination of the modal shape functions. If the

suspension system is active, then the displacement is:

u(ξ, τ) =
∞
∑

i=1

ua
i(ξ)η

a
i (τ) = (ua

∞
)Tηa

∞
.

Here the vector of infinite depthua
∞

= [ua
1
(ξ), ua

2
(ξ), . . . , ua

∞
(ξ)]T collects the modal shape func-

tions of the active state, andηa
∞

= [ηa
1
(τ), ηa

2
(τ), . . . , ηa

∞
(τ)]T stores the corresponding time–

dependent functions. If the suspension system is passive, then the displacement function is

u(ξ, τ) =
∞
∑

i=1

up
i (ξ)η

p
i (τ) = (up

∞
)Tηp

∞
.
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At a transition, i.e. at a time instant when the suspension system is activated or inactivated, the
deflection of the beam can be described by the modal shapes of both states, i.e.

(up
∞
)Tηp

∞,tr = (ua
∞
)Tηa

∞,tr. (28)

Multiplying the above formula byup
∞

from the left and integrating it with respect toξ over [0, 1]
yields:

η
p
∞,tr = T∞η

a
∞,tr. (29)

Here the time–independent transformation matrixT∞ is the following definite integral:

T∞ =

∫

1

0

u
p
∞
(ua

∞
)T dξ.

Similarly, if (28) is multiplied byua
∞

from the left and integrated with respect toξ over[0, 1], then
the inverse transformation is obtained:

η
a
∞,tr = T

T
∞
η

p
∞,tr. (30)

From (29) and (30) it can be seen thatT
T
∞
T∞ = T∞T

T
∞

= I∞ is the (infinite–by–infinite) identity
matrix.

The dimensionless mechanical energy, associated with theith modal shape, is:

ψi =
1

2
(η̇i)

2 +
r2λ4i
2

(ηi)
2 .

At a transition, when the suspension system is inactivated,the mechanical energy of an active mode
should be all transfered to the corresponding passive mode(s). Using Eq. (29) the conservation of
the total mechanical energy can be formulated at the transition:

ψtot =
1

2

(

η̇
a
∞,tr

)T
η̇

a
∞,tr +

1

2

(

η
a
∞,tr

)T
(Λa)2 ηa

∞,tr =
1

2

(

η̇
p
∞,tr

)T
η̇

p
∞,tr +

1

2

(

η
p
∞,tr

)T
(Λp)2 ηp

∞,tr

=
1

2

(

η̇
a
∞,tr

)T
T

T
∞
T∞η̇

a
∞,tr +

1

2

(

η
a
∞,tr

)T
T

T
∞
(Λp)2 T∞η

a
∞,tr.

SinceTT
∞
T∞ = I∞, the mechanical energy is preserved, there is no energy input or dissipation

during a state change of the suspension system.
However, in numerical analysis it is not possible to use all the infinitely many modal shape

functions. Only a finite numberNa of active modal shapes andNp of passive modal shapes can
be implemented, which leads to anNp–by–Na matrixT. In that case, theNa–by–Na matrixTT

T

differs from the unit matrix and some mechanical energy dissipates from the system each time
the suspension system is activated (and so when it is inactivated). The closestTT

T is to the unit
matrix (i.e. the closest the eigenvalues ofT

T
T are to one), the less energy loss occurs during a
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transition. The optimal numbers of active and passive modesareN andN + 1, respectively, since
the ith trivial active mode corresponds to the(i + 1)st passive mode. In our numerical examples
Na = 12 andNp = 13 modal shapes are used, leading to theNp–by–Na transformation matrix:

T =



































0 0 0 0.7661 0 −0.3326 0 0 0 0.3141 0 −0.1717
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0.6343 0 0.5286 0 0 0 −0.3342 0 0.1764
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 −0.1023 0 0.7795 0 0 0 0.4085 0 −0.1911
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0.01508 0 −0.04317 0 0 0 0.7666 0 0.4499
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 −0.007657 0 0.02081 0 0 0 −0.1795 0 0.8330



































. (31)

Note that columns 4, 6, 10, and 12, that correspond to non-trivial active modes, are not unit vectors.
Although the conservation of the total mechanical energy isviolated by using a finite number

of modes, it can be thought of as a contribution of the suspension system to the dynamics of the
structure. The cable has not only kinematic and static effects (taken into account in the modal
shapes and frequencies), but it dissipates some energy while activated or inactivated.

4.4.2. Transition conditions
The jump in the dimensionless shear force diagram at the leftsuspension point,

jump= u′′′(1/3 + ε)− u′′′(1/3− ε), (32)

is proportional to the cable force. (Hereε is a sufficiently small number.) If the structure is in
the active state and the sign of the cable force turns from positive to negative, then the suspension
system becomes passive.

