
Noname manuscript No.
(will be inserted by the editor)

Approximation schemes for
single machine scheduling
with non-renewable
resource constraints

Péter Györgyi · Tamás
Kis

Received: date / Accepted: date

Abstract In this paper we discuss exact and approxi-
mation algorithms for scheduling a single machine with
additional non-renewable resource constraints. Given

the initial stock levels of some non-renewable resources
(e.g. raw materials, fuel, money), and time points along
with replenishment quantities, a set of resource consum-

ing jobs has to be scheduled on the machine such that
there are enough resources for starting each job, and
the makespan is minimized. We show that the prob-

lem admits a pseudo polynomial time algorithm when
the number of replenishments is not part of the input,
and also present an FPTAS when there is only a single

resource, and it is replenished only once. We also de-
scribe a PTAS for the problem with a constant number
of replenishments.

Keywords Single machine scheduling, non-renewable
resources, approximation schemes

1 Introduction

Machine scheduling with additional non-renewable re-
source constraints is an exciting field with enormous
practical importance. In this setting jobs have to be

scheduled on the machine(s), while also respecting the
availability of some non-renewable resources, which are

P. Györgyi
Department of Operations Research, Loránd Eötvös Univer-
sity, H1117 Budapest, Pázmány Péter sétány 1/C
T. Kis
Computer and Automation Research Institute, Hungarian
Academy of Sciences, H1111 Budapest, Kende str. 13–17,
Hungary
Tel.: +36 1 2796156; Fax: +36 1 4667503
E-mail: gyorgyipeter@gmail.com, tamas.kis@sztaki.mta.hu

consumed by the jobs, but replenished over time from

external sources. When a job is started, it consumes
those resources required to its execution in given quan-
tities. This implies that not only the machine must

be free when starting a job, but also the required re-
sources must be available in sufficient quantities. As-
suming that initially the non-renewable resources do

not suffice to perform all the jobs, but the additional
shipments, which occur at known moments in time, and
in known quantities, together provide enough resources

to complete all of them, it is a non-trivial task to find an
ordering of the jobs such that the maximum job com-
pletion time (or other common performance measure)

is minimized, while respecting the resource constraints.
This model has been described by Carlier [5] (chapters
VII and VIII), and by Carlier and Rinnooy Kan [4] (the

models in that paper involve precedence constraints,
and no machines) in the early 80’s, and since then it
has been studied by several others.

As an application, consider a workshop where each
job requires a set of raw materials specified by its ”bill-

of-materials”, and external suppliers ship various raw
materials over time to a production line which processes
the jobs. The jobs may share some of the materials,

i.e., there is a ”competition” between the jobs for the
resources. The scheduler has to find an ordering of the
jobs such that the idle time of the production line, due

to waiting for material shipments, is minimized, or al-
ternatively, when the jobs have due-dates, they com-
plete on time as much as possible.

The α|β|γ notation of Graham et al. [11] has
been extended with renewable resource constraints by

Blazewicz et al. [1]. In addition, Grigoriev et al. [12]
introduces the restrictions rm, and ddc, where rm =
m means that there are m raw materials (or non-

renewable resources in general), and ddc indicates
different dedicated raw materials (non-renewable re-
sources) for each job. The initial availability or stock

of the non-renewable resource(s) may be augmented by
replenishments in distinct moments of time. When the
number of replenishments is a fixed constant, then we

add the restriction q = const to the β field.

Scheduling with non-renewable resource constraints

has been studied e.g. in [4], [5], [6], [9], [12], [13],[14],
[15]. In particular, Carlier and Rinnooy Kan [4] study
the problem with precedence constraints, but without

machines, and derive polynomial time algorithms for
various special cases. Carlier [5] establishes algorith-
mic and complexity results for several variants. Slowin-

ski [14] consider a preemptive scheduling problem on
parallel unrelated machines, and with some renewable
resources, and one non-renewable resource (money)

which becomes available in specified amounts at dif-

2 Péter Györgyi, Tamás Kis

ferent dates. Polynomial algorithms are developed for

minimizing the schedule length, or total cost. Toker
et al. [15] prove that scheduling jobs requiring one
non-renewable resource on a single machine with the

objective of minimizing the makespan reduces to the
2-machine flow shop problem provided that the sin-
gle non-renewable resource has a unit supply at each

time period. Grigoriev et al. [12] derive basic complex-
ity results for several special cases of scheduling a sin-
gle machine with non-renewable resource constraints,

and propose some simple approximation algorithms for
selected problems. Gafarov et al. [9] complement the
findings of Grigoriev et al. by additional complexity re-

sults. Neumann and Schwindt [13] study general project
scheduling problems with inventory constraints, and
propose a branch-and-bound algorithm for minimizing

the project length. In a more general setting, jobs may
consume as well as produce non-renewable resources.
In [2], Briskorn et al. study the complexity of several
variants, while Briskorn et al. [3] devise a branch-and-

bound method for minimizing the weighted sum of job
completion times on a single machine. However, none
of these papers propose approximation schemes for NP-

hard special cases of single machine scheduling subject
to non-renewable resource constraints for the makespan
objective.

Before summarizing our results, we recall the defi-

nition of a PTAS and an FPTAS, see e.g. the famous
guide of Garey and Johnson [10], page 137. A Polyno-
mial Time Approximation Scheme (PTAS) for an op-

timization problem is a family of algorithms {Aε}ε>0

such that Aε has polynomial time complexity in the in-
put length for each fixed ε > 0, and always delivers a

solution which is 1 + ε times the optimum value for a
minimization problem, or at least 1− ε times the opti-
mum for a maximization problem. A Fully Polynomial

Time Approximation Scheme (FPTAS) is a family of al-
gorithms {Aε}ε>0 with the same properties as a PTAS,
plus each Aε runs in polynomial time in 1/ε as well.

Results of this paper. We define the general prob-

lem 1|rm, ddc|Cmax formally in Section 2 and also dis-
cuss its computational complexity. Then we develop a
pseudo polynomial time algorithm for solving the NP-

hard 1|rm, ddc, q = const |Cmax special case to opti-
mality in Section 3. For the still NP-hard special case
1|rm = 1 , q = 2|Cmax we propose a fully polynomial

time approximation scheme (Section 4). Moreover, for
the problem 1|rm = 1 , q = const |Cmax with a fixed
number of replenishments we describe a polynomial

time approximation scheme (Section 5). The PTAS can
be extended to the 1|rm, ddc − agr , q = const |Cmax

problem in which there are different resources dedicated

to each job, and the resource requirements of the jobs

are agreeable, i.e., there is a total order of the jobs

which agrees with a total ordering of the resource re-
quirements of the jobs for each resource (Section 6).

This paper is a follow up to Drótos and Kis [8] in

which the scheduling of inventory releasing jobs has
been studied.

