
Lift-and-project for general two-term disjunctions

Tamás Kis∗

February 7, 2014

Abstract

In this paper we generalize the cut strengthening method of Balas and
Perregaard for 0/1 mixed-integer programming to disjunctive programs
with general two-term disjunctions. We apply our results to linear pro-
grams with complementarity constraints.

Keywords Disjunctive programming, Lift-and-Project cuts.

1 Introduction

Consider the disjunctive program

min cx (1)

s.t.

(DP) Ax ≥ b (2)

x ≥ 0 (3)

dk,1x ≥ dk,10 ∨ dk,2x ≥ dk,20 , k ∈ Γ (4)

where Γ is a finite set of indices. Constraints (4) are called disjunctive, a term
coined by Egon Balas [2]. Notice that (4) consists of two-term disjunctions. A
vector x̂ is a feasible solution of the system (2)-(4) if it satisfies the constraints
(2)-(3), and for each k ∈ Γ at least one of the two terms from (4). A mathemat-
ical program with disjunctive constraints is called disjunctive program (DP) in
[2].

In this paper we will focus on strengthening the LP relaxation of disjunc-
tive programs by cutting planes. The LP relaxation of (1)-(4) is obtained by
dropping the disjunctive constraints (4). Balas [5] gave a primal and a dual
description of the convex hull of all points in the set P ∩ (

∨
h∈QD

hx ≥ dh0),
where P is a convex polyhedron, and Q is a finite set of indices. The primal
description was merely a linear program which consisted of |Q| copies of the
linear description of P , and the dual description was a characterization of all
the valid inequalities and facets of the convex hull of feasible points, which was
shown to be polyhedral.

A disjunctive cut for (DP) is any inequality valid for conv(P k,1 ∪ P k,2) (the

closed convex hull of P k,1 ∪ P k,2), where P k,t = {x | Ax ≥ b, dk,tx ≥ dk,t0 },
∗Address: Computing and Automation Research Institute, Kende str. 13-17, H1111 Bu-

dapest, Hungary, e-mail: kis.tamas@sztaki.mta.hu

1

t = 1, 2. Finding good disjunctive cuts is not an easy task. The lift-and-project
procedure was developed by Balas et al [3],[4] to strengthen Gomory cuts for
programs with 0-1 variables. Gomory cuts are generated from disjunctions of
the form πx ≤ π0 ∨ πx ≥ π0 + 1 (split disjunctions), where (π, π0) ∈ Zn1 × Z,
and x is the set of integer variables of a mixed-integer linear program

min{cx+ gy | (x, y) ∈ P, x integer}, (5)

where P = {(x, y) ∈ Rn1 × Rn2 | Ax + Gy ≥ b, x ∈ [0, 1]n1 , 0 ≤ y ≤ u} is
a convex polyhedron. The linear relaxation of (5) is obtained by dropping the
condition ”x integer”. In [3] and [4], cuts were generated from disjunctions of
the form xi ≤ 0 ∨ xi ≥ 1 by solving a Cut Generating Linear Program (CGLP):

minα(x̂, ŷ)− β (6)

s.t.

α− uT (A,G) + u0ei ≥ 0 (7)

α− vT (A,G)− v0ei ≥ 0 (8)

− β + uT b ≥ 0 (9)

− β + vT b+ v0 ≥ 0 (10)

α normalization, or β normalization (11)

u, u0, v, v0 ≥ 0 (12)

In the objective function, (x̂, ŷ) is a basic solution of the linear relaxation of
(5) with x̂i fractional, which we want to cut off. Constraints (7)-(10) express
that the inequality αx ≥ β is valid for both of the polyhedra P0 = {(x, y) ∈
P | − xi ≥ 0}, and P1 = {(x, y) ∈ P | xi ≥ 1}. The α-normalization in (11)
means