The inextensibility condition is:

inext= u(1/3) + u(2/3). (33)

If the structure is in the passive state and the above value turns from negative to positive, then the
suspension system becomes active.

4.4.3. Switching between active and passive states
The procedure of the numerical simulation is as follows. It is assumed that in the beginning of

the simulation the structure is unloaded and the suspensioncable is neither stressed nor slacked.
The simulation starts with a chosen state, the active state in this case. First initial conditions are
set. For simplicityaa = b

a = 0 are prescribed. A sufficiently small time step∆τ is also set.
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Starting atτ = 0 the dimensionless timeτ is increased by small steps∆τ andηa(τ) is computed
from (23) at each step. There, eigenparametersλa

i and modal shapesua
i(ξ) of the active state are

used. After each time step it is checked whether the cable force has become compressed or not. It
can be done by evaluating (32). The cable has become compressed between stepsk − 1 andk if
jumpk−1

> 0 and jumpk < 0. If so then a time step smaller than∆τ is used after the (k− 1)st step.
This time step is approximated byβp∆τ , whereβp is from piece–wise linearization:

βp =
jumpk−1

jumpk−1
− jumpk

. (34)

At the time instant of transition,τtr = (k−1+βp)∆τ , bothηa
tr andη̇a

tr are computed from (23) and
(24). Then a switch between active and passive states is accomplished by using the transformation
(29), which holds for both the displacements and the velocities:

η
p
tr = Tη

a
tr, η̇

p
tr = Tη̇

a
tr.

Before continuing the simulation with the passive state of the suspension system, the actual
initial conditionsap andb

p are computed from (27). There the previously determinedη
p
tr and

η̇
p
tr are used with the eigenparametersλp

i and modal shapesup
i (ξ) of the passive state. Then the

numerical integration is continued and the values ofη
p are computed at each time step from (23).

The length of the first step is set to(1 − βp)∆τ in order to have the solution in equidistant time
steps. After each iteration, it must be checked whether the suspension system becomes active or
not by evaluating (33). The cable should have been activatedand the suspension system should
have already been bearing loads somewhere between stepsm − 1 andm if inextm−1 < 0 and
inextm > 0. In that case a smaller time step, denoted byβa∆τ , is needed, where

βa =
inextm−1

inextm−1 − inextm
.

The modal displacements and velocitiesη
p
tr andη̇p

tr are computed at this time instant of transition,
τtr = (m−1+βa)∆τ . Then the suspension system is activated by using the inverse transformation
(30) for both the displacements and the velocities:

η
a
tr = T

T
η

p
tr, η̇

a
tr = T

T
η̇

p
tr.

Integrating the system continues then with the active modesusing Eq. (23). The initial values
a

a andba are computed from (27), using the freshly determinedη
a
tr andη̇a

tr, along with the eigen-
parametersλa

i and modal shapesua
i(ξ) of the active state. The length of the first time step is only

(1− βa)∆τ in order to keep the time interval∆τ between consecutive steps.
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5. Non–linear vibrations of the bilinear structure: numerical simulations

In the followings, the above described numerical simulation is applied. The dynamics of the
structure due to the lift drag of vortex–shedding and a pedestrian flow is studied. The simulations
are carried out withMaple9.0 computer algebra system [18].

5.1. Vertical vibrations due to vortex–shedding

There are several effects that wind can exert on structures,such as vortex–shedding, flutter and
buffeting [4]. Here the vertical force exerted on the beam byvortex–shedding [19, 20, 21, 22, 23,
24, 25] is discussed.

It is assumed that the cable is neither stressed nor slacked in the initial (no–wind) state. The load
has no static component, which impliesα = 0 in Eq. (23), hence only a harmonic lift force occurs
at the vortex–shedding frequency. This lift force can act either upward or downward, varying
harmonically in time with the vortex–shedding frequency [4, 26]:

fv =
St · U
D

. (35)

HereSt is theStrouhalnumber (normally between 0.05–0.2),U is the wind flow velocity, andD is
the width of the frontal area of the deck. In the next section dimensionless numerical simulations
are accomplished. The studied dimensionless time intervalis τ ∈ [0, 10] in the units ofT , which
is the forcing period. Then, the obtained results are validated with approximate hand calculations.

5.1.1. Results
In the following examplesa = b = 0 in the initial time instantτ = 0. For a linear system it

would imply harmonic, steady–state vibration with the forcing period. However, our structure is
bilinear, and the lift force of the vortex–shedding may slack the suspension cable, which may lead
to non–linear vibrations. Note that only the symmetric modal shapes play a role in the dynamic
response of the structure. It is because of the zero initial values, the symmetric loading, and also
because of symmetric modes are transformed into symmetric modes during state changes.