2 Problem 1|rm, ddc|Cmax

Given a set of jobs J , a set of non-renewable resources

R, and a single machine. Each job Jj has a process-
ing time pj ∈ Z+, and resource requirements specified
by a non-negative vector aj ∈ ZR

0 . The resources are

supplied in q distinct moments in time, τ1, . . . , τq ∈ Z0,
where τ1 = 0, and τℓ < τℓ+1 for 1 ≤ ℓ ≤ q − 1. The
quantity of the resources supplied at τℓ is specified by

an |R|-dimensional vector b̃ℓ ∈ ZR
0 . All problem data

is integral. When a job is started, it immediately de-
creases the inventory of the resources by its require-

ments. A schedule Sch specifies the starting time sj of
each job Jj . A schedule is feasible if and only if

1. the processing of jobs do not overlap in time, and
2. for any time point t, the total resource requirements

of those jobs started up to time t do not exceed the
total supply up to time t.

The objective is to minimize the completion time of the
job finished last.

For the sake of simpler presentation, we define one
more moment in time, τq+1 := τq +

∑
j∈J pj , which

marks the end of the scheduling time horizon (there is

no material supply in τq+1). The intervals [τℓ, τℓ+1) are
called supply periods, ℓ = 1, . . . , q. The total resource
supply over the first ℓ supply events is bℓ :=

∑ℓ
u=1 b̃u.

Throughout the paper we assume that the total re-
source supply (over the q supply periods) is sufficient to
process all the jobs, but it is insufficient over the first

q − 1 supply periods, i.e., bq ≥
∑

j∈J aj (component-
wise), and there exists a resource i ∈ R such that
bq−1(i) <

∑
j∈J aj(i). This implies that scheduling all

the jobs in supply period q yields a feasible schedule,
and in any feasible schedule at least one job is assigned
to the last supply period, whence the optimal makespan

C∗
max is greater than τq.

We can model the above scheduling problem by a
mathematical program. There are q|J | decision vari-

ables xℓj representing the assignment of jobs to supply
periods, i.e., xℓj = 1 if and only if the resource require-
ments of job Jj must be satisfied from the total resource

supply over the first ℓ supply periods, and it does not

Approximation schemes for single machine scheduling with non-renewable resource constraints 3

start before τℓ:

C∗
max =min max

ℓ=1,...,q

τℓ +

q∑
u=ℓ

∑
j∈J

pjxuj

 (1)

s.t.∑
j∈J

aj

(
ℓ∑

u=1

xuj

)
≤ bℓ, ℓ = 1, . . . , q − 1 (2)

q∑
ℓ=1

xℓj = 1, j ∈ J (3)

xℓj ∈ {0, 1}, ℓ = 1, . . . , q, j ∈ J (4)

The objective function (1) expresses that we want
to minimize the maximum job completion time. Con-
straints (2) express that the jobs assigned to the first ℓ

supply periods cannot consume more resource(s) than
the total supply over the first ℓ supply periods. Con-
straints (3) ensure that each job has to be assigned to

exactly one supply period.

Any feasible job assignment x̄ gives rise to a set of
schedules which differ only in the ordering of jobs as-

signed to the same supply period. That is, sequence
the jobs assigned to supply period ℓ in some order.
Let these sequences be σℓ, ℓ = 1, . . . , q, and join the

pieces in increasing order of the supply periods, i.e.,
(σ1, σ2, . . . , σq). Let Sℓ and Cℓ denote the starting time
and completion time of the piece σℓ, respectively. Then

we have Cℓ = Sℓ +
∑

j∈J pj x̄ℓj , S1 = τ1 = 0, and
Sℓ = max{τℓ, Cℓ−1} for ℓ = 2, . . . , q. Notice that the Sℓ

and Cℓ are uniquely determined by x̄.

The problem with one non-renewable resource and a
single machine has been introduced by Carlier [5], and
he has also shown that it is NP-hard in the ordinary

sense for q = 2 supply periods by a reduction from
the PARTITION problem ([5], Proposition 5 of Section
4.2.1).

Lemma 1 [5] Problem 1|rm = 1, q = 2|Cmax is NP-

hard in the ordinary sense.

Carlier has also proved that for general q, the problem
is NP-had in the strong sense ([5], Proposition 6 of Sec-

tion 4.2.1). This has been also observed by Grigoriev et
al. [12].

We close this section by summarizing the notation

used throughout the paper (Table 1) and with addi-
tional terminology. The resource requirements of the
jobs are agreeable, denoted by ddc − agr in the β field,

if there is a sequence of jobs ω such that for j < k,
aω(j)(i) ≤ aω(k)(i) for each i ∈ R, and ω(j) and ω(k)
are the jobs in positions j and k, respectively, of se-

quence ω.

Table 1 Notation

nJ number of jobs
J set of jobs {J1, . . . , JnJ }
pj processing time of job Jj
pmax maximum processing time of the jobs,

i.e., pmax = max pj
psum total processing time of the jobs,

i.e., psum =
∑

pj
R set of resources
aj resource requirements of job Jj
asum total resource requirements of the jobs
q number of moments in time when

some resource is supplied
τℓ the ℓth time moment when some resource

is supplied, 0 = τ1 < τ2 < · · · < τq
b̃ℓ vector of resource supplies at time moment τℓ
bℓ total resource supply up to time moment τℓ,

i.e., bℓ =
∑ℓ

u=1 b̃u

3 A pseudo polynomial time algorithm for

1|rm = const, ddc, q = const|Cmax

We reduce the problem 1|rm = const , ddc, q =
const |Cmax to finding a path in an acyclic digraph

from the source node to a terminal node representing
a solution with smallest objective function value. The
nodes of the graph represent the total time, and re-

source consumption, respectively, of the jobs (already)
scheduled in each of the q supply periods, while the
arcs indicate the assignment of jobs to supply peri-

ods. The directed paths in the graph correspond to
schedules. Although there are exponentially many di-
rected paths (or schedules), but the number of nodes

(and arcs) remains pseudo polynomial, since the to-
tal time or resource consumption can be bounded by
adding up the respective problem data. The graph con-

sists of nJ + 1 layers: the 0. layer contains the unique
source node, and we define the nodes on the other lay-
ers iteratively, along with the arcs. A node at layer i

represents an assignment of the first j jobs to the sup-
ply periods, i.e., node Nj(P1, . . . , Pq,∆

1, . . . ,∆q) rep-
resents an assignment of the first j jobs in which the

total processing time of those jobs assigned to supply
period ℓ is Pℓ, and the total demand from the |R| re-
sources in supply period ℓ is ∆ℓ ∈ ZR

0 , for 1 ≤ ℓ ≤ q.