∑
j |αj | = 1, and the β-normalization means either β = 1 or β = −1, and

it is needed to ensure a finite optimum value. There are other normalizations
possible, such as uT1 + u0 + vT1 + v0 = 1, where 1 is the vector of all ones of
appropriate dimension, which is used in Balas and Perregaard [8]. A drawback
of the original approach was the computational overhead caused by forming
CGLP, even in a reduced space, and by the many pivots needed to solve it to
optimality. Both of these problems were eliminated by Balas and Perregaard [8],
and Perregaard [15] by establishing a direct correspondence between the bases
of the linear relaxation of (5) and the basic solutions of CGLP (6)-(12), and by
showing how to pivot in the simplex tableau of (5) (small tableau) in order to
improve the objective function value of CGLP. They have also shown that by
pivoting in the small tableau, the true optimum of CGLP can be found. There
are a number of other papers dealing with strengthening split disjunctions, see
e.g., [6], [7], [9], [11], and also multi-term disjunctions [14]. Before presenting
our results, we need the following:

Definition 1 Let P1, P2 ⊂ Rn be polyhedra with P1 ⊂ P2 (P2 is a relaxation of
P1).

• We say that αx ≥ β is valid for P1 if and only if P1 ⊆ {x ∈ Rn : αx ≥ β}.

• Let α1x ≥ β1 and α2x ≥ β2 be valid inequalities for P1. We say that
α1x ≥ β1 dominates α2x ≥ β2 on P2 if and only if {x ∈ P2 : α1x ≥
β1} ⊆ {x ∈ P2 : α2x ≥ β2}.

2

• Let S and R be sets of valid inequalities for P1. We say that S dominates
R on P2, if any inequality of R is equal to or dominated by a convex
combination of inequalities in S. The domination is strict if S dominates
R, but R does not dominate S, i.e., there exists an inequality in S which
is not equal to or dominated by a convex combination of inequalities in R.

Main Results of this paper. We generalize the Lift-and-Project procedure of
Balas and Perregaard [8] to general two-term disjunctions. The Cut Generating
Linear Program is very similar to that of integer programming, where the dis-
junctions take the form πx ≤ π0 ∨ πx ≥ π0 + 1 in general. We are interested in
the more general case when the two hyperplanes corresponding to the two terms
are not parallel. We will discuss the similarities and point out the differences
to the case of split disjunctions. One of our main findings is that the Cut Gen-
erating Linear Program (CGLP) has basic solutions that, unlike in case of split
disjunctions, cannot be linked to bases of the small tableau. As a consequence,
in case of general two term disjunctions, the set of Lift-and-Project cuts may
strictly dominate on the LP relaxation of (DP) the set of disjunctive cuts that
can be derived from the bases of the simplex tableau by a standard formula.
The heart of the Lift-and-Project procedure of Balas and Perregaard is that it
replaces pivot sequences in CGLP by single pivots in the small tableau. We
will show that the same technique, with appropriate modifications, works in
the general two-term case, but unlike in the case of split disjunctions, it is not
guaranteed that an optimal solution can be reached by a sequence of pivots in
the small tableau. While describing the method, we provide a new derivation
of reduced costs needed for identifying pivot rows. We will also evaluate the
Cut-generation method on some benchmark instances, the main goal being to
compare the Cut-generation procedure in the small tableau to solving CGLP
by a linear programming solver.

The structure of the paper. In the next section, we recapitulate how to
generate disjunctive cuts from the simplex tableau along with the concept of
Cut-Generating Linear Programs (CGLP), and that of Lift-and-Project cuts.
In Section 3 we prove that any basis of the LP relaxation induces a disjunctive
cut and also an equivalent solution of CGLP. In Section 4 we generalize the
cut-generation procedure of [8] to disjunctive programs with general two-term
disjunctions, and also show its limitations. A sufficient condition of optimal
termination is given in Section 5. In Section 6, we evaluate the cut-generation
procedure on benchmark problems from the literature.