The unit ofµ is chosen such thatq0T 2/(µL) = 1. Hence only the frequency parameterr can be
varied. Six different values are studied, namely:r = 0.125, 0.25, 0.5, 1, 2 and4. A smaller value of
r corresponds to a softer beam. Table 1 shows the dimensionless natural periods of the symmetric
active and passive modes for the studied values ofr. Note that the dimensionless natural periods
are in the units ofT , and the dimensionless forcing period is one in the units ofT . The frequency
parameter is inversely proportional to the natural periods(see Eq. (22)). If a dimensionless natural
period is greater than one, i.e. it is greater than the forcing period, then the forced vibration of
the corresponding mode is out of phase. Note that in the case of r = 0.125, 0.25 and0.5 the 1st
passive mode is out of phase.

Figure 4 shows the displacement of the mid point of the beamumid versus dimensionless time
τ , while Figure 5 shows the velocity of the mid point of the beamversus its displacement for
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r state
Dimensionless natural periods of symmetric active and passive modes

– T a
n,2 T a

n,4 T a
n,6 T a

n,8 T a
n,10 T a

n,12

T p
n,1 T p

n,3 T p
n,5 T p

n,7 T p
n,9 T p

n,11 T p
n,13

0.125
active – 0.5658 0.3024 0.1241 0.06287 0.04997 0.03309

passive 5.092 0.5658 0.2037 0.1039 0.06287 0.04209 0.03013

0.25
active – 0.2829 0.1512 0.06206 0.03143 0.02498 0.01654

passive 2.546 0.2829 0.1018 0.05196 0.03143 0.02104 0.01506

0.5
active – 0.1414 0.07560 0.03103 0.01571 0.01249 0.008274

passive 1.273 0.1414 0.05092 0.02598 0.01571 0.01052 0.007533

1
active – 0.07073 0.03780 0.01551 0.007859 0.006246 0.004137

passive 0.6366 0.07073 0.02546 0.01299 0.007859 0.005261 0.003766

2
active – 0.03536 0.01890 0.007758 0.003929 0.003123 0.002068

passive 0.3183 0.03536 0.01273 0.006496 0.003929 0.0026300.001883

4
active – 0.01768 0.009450 0.003879 0.001964 0.001561 0.001034

passive 0.1591 0.01768 0.006366 0.003248 0.001964 0.001315 0.0009417

Table 1: Dimensionless natural periods of the relevant symmetric active and passive modes in the units ofT for the
studied values of the frequency parameterr. Note that the 4th, 6th, 10th and 12th modes are the non–trivial active
modes.

the studied values of the frequency parameterr. Since the initial values ofa andb are zero, only
forced vibration of the active modes occur in the beginning and free vibration is absent. Hence only
in–phase, forced vibration of the active modes can be observed untilτ = 1/2 in all the diagrams.
Then the cable force vanishes and, due to the transition to passive modes, a combination of free
and forced vibrations of symmetric passive modes evolves.

The smallerr is the softer the structure is. For smallr the free vibration of the first (few)
mode(s) governs the slow dynamics of the structure, while the higher modes and the forced re-
sponse are the source of fast oscillations. However, ifr is larger (which means a stiffer structure),
then the slow dynamics is governed by the forced response of the structure, and the fast oscillations
are originated from the free vibrations of the modes.

Figures 4 (a) and 5 (a) correspond tor = 0.125. The first passive dimensionless natural period,
T p

n,1 = 5.092, can be well identified in the slow dynamics of the system withpassive suspension:
in the upward displacements in Figure 4 (a) and in the large ellipse in Figure 5 (a). The next period
that is well observable is the unit period of the forcing, originating from the out–of–phase forcing
of the passive modes. Natural vibrations of higher modes arealso present as fast oscillations, but
they are less apparent in the given scale. At approximatelyτ = 1/2+T p

n,1/2 the suspension system
becomes active again, and a combination of free and forced vibrations of the active modes occurs.
The suspension remains active for about aT a

n,2/2 time period, and it is inactivated again at about
τ = 1/2 + T p

n,1/2 + T a
n,2/2. Then vibration occurs in the passive state for about aT p

n,1/2 time
period, then the suspension system is activated again, and so on. Sincer is small, and because
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Figure 4: Vortex–shedding generated displacement of the mid point of the beamumid as the function of dimensionless
time τ for frequency parametersr = (a) 0.125, (b) 0.25, (c) 0.5, (d) 1, (e) 2, and (f) 4. Blue and red colors belong to
active and passive suspension, respectively.q0T