Notice that the source node is N0(0, . . . , 0). Now from
any node Nj(P1, . . . , Pq,∆

1, . . . , ∆q) of layer j < nJ ,
we direct arcs to q nodes of layer j + 1, i.e., we as-

sign job Jj+1 to each supply period in turn. For supply
period ℓ, we direct an arc to node Nj+1(P1, . . . , Pℓ +
pj+1, . . . , Pq, ∆

1, . . . , ∆ℓ + aj+1, . . . ,∆
q), and label the

arc with job Jj+1. Those nodes at layer nJ reachable
from the source node on a directed path are called ter-
minal nodes. We evaluate every terminal node to find

the one representing a solution of minimum objective

4 Péter Györgyi, Tamás Kis

function value. Namely, we check whether
∑ℓ

u=1 ∆
u ≤

bu for ℓ = 1, . . . , q−1 (the inequality holds for ℓ = q by
definition). If a terminal node satisfies the conditions,
then any directed path from the source to the terminal

node represents a feasible solution of (1)-(4).

The assignment corresponding to a directed path π

from the source node to a terminal node is defined as
xπ
ℓj = 1 if and only if job j is assigned to supply period

ℓ on π.

The objective function value of a terminal node is
maxℓ τℓ +

∑q
κ=ℓ Pκ, which is the makespan of the cor-

responding schedule. Now observe that for any node
Nj(P1, . . . , Pq,∆

1, . . . , ∆q) of the graph constructed in

the course of the algorithm, 0 ≤ Pu ≤
∑j

k=1 pk ≤ psum,

and 0 ≤ ∆u(i) ≤
∑j

k=1 ak(i) ≤ asum(i), i ∈ R, hold
for each u = 1, . . . , q. Since both q and the number

resources are constant, the total number of nodes is
pseudo polynomial in the input. Since each node has a
maximum degree of q, the same holds for the number

of arcs. Therefore, we have shown the following:

Theorem 1 The problem 1|rm = const , ddc, q =
const |Cmax can be solved in pseudo polynomial time.

We have implemented the pseudo polynomial time
algorithm in C++ programming language to assess its

practical complexity. We have generated test instances
by varying the number of jobs, the number of supply
periods, the ratio of the material supply in the sup-

ply periods, and the maximum processing time and re-
source requirement. We have generated data with one
resource, and n ∈ {25, 50} jobs, respectively. The pro-

cessing times and resource requests of the jobs were
chosen uniformly at random between 1 and pmax, and 1
and amax, respectively, with pmax = amax ∈ {5, 10}.
The resource supplies b̃ℓ, ℓ = 1, . . . , q, were deter-
mined by tuples (x1, . . . , xq), such that

∑q
u=1 xu = 1,

and b̃ℓ = xℓ

∑q
u=1 au, for ℓ ∈ {1, . . . , q}. For 25 jobs,

we generated instances with q = 2 supply periods,
and three tuples {(0.5, 0.5), (0.25, 0.75), (0.2, 0.8)}, and
also instances with q = 3 supply periods, and two

tuples {(1/3, 1/3, 1/3), (0.2, 0.2, 0.6)}. For 50 jobs, we
considered only q = 2 supply periods, and three tu-
ples {(0.5, 0.5), (0.25, 0.75), (0.2, 0.8)}. For each com-

bination of parameter settings, we generated 5 ran-
dom instances. The results are summarized in Table 2.
Each cell of the table indicates the average number of

graph nodes generated when solving the instances with
the corresponding parameter settings. The computation
times on instances with 2 supply periods were in the

order of seconds, whereas on instances with 3 supply
periods, and amax = pmax = 5 in the order of min-
utes. We have results neither with 50 jobs and 3 sup-

ply periods, nor with 25 jobs, 3 supply periods when

pmax = amax = 10, because the computational time on

such instances was too high (more than 60 minutes).
Observe that the more supply is left to the last sup-
ply period, the less nodes the graphs have on average,

which is plausible as fewer jobs can be assigned to the
first period. All in all, the algorithm is not sophisticated
enough for solving practical problems, but it suffices for

building a fully polynomial time approximation scheme
on it in the next section.

4 An FPTAS for 1|rm = 1, q = 2|Cmax

In this section we describe an FPTAS for the special
case with one resource and two supply periods.

To this end, we will round both the processing times

and the resource requirements of the jobs. Namely, let
K = εpmax/n

J , and L = εamax. Then we define

p#j = K⌊pj/K⌋, a#j = L⌊aj/L⌋, ∀ j. (5)

We build a directed graph with nJ + 1 layers simi-
larly as in Section 3 using the rounded processing times

and resource requirements, and we label the arcs with
the jobs, and also with weights as follows: if the arc
assigns some job Jj to the first period, then the weight

is aj − a#j , otherwise it is 0. The nodes of this graph

are denoted by Ni(P
#
1 , P#

2 ,∆#
1 ,∆

#
2), where i identifies

the layer, and P#
ℓ , and ∆#

ℓ represent the total rounded

processing time and total rounded resource requirement
of those jobs assigned to supply period ℓ = 1, 2, re-
spectively. At layer 0 there is a unique source node

N0(0, 0, 0, 0). From each node from layer 0 ≤ i < nJ

there are two arcs directed to two nodes at layer i+ 1,
one arc assigns job Ji+1 to the first supply period, and

this arc has a weight of aj − a#j , and the other arc as-
signs the job to the second supply period, and has a
weight of 0. Those nodes at layer nJ reachable from

the source node on a directed path are called terminal
nodes.

We say that a terminal node represents a feasible so-

lution, if there is a directed path from the source node
leading to the terminal node such that the path repre-
sents a feasible assignment x̄ of jobs to supply periods,

i.e., x̄ satisfies (2).

Lemma 2 A terminal node NnJ (P#
1 , P#

2 ,∆#
1 ,∆

#
2)

represents a feasible solution if and only if the minimum
weight w∗ of those paths from the source node leading

to this node satisfies the condition ∆#
1 + w∗ ≤ b1.

Proof First suppose there is a directed path from the
source node to node NnJ (P#

1 , P#
2 , ∆#

1 ,∆
#
2) which rep-

resents an assignment x̄ of jobs to the supply periods

with
∑

j aj x̄1,j ≤ b1. Let w denote the weight of this

Approximation schemes for single machine scheduling with non-renewable resource constraints 5

pmax = amax = 5 pmax = amax = 10
q = 2 q = 3 q = 2 q = 3

(0.5, 0.5) 12100 (1/3, 1/3, 1/3) 3426513 (0.5, 0.5) 39335 (1/3, 1/3, 1/3) n.a.
n = 25 (0.25, 0.75) 5283 (0.2, 0.2, 0.6) 918463 (0.25, 0.75) 15163 (0.2, 0.2, 0.6) n.a.