Notation and terminology. Throughout the paper, A is a matrix in Rm×n,
Ã = [AT , I]T , i.e., we add to the rows of A the identity matrix, and b̃ = [bT , 0]T

is the corresponding right-hand-side of the system Ãx ≥ b̃, which is equivalent
to Ax ≥ b, x ≥ 0. The linear inequality system Ax ≥ b, can be extended to a
system of equations by new surplus variables xn+1, . . . , xn+m, i.e., [A,−I]x = b.
If B ⊆ {1, . . . , n}, then the submatrix of A with columns indexed by B is AB ,
whereas if Q ⊆ {1, . . . ,m}, the submatrix of A consisting of those rows indexed
by Q is AQ. Hence, ABQ is a submatrix of A with columns in B and rows in Q. A
basis of [A,−I] is a set of m linearly independent columns B ⊆ {1, . . . , n+m}.
Let N = {1, . . . , n+m} \ B be the set of nonbasic variables. Clearly, |N | = n,
the number of columns of A. Let P1, P2 ⊆ Rn

+ be convex polyhedra in the
nonnegative orthant. The convex hull of the union of P1 and P2 is a convex
set, which may not be a polyhedron as it is not necessarily closed if P1 or P2

3

is unbounded, see Balas [5]. Therefore, throughout this paper, we will take the
closure of conv(P1 ∪ P2), which is also called the closed convex hull of P1 ∪ P2,
denoted by conv(P1∪P2). We can obtain valid inequalities for conv(P1∪P2) from
valid inequalities for P1 and P2 using the disjunctive principle, see Balas [2], [5].
Let πix ≥ πi0 be a valid inequality for Pi, i = 1, 2. Since both polyhedra are in
the nonnegative orthant, the inequality

n∑
j=1

max{π1
j , π

2
j }xj ≥ min{π1

0 , π
2
0}

is valid for conv(P1 ∪ P2).

2 Preliminaries

In this section we recapitulate known techniques for generating cuts for disjunc-
tive programs.

2.1 Generation of disjunctive cuts from the simplex tableau

Given a solution x̂ of the LP relaxation of (DP) which violates some of the

disjunctions in (4), i.e., dk,1x̂ < dk,10 and dk,2x̂ < di,20 . A valid inequality for
(DP) can be generated from the basic solution x̂ as a disjunctive cut [2]. Firstly,

we need to express both inequalities dk,tx ≥ dk,t0 , t = 1, 2, in the basis of (DP)
corresponding to x̂. The simplex tableau in basis B is

xi +
∑
j∈N

āijxj = āi0, i ∈ B (13)

where āij = [(AB)−1AN]ij with A = [AB , AN]. In order to express a new

inequality dk,tx ≥ dk,t0 in basis B, we can use a result of Balas et al. [10].

Proposition 1 Suppose dx ≥ d0 is violated in the basic solution x̂ correspond-
ing to a basis B of the linear system Ax = b, and let s = dx − d0 be a new
surplus variable. Then

s+ (dBĀN − dN)xN = dB ā0 − d0 (14)

Proof Firstly, we partition the variables to basic and nonbasic, xB and xN , and
rewrite the system as follows:

ABxB + ANxN = b
dBxB − s + dNxN = d0

(15)

Since x̂ violates dx ≥ d0, s is basic (takes a negative value). The submatrix
corresponding to the basis B ∪ {s}, and its inverse is(

AB 0
dB −1

)−1

=

(
(AB)−1 0

dB(AB)−1 −1

)
.

4

Multiplying (15) by the basis inverse from the left we get

xB + ĀNxN = ā0

s + (dBĀN − dN)xN = dB ā0 − d0

The statement follows. 2

Let sk,1 and sk,2 be the basic surplus variables in dk,tx − sk,t = dk,t0 , for
t = 1, 2, in a basis B determining x̂ (recall that both of these inequalities are
violated by x̂ by assumption). Using Proposition 1, we immediately get that in
the basis B, the two violated inequalities can be expressed as