2/(µL) = 1,∆τ = 0.0005.
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Figure 5: Vortex–shedding generated velocity–displacement diagrams of the mid point of the beam for frequency
parametersr = (a) 0.125, (b) 0.25, (c) 0.5, (d) 1, (e) 2, and (f) 4. Blue and red colors belong to active and passive
suspension, respectively.q0T 2/(µL) = 1,∆τ = 0.0005.
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the structure is approximately 10 times stiffer in the active state than in the passive state, it spends
around 10 times less time in the active state than in the passive state. Hence, the period of this
forced vibration, forr = 0.125, is roughly:

Tf =
11

20
T p

n,1. (36)

Figures 4 (b) and 5 (b) correspond tor = 0.25, whereT p
n,1 = 2.546. This natural period can

be clearly seen in the large ellipse in Figure 5 (b). The upward displacement is not a pure half
sine wave with periodT p

n,1/2, but distorted slightly by the forced response of the passive modes.
The free vibrations of higher passive modes are the source offast oscillations. The time period
that the structure spends in the passive state varies around1. The vibration of the structure in the
active state is mostly dominated by the 1st symmetric activemode, which has the natural period of
T a

n,2 = 0.2829.
Figures 4 (c) and 5 (c) correspond tor = 0.5. The 1st passive natural period,T p

n,1 = 1.273, is
not far from the unit forcing period. Here the free and the out–of–phase forced vibrations of the
1st passive mode compete in the large upward displacements,while the free vibrations of higher
modes can be observed as short “ripples” (fast oscillations). An animation of the vibrating beam
can be found online, see Appendix A.

Figures 4 (d) and 5 (d) belong tor = 1. HereT p
n,1 = 0.6366, which is smaller than the forcing

period, thus all the forced vibration modes are in phase. Theperiod of the large tongues upward
is approximately one, and these forced responses of the passive system compete with the free
vibration modes. An animation of the vibrating beam is available online, see Appendix A.

In the previous two examples it is not possible to give a good approximation for the period of
the vibration, since the vibration does not seem to be periodic, it is rather quasi-periodic or chaotic.

The next two diagrams correspond to fairly large values ofr, i.e. to stiffer structures. Figures 4
(e) and 5 (e) correspond tor = 2. Here the forced vibration of unit period dominates the response
of the structure both in the active and in the passive states.The forced response of the structure
is apparent in the slow dynamics, while the free vibration modes are present as fast oscillations.
The same pattern can be observed for the case ofr = 4. This is shown in Figures 4 (f) and 5 (f).
The structure is even more rigid. The time interval between state changes apparently tends to1/2,
indicating that the slow dynamics is governed by the forced response of the structure. Hence, in
these two examples the period of vibration is approximately:

Tf = 1. (37)

Finally, it is concluded that the dynamics of a soft suspended beam subjected to harmonic
vertical excitation is governed by the natural vibration ofits first passive mode. The structure
spends much less time in the active state than in the passive state, and its period of vibration tends
to (36) asr decreases. However, if the suspended beam is stiffer, then its dynamics is dominated
by the forced vibration, the system spends about the same amount of time in the active state as
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in the passive state, and the period of vibration tends to (37) asr increases. If the structure is in
between these two extremities, then it can undergo complicated non–linear vibrations.

5.1.2. Verification
In this section the numerical simulation is validated by applying basic formulas and concepts

from the literature [14, 27, 26] to a realistic structure andcomparing the results with the numerical
outcomes of the previous section. A simple foot bridge with total lengthL = 18m, widthw = 4m,
and height of frontal areD = 0.75 m is studied. There are two main girders, each equipped by a
block–and–tackle suspension system. Because the flexural–torsional and the lateral vibrations are
restricted, only one half of the bridge is analysed: one girder, the half of the deck and secondary
structures, and one suspension system. The girder is an IPE270 steel beam with bending stiffness
EI = 12MNm2. The mass per unit length, including half of all the load bearing and secondary
structures, is taken to beµ = 455 kg/m. TheStrouhalnumber,St = 0.1, and the lift coefficient,
CL =

√
2 · 0.6 = 0.85, are set according to [26] p. 29.35–29.37. The studied wind velocity is

U = 7.5m/s, the density of air isρ = 1.29 kg/m3. The vortex–shedding frequency isf = 1Hz,
according to (35), and so the reference time period of our model is:

T = 1/f = 1 s.