(0.2, 0.8) 3744 (0.2, 0.8) 10486
(0.5, 0.5) 102000 (1/3, 1/3, 1/3) n.a. (0.5, 0.5) 341000 (1/3, 1/3, 1/3) n.a.

n = 50 (0.25, 0.75) 45001 (0.2, 0.2, 0.6) n.a. (0.25, 0.75) 153172 (0.2, 0.2, 0.6) n.a.
(0.2, 0.8) 30945 (0.2, 0.8) 113116

Table 2 Computational results with the pseudo polynomial algorithm.

path. Then we have
∑

j aj x̄1,j = w + ∆#
1 . Since w∗

represents the minimum weight of a directed path from
the source node to NnJ (P#

1 , P#
2 ,∆#

1 ,∆
#
2), we have

w∗ ≤ w. Therefore, ∆#
1 + w∗ ≤ b1.

Conversely, suppose ∆#
1 + w∗ ≤ b1 for the mini-

mum weight w∗ of a directed path from the source node

to NnJ (P#
1 , P#

2 ,∆#
1 ,∆

#
2). Let x̄ be the assignment

of jobs to supply periods represented by this shortest
path. Then we have ∆#

1 =
∑

j a
#
j x̄1,j . Consequently,

b1 ≥ ∆#
1 +w∗ =

∑
j a

#
j x̄1,j +w∗ =

∑
j aj x̄1,j , and the

claim follows. ⊓⊔
The value of a terminal node is maxℓ=1,2 τℓ +∑2

κ=ℓ

∑
j∈J p#j x̄κj , where x̄ is the assignment corre-

sponding to the smallest weight path from the source
node to the terminal node.

Lemma 3 A feasible terminal node with smallest value

represents a solution x̄ of the scheduling problem of
makespan at most C∗

max(1 + ε).

Proof We pick a terminal node NnJ (P#
1 , P#

2 ,∆#
1 ,∆

#
2)

as given in the statement of the lemma. Then we clearly
have max{P#

1 + P#
2 , τ2 + P#

2 } ≤ C∗
max, since p#j ≤ pj

for all j ∈ J . Since pj ≤ p#j + εpmax/n
J , we have

max
ℓ=1,2

τℓ +
2∑

u=ℓ

∑
j∈J

pj x̄uj ≤

max
ℓ=1,2

τℓ +

2∑
u=ℓ

∑
j∈J

p#j x̄uj + εpmax ≤ C∗
max(1 + ε).

⊓⊔
Algorithm A:

1. Construct the layered directed graph.
2. Find a terminal node which represents a feasible

solution and has the smallest value.
3. Output the best feasible solution found in the sec-

ond step.

Theorem 2 Algorithm A is indeed an FPTAS for

1|rm = 1, q = 2|Cmax.

Proof Since in step 2 all the feasible terminal nodes are

evaluated and the one with smallest value is selected,

Lemma 3 implies that the output of the algorithm is at
most (1 + ε) times the optimum.

The running time of the algorithm is dominated
by the construction of the directed graph. Since the
rounded job processing times are of the form K ·
k for some 0 ≤ k ≤ ⌊nJ /ε⌋, and the rounded
resource requirements are of the form L · ℓ for
some 0 ≤ ℓ ≤ ⌊1/ε⌋, the number of nodes is

O(nJ (nJ ⌈nJ /ε⌉)2(nJ⌈1/ε⌉)2) = O((nJ)7ε−4). Since
there are two arcs emanating from each node, the num-
ber of arcs is of the same order. Hence, the size of the

graph is polynomial in nJ and 1/ε. Since the construc-
tion of the graph is polynomial in its size, and finding
the best terminal node is also polynomial in the num-

ber of terminal nodes and in nJ , the entire procedure
is polynomial in nJ and 1/ε. Hence, the algorithm is
indeed an FPTAS. ⊓⊔

5 A PTAS for 1|rm = 1, q = const|Cmax

In this section we describe a PTAS for the problem

1|rm = 1, q = const |Cmax. Suppose we want to achieve
an error ratio 1 + ρ, where ρ > 0 is fixed. We will
describe a procedure which for any fixed parameter ε >

0 always delivers a solution of value at most (1 + c · ε)
times the optimum, where the constant c > 0 does not
depend on the input, or on ε. Therefore, to obtain an

algorithm with an error ratio of 1+ρ, we choose ε such
that 0 < ε ≤ ρ/c holds. To simplify the presentation,
we also assume that 1/ε is integral, so we may let ε =

1/⌈c/ρ⌉.
A job is big if pj ≥ εpsum, otherwise it is small. Let

B be the set of big jobs, and S the set of small jobs. The
main idea is that we first assign the big jobs to supply
periods in all possible ways, and then we complete each

assignment by inserting the small jobs into the schedule
in a suboptimal way using an approximation algorithm
for a special knapsack problem. Finally, we choose the

best schedule obtained. An assignment of jobs to supply
periods is a binary vector x̄ ∈ {0, 1}n×q, where x̄ℓj = 1
if and only if job Jj is assigned to supply period ℓ. An

assignment x̄ can be separated into an assignment x̄B

6 Péter Györgyi, Tamás Kis

of big jobs to supply periods, and an assignment x̄S of

the small jobs to supply periods, i.e., x̄ = (x̄B, x̄S). An
assignment x̄B of big jobs to supply periods is eligible
if and only if the following condition is satisfied: for

each ℓ in 1, . . . , q − 1:
∑ℓ

u=1

∑
j∈B aj x̄

B
uj ≤ bℓ. Clearly,

eligibility means that the resource constraints are not
violated by the assignment x̄B of big jobs to supply

periods.
Recall the mathematical programming formulation

(1)-(4). In the following we will frequently use the re-

stricted version of this mathematical program when
the assignment of big jobs is fixed, i.e., xB is set
to some eligible assignment x̄B of big jobs to supply

periods. Let IP (x̄B) denote the resulting mathemat-
ical program, and OPT(x̄B) its optimum value. For
the fixed x̄B, define a schedule of big jobs as follows:

C̄B
ℓ = max{C̄B

ℓ−1, τℓ} +
∑

j∈B pj x̄
B
ℓj for ℓ = 1, . . . , q,

where C̄B
0 = 0. The PTAS presented in this section

relies on the following structural property of IP (x̄B).

Lemma 4 The mathematical program IP (x̄B) admits
an optimal solution x̄S such that

(i) if C̄B
ℓ ≥ τℓ+1 then no small job is assigned to

supply period ℓ,

(ii) the total processing time of those small jobs as-
signed to supply period ℓ is at most τℓ+1+εpsum−
C̄B

ℓ .