sk,1 + ((dk,1)BĀN − (dk,1)N)xN = (dk,1)B ā0 − dk,10

sk,2 + ((dk,2)BĀN − (dk,2)N)xN = (dk,2)B ā0 − dk,20

Now we can equivalently express the disjunction as sk,1 ≥ 0 ∨ sk,2 ≥ 0. Hence,
using the disjunctive principle, we obtain the following disjunctive cut from the
basis of the simplex tableau∑

j∈N
max{π1

j , π
2
j }xj ≥ π0, (16)

where π1
j := d̄k,1j d̄k,20 , π2

j := d̄k,2j d̄k,10 , j ∈ N , π0 := d̄k,10 d̄k,20 , and d̄k,t :=

((dk,t)BĀN − (dk,t)N), d̄k,t0 = (dk,t)B ā0 − dk,t0 , for t = 1, 2. Notice that since

both of the two terms dk,tx ≥ dk,t0 , t = 1, 2, are violated, sk,t = d̄k,t0 < 0 for
t = 1, 2. Therefore, the right-hand-side of (16) is positive. Therefore, x̂ is cut
off by (16), since x̂j = 0 for j ∈ N .

Clearly, the cuts (16) are valid for conv(P k,1∪P k,2) (the closed convex hull of
P k,1 ∪P k,2), this is why we call them disjunctive cuts (cf. Section 1). However,
they are derived by a particular formula from a basis of the simplex tableau,
and as we will see in the next section, there are other ways of getting cuts valid
for conv(P k,1 ∪ P k,2).

2.2 Lift-and-project cuts

To find a violated inequality for a disjunctive program, Balas [5] and Balas et
al. [3] propose to solve a linear program. Suppose x̂ violates a disjunction in
(4), the Cut Generating Linear Program is

min
(α,β,u,v,u0,v0)

αx̂− β (17)

s.t. α− uÃ− u0d
k,1 = 0, (18)

α− vÃ− v0d
k,2 = 0, (19)

(CGLP)k β − ub̃− u0d
k,1 = 0, (20)

β − vb̃− v0d
k,2 = 0, (21)

u1+ v1+ u0 + v0 = 1, (22)

u, v, u0, v0 ≥ 0.

Notice that Ã = [AT , I]T . Here, 1 denotes the m + n dimensional column
vector of all ones. The cut sought is of the form αx ≥ β. The objective function

5

prescribes the generation of a cut of maximum violation in the sense that the
difference between the right and left hand sides with respect to the feasible
solution x̂ is the largest. Constraints (18) and (20) ensure that αx ≥ β is valid

for the polyhedron P k,1 = {x | Ax ≥ b, x ≥ 0, dk,1x ≥ dk,10 }, whereas (19) and
(21) yields that αx ≥ β is also valid for the polyhedron P k,2 = {x | Ax ≥
b, x ≥ 0, dk,2x ≥ dk,20 }. Since these inequalities define a cone, we need the
normalization constraint (22), otherwise the optimum value may be unbounded.
The cuts generated by (CGLP)k are called Lift-and-Project cuts. The results
of Balas [5] imply that

Proposition 2 The optimum value of (CGLP)k is negative if and only if x̂ is
not in the set conv(P k,1 ∪ P k,2).

Notice that (CGLP)k is a generalization of that of Balas and Perregaard [8] (6)-
(12) for mixed 0/1 programming. By generalising the results of [8], we obtain
the following:

Proposition 3 Unless u0 > 0 and v0 > 0, the optimum value of (CGLP)k is
non-negative.

By substitution for α and β, we obtain an equivalent linear program

min
(u,v,u0,v0)

(uÃ+ u0d
k,1)x̂− ub̃− u0d

k,1
0

s.t. (u− v)Ã+ u0d
k,1 − v0d

k,2 = 0,

(CGLP)′k (u− v)b̃+ u0d
k,1
0 − v0d

k,2
0 = 0, (23)

u1+ v1 + u0 + v0 = 1,

u, v, u0, v0 ≥ 0.

A slightly different cut generation LP is developed by Andersen et al. [1] for
disjunctive programming with two term disjunctions, where each term is a con-
junction of inequalities.