The harmonic lift load per unit length is given by [26]:

qv(t) =
1

2
ρU2CLD sin(2πft) = qv0 · sin(2πt), where qv0 = 23.13N/m. (38)

The vibration of the structure without suspension system due to the upward lift load (38) is
approximated by a single–degree–of–freedom model. The bridge with slacked cable is a simply
supported beam, which has the fundamental natural period [14]:

T̂n = 2π
L2

π2

√

µ

EI
= 1.270 s, (39)

and the static mid–point deflection ([27], p. 536):

ûapp
st =

5 · qv0 · L4

384 · EI = 2.635 · 10−3 m.

The deformation response factor (or magnification factor [14]) yields:

R =
1

1− (T̂n/T )2
= −1.6316.

Finally, the approximate dynamic deflection of the mid pointof the beam, considering only the
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particular solution and the fundamental mode of the forced vibration is:

ûapp
dyn = |R| · ûapp

st = 4.299 · 10−3 m. (40)

Now the dynamic deflection of the model is computed, using theconcepts developed in the
paper for passive suspension system. The frequency parameter of the structure is from (6):

r =
T

L2

√

EI

µ
= 0.5012. (41)

Hence, the results in Sec. 5.1.1 forr = 0.5 can be directly applied. The first natural period of
passive state for this frequency parameter is given in Table1 in the units of the reference time
periodT . Its real value is:

T̂ p
n,1 = T p

n,1 · T = 1.273 s. (42)

Note that the difference between (39) and (42) is caused by the small deviation of (41) fromr =
0.5. Figure 4 (c) shows the dimensionless displacement of the mid point of the beam versus the
dimensionless time. The maximum upward displacement that corresponds to the passive state of
the structure is:

uq0dyn = 0.08185. (43)

Sinceq0T 2/(µL) = 1 was set in the simulations, the distributed load amplitude that the above
result corresponds to is:

q0 =
µL

T 2
= 8190N/m.

Finally, the obtained displacement (43) is scaled to the lift force amplitude (38) and its real value
is computed:

ûdyn = uq0dyn

qv0

q0
L = 4.161 · 10−3 m. (44)

There is about 3% difference between Eqs. (40) and (44). The following reasons lie behind it.
First, the approximate analysis incorporated the fundamental vibration mode, while our model
also took into account higher modes, which are in–phase, contrary to the first mode, which is out–
of–phase. Second, our simulation inherits a slight numerical damping at each transition. Third,
our simulation takes into account the free vibration of the structure, too. In view of these, the two
results are in a surprisingly good agreement. Of course, there can be huge differences in other
quantities, like the internal forces.

Finally, let us fix the period of timeT , and massµ and lengthL of the beam, and give the
bending stiffnessEI corresponding to the frequency parameters studied in the previous section.
The bending stiffness values are 0.75, 3, 12, 48, 192 and 764 MNm2 corresponding to the frequency
parameter values 0.125, 0.25, 0.5, 1, 2, and 4, respectively.
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5.2. Pedestrian flow induced vertical vibrations
The passenger traffic load has both static and dynamic components. According to technical

guidelines [28, 29], the step frequency of normal walking isapproximatelyf = 2Hz, although
there are also higher harmonics [30]. Here a continuous pedestrian stream is considered: the
passenger traffic load is modelled by a static plus a harmonicdistributed load. Guidelines [28, 29]
suggest that the amplitude of the dynamic load is 10% of the static load. It implies thatα = 10 in
Eq. (23). It is assumed that the cable is neither slacked nor stressed when the beam is free from
pedestrians. The static component of the pedestrian flow applies a static tension in the suspension
cable, while the dynamic component may make the cable more stressed, less stressed, or slacked.
If the effect of the dynamic load is small, then it cannot slack the cable and the suspension system
remains active during vibration. However, if the dynamic effect is large enough, then non–linear
vibrations can occur due to consecutive cable slacking and stressing. Such a resonant behavior
typically happens when the walking frequency is close to oneof the natural frequencies of the
structure. In the next section dimensionless numerical simulations are accomplished. The studied
dimensionless time interval isτ ∈ [0, 50] in the units ofT , which is the forcing period. Then, the
obtained results are validated.

5.2.1. Results
The unit ofµ can be chosen such thatqstT

2/(µL) = 1. The ratio of the static component to
the dynamic amplitude is already set,α = 10. Therefore, only the frequency parameterr can be
varied. Because of the loading is symmetric, and the initial values are zero, only the symmetric
modal shapes appear in the structural response. Note that the forcing period is always one in the
units ofT , according to (19).

The first non–trivial active mode is the 4th mode, which is symmetric. The natural frequency of
this mode coincides with the forcing frequency iffa

4
= 1/T in (8). The corresponding frequency

parameter is:
rres= 0.03780.