Proof Let x̄S be an optimal solution of IP (x̄B). Choose

any schedule corresponding to (x̄B, x̄S) in which, with-
out loss of generality, for each supply period ℓ, the big
jobs assigned to ℓ precede the small ones assigned to

the same supply period. We may even assume that the
small jobs assigned to a supply period are in short-
est processing time order, which ensures that the last

small job assigned to a supply period starts at the ear-
liest possible time. Now if the last small job assigned
to a supply period ℓ actually starts at τℓ+1 or later in

the schedule, then we reassign it to the next supply pe-
riod, and reinsert it into the schedule. Namely, let ℓ be
the first supply period such that there is a small job

j ∈ S with x̄S
ℓ,j = 1, but j does not start before τℓ+1 in

the schedule. Then the machine is not idle in the entire
supply period ℓ. We reassign j to supply period ℓ + 1,

and reinsert it into the schedule of jobs, if any, already
assigned to supply period ℓ+ 1. Clearly, this update of
the schedule does not increase the makespan. We repeat

the reinsertion and reassignment of small jobs until no
small job assigned to some supply period ℓ, but start-
ing not before τℓ+1 exists. Since the big jobs assigned

to supply period ℓ do not finish before C̄B
ℓ , condition

(i) is satisfied by the updated x̄S .
Finally, since the length of a small job is at most

εpsum, and the big jobs assigned to supply period ℓ do

not finish before C̄B
ℓ , all the small jobs assigned to sup-

ply period ℓ finish by τℓ+1 + εpsum, which implies (ii).
⊓⊔

The value v(x̄) of an assignment x̄ of jobs to supply
periods is defined as the objective function value (1)

for x = x̄, provided x̄ satisfies (2)-(4), and v(x̄) = +∞
otherwise.

Algorithm B:

1. Assign the big jobs in all possible ways to the q sup-

ply periods. For each assignment x̄B perform the
steps 2-3 as follows:

2. If x̄B is not eligible, drop this assignment, and con-

sider the next assignment of big jobs.
3. Determine a schedule of big jobs, i.e., let C̄B

0 = 0,
and C̄B

ℓ = max{C̄B
ℓ−1, τℓ} +

∑
j∈B pj x̄

B
ℓj for ℓ =

1, . . . , q. Let b̄ℓ = bℓ −
∑

j∈B aj

(∑ℓ
u=1 x̄

B
uj

)
. Since

x̄B is eligible, b̄ℓ ≥ 0 for all ℓ = 1, . . . , q. Define the

following mathematical program:

OPTS
x̄B :=max

q−1∑
ℓ=1

∑
j∈S

pjxℓj (6)

s.t.∑
j∈S

aj

(
ℓ∑

u=1

xuj

)
≤ b̄ℓ, ℓ = 1, . . . , q − 1

(7)∑
j∈S

pjxℓj ≤ max{0, τℓ+1 − C̄B
ℓ }+ εpsum,

ℓ = 1, . . . , q − 1 (8)

q−1∑
u=1

xuj ≤ 1, j ∈ J (9)

xuj ∈ {0, 1}, j ∈ J (10)

Let pSsum =
∑

j∈S pj . Find an ε-approximate solution

x̂S of this program such that
∑q−1

u=1

∑
j∈S pj x̂uj ≥

(1− O(ε))OPTS
x̄B , which may even violate the con-

straints (8) by an amount of εpSsum in total. Compute
v((x̄B , x̂S)).

4. Output the best solution obtained.

Firstly, we prove that for any eligible assignment
x̄B of the big jobs to supply periods, if x̂S is an ε-

approximate solution, then the value of the assignment
x̂ = (x̄B , x̂S) is a good approximation of the optimal
solution of (1)-(4) with xB fixed to x̄B .

Lemma 5 Let x̂S be an ε-approximate solution of

(6)-(10), which may violate the constraints (8) by an

Approximation schemes for single machine scheduling with non-renewable resource constraints 7

amount of εpSsum in total. Then v(x̂), the value of the as-

signment x̂ = (x̄B , x̂S), is at most (1+O(ε))OPT(x̄B).

Proof Let x̃S be an optimal solution of IP (x̄B), which,
without loss of generality, satisfies the conditions of
Lemma 4. Hence, x̃S is a feasible solution of (6)-(10).

Therefore,
∑

j∈S pj

(∑q−1
ℓ=1 x̃

S
ℓj

)
≤ OPTS

x̄B (the opti-

mum value of (6)-(10)). Therefore, in order to approxi-
mate OPT(x̄B), we need a solution which assigns small

jobs to supply periods 1, . . . , q − 1 of total processing
time close to OPTS

x̄B .

Now let x̂S be an ε-approximate solution of (6)-(10)
which may violate (8) by an amount of εpSsum in total.

Since
∑

j∈S pj

(∑q−1
ℓ=1 x̂ℓj

)
≥ (1 − O(ε))OPTS

x̄B , and

the constraints (8) may be violated by at most εpSsum in
total, the value of the assignment (x̄B , x̂S) is by at most
(q−1)εpsum+εpSsum+O(ε)OPTS

x̄B more than OPT(x̄B).

Observe that pSsum ≤ psum and both psum and OPTS
x̄B

are lower bounds on OPT(x̄B). Hence,

v((x̄B , x̂S)) ≤
OPT(x̄B) + εpSsum + (q − 1)εpsum +O(ε)OPTS

x̄B ≤
(1 +O(ε))OPT(x̄B).

⊓⊔
Now we turn to finding an ε-approximate solution of

(6)-(10). Our approach builds on the ideas of Chekuri

and Khanna [7] who devised a PTAS for solving the
Multiple Knapsack Problem (MKP). The MKP prob-
lem is as follows: Given a set B of m bins, and a set S
of n items. Each bin i ∈ B has a capacity of c(i), and
each item j ∈ S has a size e(j), and a profit p(j). Find a
subset U ⊆ S of items of maximum profit such that the

items in U can be packed into the m bins. The PTAS
of Chekuri and Khanna is divided into a guessing stage
and a packing stage. In the guessing stage the optimum

value is ”guessed” along with a set of items which can
be packed into to bins, whereas in the packing stage
a subset of items is chosen and a feasible packing is

sought while losing only an O(ε) fraction of the opti-
mum profit, where ε > 0 is a parameter.

The problem (6)-(10) has some similarities to MKP:

we have to select a subset of small jobs of maximum
total processing time (profit). The bins are the first
q−1 supply periods with capacities max{0, τi+1−C̄B

i }+
εpsum. By Lemma 5, these capacity constraints may be
violated by εpSsum in total to obtain a solution which has
a value of at most (1+c ·ε) times the optimum, where c

is a constant independent of ε and the input. Moreover,
we have additional size parameters, the aj values, and
capacity constraints (7) of the bins, which cannot be vi-

olated. Notice that the additional capacity constraints

are nested, which can be exploited when packing the

items. Firstly, we will guess the true optimum value of
(6)-(10), where guessing means that we define a set of
possible values such that one of them is close enough

to the true optimum, and whose number is polynomial
in the length of the input. Then we will round the job
processing times and partition the set of small jobs ac-

cording to the rounded job processing times. We will
also guess the total processing time of those small jobs
assigned to each supply period from each subset of the

partitioning. Finally, we will assign the jobs to the sup-
ply periods in increasing aj order. We will show that
all the guessing steps can be done in polynomial time

in n, and that we get an ε-approximate solution in the
end.