3 Correspondence between disjunctive cuts and
lift-and-project cuts

Now we establish a connection between the disjunctive cuts (16) and the lift-
and-project cuts from (CGLP)k. Let B and N be the set of basic and nonbasic
variables in the simplex tableau (13). Denote ÃN the submatrix of Ã with rows
corresponding to nonbasic slack and structural variables. Since |N | = n, and
Ã has n columns, ÃN is a square submatrix of Ã. We will need the following
results.

Lemma 1 (Balas and Perregaard [8]) If N is the set of nonbasic variables in
a simplex tableau of [A,−I], then ÃN is invertible. Moreover, in the simplex
tableau (13) the coefficients āij for i ∈ B and j ∈ N , and the right hand sides
āi0 for i ∈ B satisfy

āij = −(ÃiÃ
−1
N)j , (24)

āi0 = ÃiÃ
−1
N b̃N − b̃i. (25)

6

The following result is not explicitly stated in [8], but it can be easily read out
from the proof of Lemma 8 in [8].

Lemma 2 Let B′ ⊂ {1, . . . , n+m} with |B′| = m, and N ′ = {1, . . . , n+m}\B′.
Then B′ is a basis of [A,−I] if and only if ÃN ′ is nonsingular.

Now we are ready to prove the following:

Theorem 1 Suppose disjunction dk,1x ≥ dk,10 ∨ dk,2x ≥ dk,20 is violated by the
basic solution x̂ in a basis B of [A,−I]. Then, (CGLP)k admits a basic feasible
solution (α, β, u, v, u0, v0) such that the disjunctive cut πsN ≥ π0 from the basis
B, and the lift-and-project cut αx ≥ β are equivalent.

Proof Let π1
j := d̄k,1j d̄k,20 , π2

j := d̄k,2j d̄k,10 , πj := max{π1
j , π

2
j } for j ∈ N , and

π0 := d̄1
0d̄

2
0, where N = {1, . . . , n+m}\B is the set of nonbasic variables. Notice

that πxN ≥ π0 is the disjunctive cut (16) determined from the simplex tableau.
We define the values of α, β, u, v, u0, v0 as follows: Let θ be a positive value

to be fixed later, and

θα := πÃN , θβ := π0 + πb̃N ,
θuN := π − π1, θvN = π − π2,

θu0 := −d̄k,20 , θv0 := −d̄k,10 .

For all j ∈ B, uj = vj = 0 (the dual variables corresponding to the basic slack

and structural variables of Ãx ≥ b̃ get value 0). We verify that this particular
choice of (α, β, u, v, u0, v0) is a feasible solution of (CGLP)k.

θ(α− uN ÃN − u0d
k,1) = πÃN − (π − π1)ÃN + d̄k,20 dk,1

= d̄k,20 (dk,1 − (dk,1Ã−1
N)ÃN) = 0

Here, we exploited that d̄k,1 = −(dk,1Ã−1
N) by Lemma 1. One similarly shows

that θ(α− vN ÃN − v0d
k,2) = 0. Furthermore, using (25) we obtain

θ(β − uN b̃N − u0d
k,1
0) = π0 + πb̃N − (π − π1)b̃N + d̄k,20 dk,10

= π0 + d̄k,20 (dk,10 − (dk,1Ã−1
N)b̃N) = π0 + d̄k,20 (−d̄k,10) = 0.

We can prove similarly that θ(β − vN b̃N + v0d
i,2) = 0. Now we can define θ as

θ := (π − π1
N)1+ (π − π2

N)1− d̄k,10 − d̄k,20 .

Clearly, θ > 0 and u1+ v1+ u0 + v0 = 1.
We verify that u, v, u0, v0 ≥ 0. Since πj = max{π1

j , π
2
j } for j ∈ N , it follows

that uj and vj are non-negative and at most one of them is greater than zero.