Then the dimensionless natural periods of vibration in the units of T areT p
n,1 = 16.84 for the 1st

passive mode,T a
n,2 = T p

n,3 = 1.871 for the 2nd active and 3rd passive modes, andT a
n,4 = 1 for the

(resonant) 4th active mode.
In the following examples the frequency parameterr is tuned close to this resonant state and

numerical simulations are accomplished with initial valuesa = b = 0. The deformation response
factor (25) of the 4th active mode is prescribed asRa

d,4 = 10, 15, 20,−20,−15 and−10. The
corresponding frequency parameters are computed from:

r = rres

√

Ra
d,4

Ra
d,4 − 1

.

Table 2 shows the studied frequency parameter values and thedeformation response factors of the
symmetric active and passive modes.
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r state
Deformation response factors of symmetric active and passive modes

– Ra
d,2 Ra

d,4 Ra
d,6 Ra

d,8 Ra
d,10 Ra

d,12
Rp

d,1 Rp
d,3 Rp

d,5 Rp
d,7 Rp

d,9 Rp
d,11 Rp

d,13

0.03985
active – -0.4648 10 1.178 1.040 1.025 1.011

passive -0.003932 -0.4648 1.690 1.119 1.040 1.017 1.009

0.03912
active – -0.4408 15 1.186 1.042 1.026 1.011

passive -0.003792 -0.4409 1.735 1.124 1.042 1.018 1.009

0.03878
active – -0.4298 20 1.190 1.043 1.026 1.011

passive -0.003725 -0.4298 1.758 1.126 1.043 1.019 1.009

0.03689
active – -0.3736 -20 1.215 1.047 1.029 1.013

passive -0.003369 -0.3736 1.910 1.141 1.047 1.021 1.010

0.03660
active – -0.3656 -15 1.219 1.048 1.030 1.013

passive -0.003316 -0.3656 1.938 1.144 1.048 1.021 1.010

0.03604
active – -0.3506 -10 1.227 1.050 1.031 1.013

passive -0.003215 -0.3506 1.997 1.149 1.050 1.021 1.011

Table 2: Deformation response factors of symmetric active and passive modes for the studied values of the frequency
parameterr. Note that the non–trivial active modes are the 4th, 6th, 10th and 12th ones.

For the studied values of the frequency parameterr, Figure 6 shows the displacement of the
mid point of the beamumid versus the dimensionless timeτ , while Figure 7 shows the velocity of
the mid point of the beamvmid versus its displacementumid. The dynamics starts with the initial
static deflection and the velocity corresponds to zero initial values ofa andb. Forced vibration
of the active modes occurs, free vibration is absent. If the system is close enough to the state of
resonance, then the cable force vanishes after a while and the suspension system becomes passive.
Some time later the suspension system will be active again, but it can be inactivated later, and so on.
These consecutive transitions between active and passive states may lead to non–linear vibrations.

Figures 6 (a) and 7 (a) correspond toRa
d,4 = 10 (r = 0.03985). A steady–state harmonic

vibration occurs in this case with the unit (dimensionless)period of the forcing. The dynamic
effect of the pedestrian flow is not enough to slack the cablesand hence do not cause non–linear
vibrations.

Figures 6 (b) and 7 (b) correspond to a slightly more flexible structure: Ra
d,4 = 15 (r =

0.03912). At the beginning of the time–displacement diagram (forτ < 10), one may assume a
harmonic vibration with the unit time period of the forcing.The colors, however, reveal that trab-
sitions between active and passive states occur, and also the amplitude of the displacement slightly
increases with time. Later the variation in the amplitude ismore apparent. The displacement–
velocity diagram is not an ellipse, as in the previous example, but some deviation is observed.
Hence, this forced vibration has a non–linear nature.

Figures 6 (c) and 7 (c) correspond toRa
d,4 = 20 (r = 0.03878), i.e. to a structure slightly more

flexible than the previous one. The period of vibration closely follows the unit forcing period. In
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Figure 6: Pedestrian flow induced displacement of the mid point of the beamumid as the function of dimensionless
time τ for frequency parametersr = (a) 0.03985, (b) 0.03912, (c) 0.03878, (d) 0.03689, (e) 0.03660, and (f) 0.03604.
Blue and red colors belong to active and passive suspension,respectively.qsT

2/(µL) = 1, α = 10,∆τ = 0.001.