For a fixed x̄B, let S(x̄B) be the set of those small
jobs which may be assigned to a supply period ℓ ≤
q − 1, i.e., aj ≤ b̄ℓ. Clearly, all the small jobs in S \
S(x̄B) can only be assigned to supply period q in any
feasible schedule. Let n = |S(x̄B)| denote the number

of small jobs in S(x̄B), and p
S(x̄B)
max = maxj∈S(x̄B) pj . In

addition, ε > 0 is a parameter determining the error

of the algorithm, and to simplify notation, we assume
that 1/ε is an integer. If n ≤ 1/ε, then we can find the
optimum value of (6)-(10) in constant time, so from

now on we assume that n > 1/ε.

Following the method of Chekuri and Khanna,
firstly we guess a value O between (1 − ε)OPTS

x̄B and
OPTS

x̄B . Since we do not know the value of OPTS
x̄B ,

we define a set of numbers such that one of them will
do. That is, the guesses will be numbers of the form

p
S(x̄B)
max (1 + ε)i for some non-negative integer i. The set

of guesses is G = {pS(x̄B)
max (1 + ε)i | 0 ≤ i ≤ g}, where g

is a sufficiently large integer. To bound g, observe that

p
S(x̄B)
max ≤ OPTS

x̄B ≤ np
S(x̄B)
max holds, and therefore, it is

no use to guess numbers exceeding np
S(x̄B)
max . Now we

can bound g as follows.

Proposition 1 g ≤ ⌊2ε−1 lnn⌋.

Proof We limit g by using the inequality p
S(x̄B)
max (1 +

ε)g ≤ np
S(x̄B)
max . After simplification we get (1+ ε)g ≤ n.

Taking the logarithm of both sides yields g ln(1 + ε) ≤
lnn. Since ln(1 + ε) ≥ ε/2 for ε ≤ 1, we have gε/2 ≤
lnn, which implies our claim. ⊓⊔

Clearly, we have a polynomial number of guesses
in n, and one of them will satisfy (1 − ε)OPTS

x̄B ≤
O ≤ OPTS

x̄B . For each guess O ∈ G, we will define

a new problem instance of (6)-(10) obtained by drop-
ping those small jobs with pj < εO/n, and round-
ing down the processing time pj of the remaining jobs

to the nearest value p∗j chosen from the set P ∗ =

8 Péter Györgyi, Tamás Kis

{(εO/n)(1 + ε)i−1 | 1 ≤ i ≤ h}, where h is the largest

integer such that the rounded job processing times do
not exceed O, i.e.,

(εO/n)(1 + ε)h−1 ≤ O. (11)

Proposition 2 h ≤ ⌊4ε−1 lnn⌋+ 1.

Proof To limit h from above, we rearrange (11) to ob-
tain (1 + ε)h−1 ≤ n/ε. Taking the logarithm of both
sides yields (h − 1) ln(1 + ε) ≤ ln(n/ε) ≤ 2 lnn, where

we used the assumption n > 1/ε. Since ln(1+ ε) ≥ ε/2,
we finally obtain h − 1 ≤ 4ε−1 lnn, where the right-
hand-side can be rounded down as h is integral. ⊓⊔

Subsequently we will show how to find an assign-
ment xS of small jobs to supply periods such that∑q−1

ℓ=1

∑
j∈S(x̄B) p

∗
jx

S
ℓ,j ≥ (1 − O(ε))O. To this end,

we introduce job classes S1, . . . , Sh, where Si contains
all the small jobs with rounded processing time yi =
(εO/n)(1 + ε)i−1. An optimal solution x̃ of (6)-(10)

determines the subset of jobs from each Si assigned
to each supply period. For each ℓ = 1, . . . , q − 1 and
i = 1, . . . , h, we will guess approximately the value of

yi
∑

j∈Si
x̃S
ℓj with kℓi (εO/h), where kℓi is a non-negative

integer.

Proposition 3 For a guessed objective value O ∈ G,
to approximate yi

∑
j∈Si

x̃S
ℓj, the largest possible kℓi

value is at most h/ε.

Proof Since we want to approximate the value of

yi
∑

j∈Si
x̃S
ℓj , which is bounded by the guess O ∈ G,

kℓi (εO/h) ≤ O implies kℓi ≤ h/ε. ⊓⊔

We also have to specify which jobs from Si to assign
to supply period ℓ whose total rounded processing time

is at least kℓi (εO/h). To this end, we apply the following
procedure.

Algorithm Job picking:

1) Order the jobs in each Si in non-decreasing aj order.

2) For each Si, i = 1, . . . , h, in turn do the following:
3) Choose the subset U1

i ⊆ Si of smallest
∑

j∈U1
i
aj

value with yi|U1
i | =

∑
j∈U1

i
p∗j ≥ k1i (εO/h). In

general, U ℓ
i is chosen from Si \

(∪ℓ−1
κ=1 U

κ
i

)
such

that
∑

j∈Uℓ
i
aj is minimal with yi|U ℓ

i | ≥ kℓi (εO/h),

ℓ = 2, . . . , q−1. If kℓi = 0 for some ℓ ∈ {1, . . . , q−1},
then U ℓ

i = ∅.
4) If we cannot pick enough elements for some kℓi from

the (remaining) Si, then the procedure fails, other-
wise it outputs the sets U ℓ

i .

The Job picking procedure is illustrated in Fig. 1,

where the schedule of the big jobs is shown on the top,

whereas the one obtained after inserting the small jobs

is depicted in the bottom of the figure.
For ℓ = 1, . . . , q − 1, let U ℓ(kℓ1, . . . , k

ℓ
h) =

∪h
i=1 U

ℓ
i

be the set of jobs picked for the h tuple (kℓ1, . . . , k
ℓ
h).

We define the assignment of small jobs in the q−1 sets
U ℓ(kℓ1, . . . , k

ℓ
h), ℓ = 1, . . . , q − 1, to supply periods by a

(q − 1)× n binary vector xU as follows:

xU
ℓ,j =

{
1 if j ∈ U ℓ(kℓ1, . . . , k

ℓ
h),

0 otherwise.
ℓ = 1, . . . , q − 1.