Finally, since d̄k,10 < 0 and d̄k,20 < 0 by assumption, it follows that u0, v0 > 0.
To show that the solution (α, β, u, v, u0, v0) of (CGLP)k defined above is

basic, firstly we define a partitioning of N into two subsets, M1 and M2 as
follows. If π1

j < π2
j , then j ∈ M1; if π1

j > π2
j , then j ∈ M2, and if π1

j = π2
j ,

break ties arbitrarily. Since uj = 0 if j /∈ M1, and vj = 0 if j /∈ M2, we know

7

that (uM1
, vM2

, u0, v0) satisfy the constraints

(uM1
,−vM2

)

(
ÃM1

ÃM2

)
+ u0d

k,1 − v0d
k,2 = 0, (26)

(uM1
,−vM2

)

(
b̃M1

b̃M2

)
+ u0d

k,1
0 − v0d

k,2
0 = 0, (27)

uM11M1 + vM21M2 + u0 + v0 = 1. (28)

Since ÃN =

(
ÃM1

ÃM2

)
, and ÃN is invertible by Lemma 1, we have from (26):

(uM1
,−vM2

) = −u0d
k,1Ã−1

N + v0d
k,2Ã−1

N .

Using (24) we obtain

uj = u0d̄
k,1
j − v0d̄

k,2
j , j ∈M1,

vj = −u0d̄
k,1
j + v0d̄

k,2
j , j ∈M2.

(29)

Moreover, from (27) it follows that

−u0d
k,1Ã−1

N b̃N + v0d
k,2Ã−1

N b̃N + u0d
k,1
0 − v0d

k,2
0 = 0.

Using (25) we get

−u0d̄
k,1
0 + v0d̄

k,2
0 = 0. (30)

On the other hand, substituting (29) into (28) gives

u0(1 +
∑
j∈M1

d̄k,1j −
∑
j∈M2

d̄k,1j) + v0(1−
∑
j∈M1

d̄k,2j +
∑
j∈M2

d̄k,2j) = 1. (31)

The determinant of the linear system (30) and (31) over the variables u0 and
v0 is

δ = (−d̄k,20)(1 +
∑
j∈M1

d̄k,1j −
∑
j∈M2

d̄k,1j) + (−d̄k,10)(1−
∑
j∈M1

d̄k,2j +
∑
j∈M2

d̄k,2j).

Observe that this quantity is precisely the value θ, defined above. To see this,
using the definitions of π1, π2, M1 and M2 we obtain

θ = (π − π1)1 + (π − π2)1− d̄k,10 − d̄k,20

=
∑
j∈M1

(d̄k,2j d̄i,10 − d̄
k,1
j d̄k,20) +

∑
j∈M2

(d̄k,1j d̄k,20 − d̄k,2j d̄k,10)− d̄k,10 − d̄k,20 .

Rearranging terms gives the determinant δ. Since the determinant equals θ, a
positive number, u0 and v0 are uniquely determined. Since w.l.o.g. α and β, are
basic, uM1 and vM2 are uniquely determined by u0 and v0, and the rest of the
variables are nonbasic, (α, β, u, v, u0, v0) is a basic solution.

Finally, the two cuts are equivalent, since

θ(αx− β) = πÃNx− (π0 + πb̃N) = π(ÃNx− b̃N)− π0 = πsN − π0,

8

x2

10

1

2

2

x
2
≤ 1/10

x1

x

x2

10

1

2

2 x
1

x

(a) (b)

Figure 1: (a) The LP relaxation of (DP), and the optimal Lift-and-Project cut.
(b) The two disjunctive cuts from two bases of the small tableau. The arrows
in the figure point into to direction of points valid for the corresponding cut.

where x is the set of variables of the system Ax ≥ b, and sN is the set of nonbasic
variables in the system [A,−I]s = b (sN = ÃNx− b̃N). 2

Unlike in the case of split disjunction, the converse of this theorem does not
hold in general. The following theorem characterizes those bases of CGLP that
give rise to lift-and-project cuts equivalent to disjunctive cuts from the small
tableau.