5 NUMERICAL SIMULATIONS 26

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.08 -0.06 -0.04 -0.02  0  0.02  0.04  0.06  0.08

v m
id

umid

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.08 -0.06 -0.04 -0.02  0  0.02  0.04  0.06  0.08

v m
id

umid

(a) (b)

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.08 -0.06 -0.04 -0.02  0  0.02  0.04  0.06  0.08

v m
id

umid

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.08 -0.06 -0.04 -0.02  0  0.02  0.04  0.06  0.08

v m
id

umid

(c) (d)

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.08 -0.06 -0.04 -0.02  0  0.02  0.04  0.06  0.08

v m
id

umid

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.08 -0.06 -0.04 -0.02  0  0.02  0.04  0.06  0.08

v m
id

umid

(e) (f)

Figure 7: Pedestrian flow induced velocity–displacement diagrams of the mid point of the beam for frequency pa-
rametersr = (a) 0.03985, (b) 0.03912, (c) 0.03878, (d) 0.03689, (e) 0.03660, and (f) 0.03604. A box denotes the
initial state (τ = 0). Blue and red colors belong to active and passive suspension, respectively.qsT

2/(µL) = 1, α =
10,∆τ = 0.001.
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the time–displacement diagram the time intervals between the consecutive zeros are≈ 1/2, but the
curve is not a pure sine wave, the amplitude varies, the effects of transitions and the free vibration
modes can be observed. In the displacement–velocity diagram an averaged ellipse could be drawn
around which faster oscillations occur. Note how mixed the active and passive states are in this
diagram.

Figures 6 (d) and 7 (d) correspond toRa
d,4 = −20 (r = 0.03689). The deviation of the dynamics

from a simple harmonic motion is still apparent, but the system spends a shorter time in the passive
state and transitions occur less frequently than in the previous case. A possible reason of it is that
the 4th active mode is out of phase now, while the higher modesare in phase, and they can partially
compensate the effect of the 4th resonant mode. (Although the 2nd active mode is out of phase, it
has a much smaller deformation response factor than the higher modes.) In the previous example,
however, the dynamic effect of the resonant in–phase 4th mode is supported by the in–phase higher
modes.

Figures 6 (e) and 7 (e) belong to an even more flexible structure, whereRa
d,4 = −15 (r =

0.03660). Here it can be observed that the structure undergoes a periodic motion with unit time
period, although the suspension system is activatedregularly for about1/10 long time within each
period. This is an exceptional case: the structure isbilinear, but the cable stressing and slacking,
and the structural vibration areperiodic. A possible reason behind this phenomenon can be that
the higher, in–phase active modes balance the 4th resonant,out–of–phase mode.

Figures 6 (f) and 7 (f) correspond to the most flexible studiedstructure, whereRa
d,4 = −10

(r = 0.03604). Here the out–of–phase forced vibration of the 4th active mode is not large enough
to slack the cables. Hence harmonic vibrations of the activestates occur with a unit (dimensionless)
time period, which appears to be a sine wave in the time–displacement diagram and an ellipse in
the displacement–velocity diagram.

Whether the cable force vanishes or not determines if the structure may exhibit non–linear
vibrations or not. The question is if the tensile cable forcefrom the static load is enough to keep
the suspension system active during the vibration. Cable force arises from non–trivial active modes
only. An approximate condition for cable slacking estimates the cable force from the static and
dynamic loads and compares them. This condition can be written as:

α

∣

∣

∣

∣

∣

∑

non-triv.
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i

∣
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∣
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<
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∑
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Ra
d,ih
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∣

∣

∣

∣

∣

.

Hereha
i andRa

d,i are given by (26) and (25), respectively. If the above inequality holds, then
transitions between active and passive suspension states can be expected, which are the source of
the non–linear dynamics.

5.2.2. Verification
In this section the numerical simulation is verified. A simple foot bridge is analysed with total

lengthL = 18m and widthw = 4m, composed of two main (fairly flexible) girders and two
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suspension systems. The static pedestrian surface load [28] is: 375N/m2. Ten percent of this load
is the dynamic load amplitude. One half of the bridge is studied: one girder, the half of the deck
and secondary structures, and one suspension system. The bending stiffness of the girder is taken
to beEI = 0.3MNm2, the mass per unit length isµ = 450 kg/m. The static line load is the surface
load timesw/2:

qp = 750N/m.

The time period of the dynamic load component corresponds tothe walking frequencyf =
2Hz, hence

T = 1/f = 0.5 s.

The frequency parameter of the structure is computed according to Eq. (6):

r =
T

L2

√

EI

µ
= 0.03985.