Lemma 6 For any O ≤ OPTS
x̄B , there exists an h(q−

1) tuple (k11, . . . , k
q−1
h) such that the assignment xU of

small jobs to supply periods corresponding to the q − 1
sets U ℓ(kℓ1, . . . , k

ℓ
h), ℓ = 1, . . . , q − 1, satisfies (7), and

also the constraints∑
j∈S

p∗jxℓ,j ≤ max{0, τℓ+1 − C̄B
ℓ }+ εpsum, ℓ < q (12)

and

q−1∑
ℓ=1

h∑
i=1

yi

∑
j∈Si

xℓj

 ≥ (1− (q + 1)ε)O.

(Constraint (12) is obtained from (8) by replacing pj
by p∗j .)
Proof Take an optimal solution x̃S of (6)-(10) (for the

original pj values). Since pj ≥ p∗j , x̃
S satisfies (12) as

well. Let the set Ũ ℓ
i consist of those small jobs Jj with

x̃ℓ,j = 1 and j ∈ Si, where we neglect those jobs with
pj < εO/n. Define kℓi = ⌊p∗(Ũ ℓ

i)h/(εO)⌋.
By applying the job picking procedure (described

before this lemma), to the h(q−1) tuple (k11, . . . , k
q−1
h),

the sets U ℓ
i , may differ from the sets Ũ ℓ

i . The reason is
that there may exist distinct jobs Jj and Jk of the same

rounded processing time such that j ∈ Ũ ℓ
i , k ∈ Ũκ

i for
some i, but 1 ≤ ℓ < κ ≤ q − 1, and aj > ak, or some
Ũ ℓ
i is not of smallest total weight with respect to the

aj . However,
∑t

ℓ=1

∑
j∈Uℓ

i
aj ≤

∑t
ℓ=1

∑
j∈Ũℓ

i
aj , and

|U t
i | ≤ |Ũ t

i | for t = 1, . . . , q−1, and i = 1, . . . , h. Hence,
the assignment xU of small jobs to supply periods with

respect to the q − 1 sets U ℓ(kℓ1, . . . , k
ℓ
h) =

∪h
i=1 U

ℓ
i ,

ℓ = 1, . . . , q − 1, satisfies the constraints (7) and (12).
Moreover, the value of the assignment is

q−1∑
ℓ=1

h∑
i=1

yi

∑
j∈Si

xU
ℓj

 ≥
q−1∑
ℓ=1

h∑
i=1

kℓi (εO/h)

≥
q−1∑
ℓ=1

h∑
i=1

p∗(Ũ ℓ
i)− (q − 1)εO

≥
q−1∑
ℓ=1

h∑
i=1

p(Ũ ℓ
i)

(1 + ε)
− qεO

≥ (1− (q + 1)ε)O,

Approximation schemes for single machine scheduling with non-renewable resource constraints 9

Fig. 1 Illustration of the Job picking procedure with h = 3.

where the first inequality follows from the definition
of the sets U ℓ(kℓ1, . . . , k

ℓ
h) and that of xU , the second

from the definition of the kℓi values, the third from the

inequality p∗j ≥ pj/(1 + ε) − εO/n (since those jobs
with pj < εO/n are discarded, while for the remaining
jobs we have p∗j (1 + ε) ≥ pj), and the last one is due

to OPTS
x̄B =

∑q−1
ℓ=1

∑h
i=1 p(Ũ

ℓ
i) ≥ O, and O/(1 + ε) ≥

(1− ε)O for ε > 0. ⊓⊔
Notice that the condition of O ≤ OPTS

x̄S of
Lemma 6 only excludes unattainable guesses for the
optimum value of (6)-(10). We can limit the number of

h(q − 1) tuples to be evaluated as follows.

Proposition 4 The number of h(q − 1) tuples to be
evaluated is O(nO(ε1−q+ε−2)). Evaluating a single tuple

takes O(qn) time. All the tuples can be evaluated in
O(h · n log n+ (qn) · nO(ε1−q+ε−2)) time.

Proof Recall that for a tuple (k11, . . . , k
q−1
h), the job

picking procedure will produce sets U ℓ
i such that

p∗(U ℓ
i) ≥ kℓi (εO/h), and since we want to approximate

O, it suffices to consider tuples with
∑q−1

ℓ=1

∑h
i=1 k

ℓ
i ≤

h/ε. A well known result in combinatorics says that
the number of solutions of the inequality x1 + · · ·xg ≤

d among the nonnegative integers is f =

(
d+ g

g

)
.

Claim 2.4 of Chekuri and Khanna [7] says that if
d + g ≤ αg for some α, then f = O(eαg). Therefore,

the number of those tuples (k11, . . . , k
q−1
h) ∈ Zh(q−1)

0

with
∑q−1

ℓ=1

∑h
i=1 k

ℓ
i ≤ h/ε is

(
h/ε+ h(q − 1)

h(q − 1)

)
, which

is bounded by O(nO(ε1−q+ε−2)) (using α = 1+1/(ε(q−
1))), a polynomial of n for fixed ε and q.

To see the second part, notice that evaluating a
single tuple (k11, . . . , k

q−1
h) consists of defining the vec-

tor xU corresponding to the sets U ℓ(kℓ1, . . . , k
ℓ
h), ℓ =

1, . . . , q− 1, and then checking whether xU satisfies (7)
and (12). Notice that S1, . . . , Sh need to be determined
only once for each guess O, and they can be sorted one-

by-one in O(
∑h

i=1 |Si| log2 |Si|) time in total, which can
be very roughly bounded by O(h · n log2 n). After this
pre-processing, computing xU for a given (k11, . . . , k

q−1
h)

boils down to determining the cardinality of the sets U ℓ
i

by simple divisions: |U ℓ
i | = ⌈kℓi (εO/h)/yi⌉, since all jobs

in Si have the same rounded processing time yi (see the

Job picking procedure). Then we set the coordinates of
xU in O(n) time in total by using the sorted sets Si.
Verifying the constraints (7) and (12) takes O(qn) time.

⊓⊔

All in all, for each O, we have a polynomial num-
ber of tuples to be evaluated. In order to find an ε-
approximate solution of (6)-(10), we generate all the tu-

ples with
∑h

i=1

∑q−1
ℓ=1 k

ℓ
i ≤ h/ε in polynomial time, and

check each tuple (k11, . . . , k
q−1
h) whether the assignment

xU of small jobs to supply periods corresponding to

the set system U ℓ(kℓ1, . . . , k
ℓ
h), ℓ = 1, . . . , q− 1, satisfies

(7) and (12). We choose the xU giving an assignment
(x̄B , xU) of smallest value v((x̄B , xU)).

Theorem 3 Algorithm B is a PTAS for 1|rm = 1, q =

const |Cmax.