Based on the corresponding result of the simulation, shown inFigure 6 (a), the dimensionless
initial static displacement isustat = 0.004027, while the maximal dynamic displacement isudyn =
0.04346. SinceqsT

2/(µL) = 1, the dimensionless results correspond to the loadqs = 32400.
Therefore, the real values of the static (initial) and dynamic (maximal) downward displacement of
the mid point of the beam are:

ûstat = umid
stat

qp

qs
L = 1.678 · 10−3 m, (45)

ûdyn = umid
dyn

qp

qs
L = 1.811 · 10−2 m. (46)

Note that Eq. (18) gives the same static displacement of the same structure for the same distributed
load level, and so it verifies Eq. (45).

It is a bit more difficult to verify the maximal dynamic displacement. since the resonant fourth
mode has the most important dynamic effect, the other modes are neglected. The fourth active
modal shape coincides with the third mode shape of a continuous three–span–beam. The natural
frequencies of such a beam are tabulated in [26] at p. 7.24, and the corresponding period verifies
our result based on (22):

T̂ a
n,4 = T a

n,4 · T = 0.9487 s.

The deformation response factor for this mode is:

Ra
d,4 =

1

1− (T̂ a
n,4/T )

2
= 9.999.

The normalized fourth shape function of the active state evaluated at the mid point of the beam is:
umid
4

= 2.098. (See Figure 2.) Using Eq. (17),ηs
4
= 4.176 · 10−5 with the dynamic load amplitude
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q0 = 75N/m. (The integral of the fourth modal shape function isF a
4

= 0.7916.) Thus, the
dimensionless static displacement due to the dynamic part of the pedestrian load, corresponding to
the resonant mode is:ustat,4 = ηs

4
·umid

4
= 8.761 ·10−5. If multiplied byL, its real value is obtained:

ûstat,4 = 0.001577m.

Finally, the approximate maximal displacement of the mid point of the beam, due to the static
and dynamic parts of the pedestrian flow is:

ûapp
dyn = ûstat+Ra

d,4 · ûstat,4 = 1.745 · 10−2 m. (47)

The terms before the last equal sign are the followings. The first term is the static displacement
due to the static part of the pedestrian flow. The second term is the displacement caused by the
dynamic part of the pedestrian flow, taking into account onlythe resonant mode. Eq. (47) is a
good approximate for Eq. (46), regarding that it neglects the dynamic deformations from the non–
resonant modes. Thus, it validates the numerical algorithm.

6. Conclusions

In this paper the dynamics of a simply supportedBernoulli–Eulerbeam equipped with a block–
and–tackle suspension system was studied. It is an effective, innovative suspension (foot)bridge
model, which allows a uniform cable force distribution. As the suspension cable cannot resist
compression, the suspension system can be either in active or in passive state. Because of this, the
studied structure can be described by a piece–wise linear system, which can be a source of non–
linear vibrations. The frequency parameter of the structure was introduced, and the dimensionless
natural frequencies and modal shape functions were derivedfor both stressed and slacked cable.
A procedure was developed to handle the nonlinearity originating from the bilinear stiffness char-
acteristic of the structure. A numerical damping phenomenon was revealed during the transition
between active and passive states, which was caused by the finitization of the space of the modal
shapes. Then semi–analytical simulations were accomplished. Three types of loadings were stud-
ied: a static distributed load for verification purposes, a harmonic distributed load for modelling a
vortex–shedding generated lift force, and a static plus harmonic distributed load for modelling the
dynamic effects of a pedestrian flow. In the case of the vortex–shedding load non–linear vibrations
were observed, which were induced by consecutive slacking and stressing of the suspension cable.
It was pointed out that the frequency parameter is the only parameter that determines the structural
vibration qualitatively. It was revealed that for a soft structure the slow dynamics was governed
by the free vibration, and fast oscillations evolved from the forced vibration. On the other hand,
for a stiff structure, slow dynamics originated from the forced vibration while the fast oscillations
were due to the free vibrations of the natural modes. Estimates for the period of vibration of these
two extremities were given. In the case of the pedestrian flow, by fixing the ratio of the static and
dynamic load components as given by guidelines, only the frequency parameter was needed for the
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dimensionless analysis of the vibrations. It was shown thatthe natural frequency of one non–trivial
active mode had to be close enough to the step frequency of walking in order to slack the cable,
otherwise harmonic motion occurred. Six different frequency parameter values were studied. Two
of them led to linear vibrations, but in the other four cases non–linear vibrations occurred. The
outcomes of the numerical simulations were thoroughly discussed and a necessary condition for
cable slacking was developed. The numerical results were validated by hand calculations, and it
was demonstrated how to apply the dimensionless forms to real structures.

In future works it would be worth studying the effects of structural damping, the mass of the
cable, the friction at the pulleys, or different arrangements of the pulleys. By taking into account
fewer natural modes, a global non–linear dynamic analysis can also be an interesting continuation
of the present work.
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