Proof Consider any O ∈ G with (1 − ε)OPT(x̄B) ≤
O ≤ OPT(x̄B) (such an O exists by the definition
of the set G). By Lemma 6, there is a h(q − 1) tuple

(k11, . . . , k
q−1
h) such that

∑q−1
ℓ=1

∑h
i=1 yi

(∑
j∈Si

xU
ℓj

)
=∑q−1

ℓ=1

∑h
i=1 p

∗(U ℓ
i) ≥ (1− (q + 1)ε)O, and xU satisfies

(7) and (12), where each set U ℓ
i satisfies kℓi (εO/h) ≤

p∗(U ℓ
i) < (kℓi + 1)(εO/h), and xU is the correspond-

ing assignment of the small jobs to supply periods. We

10 Péter Györgyi, Tamás Kis

may even assume that
∑q−1

ℓ=1

∑h
i=1 k

ℓ
i ≤ h/ε, other-

wise
∑q−1

ℓ=1

∑h
i=1 p

∗(U ℓ
i) ≥

∑q−1
ℓ=1

∑h
i=1 k

ℓ
i (εO/h) > O

and we could decrease some of the kℓi values to meet∑q−1
ℓ=1

∑h
i=1 k

ℓ
i ≤ h/ε. We have

q−1∑
ℓ=1

h∑
i=1

∑
j∈Si

pjx
U
ℓj

 ≥
q−1∑
ℓ=1

h∑
i=1

∑
j∈Si

p∗jx
U
ℓj

≥ (1− (q + 1)ε)O
≥ (1− (q + 1)ε)(1− ε)OPT(x̄B)

≥ (1− (q + 2)ε)OPT(x̄B),

where the first inequality follows from pj ≥ p∗j for
j ∈ S(x̄B), the second from the choice of the tu-

ple (k11, . . . , k
q−1
h), the third from the choice of O,

and the last from elementary calculations. Now since
pj ≤ (1 + ε)p∗j if pj ≥ εO/n, and p∗j = 0 otherwise, xU

violates (8) by at most ε
∑

j∈S(x̄B) p
∗
j ≤ εpSsum in total.

Hence, xU is an ε-approximate solution, and Lemma 5
implies that (x̄B , xU) is a solution of IP (x̄B) of value
at most (1 +O(ε))OPT(x̄B).

Concerning the time complexity of the procedure,

the number of big jobs is at most 1/ε, since job j is
big if and only if pj ≥ εpsum. Hence, the number of
assignments of big jobs to supply periods is at most

q1/ε, a constant. Therefore, the total running time is
determined by the number of trials for O (for any fixed
assignment of big jobs), and the complexity of genera-

tion and evaluation of all the tuples for each O, which
is O(q1/ε · g · (h · n log n + (qn) · nO(ε1−q+ε−2))). Us-
ing Propositions 1 through 4, we get that the overall

time complexity of the algorithm is O(q1/ε · (2ε−1 lnn) ·
(n2ε−1 log2 n+ (qn) · nO(ε1−q+ε−2))), a polynomial of n
for fixed ε and q. ⊓⊔

6 A PTAS for 1|rm, ddc − agr , q = const|Cmax

Finally, we sketch how to extend our PTAS to the
more general 1|rm, ddc − agr , q = const |Cmax problem,

when the resource requirements of jobs are agreeable.
In fact, all we have to do is to order each set Si in
non-decreasing order for all the resource coordinates,

and then we can apply a similar procedure as for the
1|rm = 1, q = const |Cmax case. The only difference is
that we have to deal with vectors of resource require-

ments and resource supplies rather than scalar quanti-
ties, but this increases the time complexity of the algo-
rithm only by a factor of |R|, which is polynomial in

the input length.

7 Conclusions

In this paper we have devised exact and approximation

algorithms for scheduling jobs on a single machine sub-
ject to resource constraints. This is just the first step,
as there are several other objective functions for which

no approximation schemes, or the hardness of approxi-
mation is known.

8 Acknowledgments

This work has been supported by the research
grant ”Digital, real-time enterprises and networks”,
OMFB-01638/2009. The research of Tamás Kis has

been supported by the János Bólyai research grant
BO/00412/12/3 of the Hungarian Academy of Sciences.

References

1. Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A.H.G.:
Scheduling subject to resource constraints: classification
and complexity, Discrete Applied Mathematics, 5, 11-24
(1983)

2. Briskorn, D., Choi, B-C., Lee, K., Leung, J., Pinedo, M.:
Complexity of single machine scheduling subject to non-
negative inventory constraints. European Journal of Oper-
ational Research, 207, 605–619, (2010)

3. Briskorn, D., Jaehn, F., Pesch, E.: Exact algorithms for
inventory constrained scheduling on a single machine.
Journal of scheduling, to appear (2012)

4. Carlier, J., Rinnooy Kan, A. H. G.: Scheduling subject
to nonrenewable resource constraints. Operations Research
Letters, 1, 52–55 (1982)

5. Carlier, J.: Problèmes d’ordonnancements à contraintes
de ressources: algorithmes et complexité, Thèse d’état,
1984.

6. Carlier, J.: Scheduling under financial constraints, in
R. Slowiński, J. Weglarz (eds), Advances in Project

Scheduling, Elsevier, Amsterdam, pp. 187–224 (1989)
7. Chekuri, C., Khanna, S.: A Polynomial Time Approxima-

tion Scheme for the Multiple Knapsack Problem, SIAM
J. Computing, 35, 713–728 (2006)

8. Drótos, M., Kis, T.: Scheduling of inventory releasing jobs
to minimize a regular objective function of delivery times,
Journal of Scheduling, article in press (2012)

9. Gafarov, E.R, Lazarev, A.A., Werner, F.: Single machine
scheduling problems with financial resource constraints:
Some complexity results and properties, Mathematical So-
cial Sciences, 62, 7–13 (2011)

10. Garey, M. R., Johnson, D. S.: Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. Freeman,
San Francisco (1979)

11. Graham, R.L., Lawler E.L., Lenstra, J.K., Rinnooy Kan,
A.H.G.: Optimization and approximation in determinis-
tic sequencing and scheduling: a survey, Annals of Discrete
Mathematics, 5, 287-326 (1979)

12. Grigoriev, A., Holthuijsen, M., van de Klundert, J.: Basic
scheduling problems with raw material constraints, Naval

Research of Logistics, 52, 527–553 (2005)

Approximation schemes for single machine scheduling with non-renewable resource constraints 11

13. Neumann, K., Schwindt, C.: Project scheduling with in-
ventory constraints. Mathematical Methods of Operations

Research, 56, 513–533 (2002)
14. Slowinski, R.: Preemptive scheduling of independent jobs

on parallel machines subject to financial constraints, Eu-
ropean J. Operational Research, 15, 366–373 (1984)

15. Toker, A., Kondakci, S., Erkip, N.: Scheduling under
a non-renewable resource constraint. J. Operational Re-
search Society, 42, 811–814 (1991)