Theorem 2 Let (α, β, u, v, u0, v0) be a basic feasible solution of (CGLP)k with
negative objective function value such that all the components of α, β, u0, v0,
those of u indexed by M1, and those of v indexed by M2 are basic, where
M1,M2 ⊂ {1, . . . , n+m} with |M1|+|M2| = n. If the square matrix [(ÃM1

)T , (ÃM2
)T]

is nonsingular, then B′ = {1, . . . , n+m}\(M1∪M2) is a basis of [A,−I], and the

disjunctive cut πx ≥ π0 from the disjunction dk,1x ≥ dk,10 ∨ dk,2x ≥ dk,20 derived
using (16) from the simplex tableau corresponding to B′, and the lift-and-project
cut αx ≥ β are equivalent.

Theorem 2 is similar to Theorem 4A of [8], but there is a crucial difference.
It has a condition, namely, the (square) submatrix [(ÃM1)T , (ÃM2)T] of ÃT

must be nonsingular. This need not be assumed if (CGLP)k depends on a split
disjunction, because in that case, any feasible basis of (CGLP)k with negative
objective function value automatically satisfies this condition. However, the
proof parallels that of Theorem 4A of [8], once we know that [(ÃM1

)T , (ÃM2
)T]

is nonsingular, since this implies that B′ = {1, . . . , n+m}\ (M1∪M2) is a basis
of the small tableau by Lemma 2.

The following example shows that (CGLP)k may admit optimal solutions
that do not satisfy the condition of Theorem 2.

9

Example 1 Consider the disjunctive program

max
x1,x2

x2 − 0.1x1 (32)

s.t. x1 ≥ 0 (33)

− x1 ≥ −2 (34)

x2 ≥ 0 (35)

− x2 ≥ −2 (36)

x1 + 10x2 ≥ 1 (37)

− x1 + 10x2 ≥ −1 (38)

− x1 − 10x2 ≥ −1 ∨ x1 − 10x2 ≥ 1. (39)

Observe that the two terms of disjunction (39) are the negations of the in-
equalites (37) and (38). The polytope of the LP relaxation is shown in Figure 1.
The feasible solutions of DP lie on the line segments between (0, 1/10) and (1, 0),
and between (1, 0) and (2, 1/10). The optimal LP solution is (x̂1, x̂2) = (0, 2).
Then we have Ax̂− b = (0, 2, 2, 0, 19, 21)T , and d1,1x̂− d1,1

0 = −19. Therefore,
(CGLP)′1 is as follows:

min 2u2 + 2u3 + 19u5 + 21u6 − 19u0

(u− v)


1 0 0
−1 0 −2

0 1 0
0 −1 −2
1 10 1
−1 10 −1

+ u0

(
−1 −10 −1

)
− v0

(
1 −10 1

)

=
(

0 0 0
)

u1+ v1+ u0 + v0 = 1

u, v, u0, v0 ≥ 0

The optimal objective function value of (CGLP)′1 is −4.75, and the optimal
solution is u1 = v2 = u0 = v0 = 1/4, and ui = vi = 0 otherwise. This yields
the cut x2 ≤ 1/10, see Figure 1 (a). However, this cut cannot be derived as a
disjunctive cut from any (feasible or infeasible) basis of the LP relaxation using
formula (16). The reason is that the optimal basis of (CGLP)′1 is

u1

v2

u0

v0


1 0 0 1
1 0 2 1
−1 −10 −1 1
−1 10 −1 1

 ,

where the first two rows correspond to the inequalities (33) and (34), respectively,
and the last two rows to the two terms of the disjunction. Hence, by Theorem 1,
in any basis of the LP from which x2 ≤ 1/10 may be derived by formula (16),
the slack of both of (33) and (34) must be nonbasic, which is impossible.

Furthermore, there are only two bases of the small tableau from which a
disjunctive cut cutting off x̂ can be derived. One is x1 = (0, 2) (the slacks of
(33) and (36) are nonbasic), the other is x2 = (2, 2) (the slacks of (34) and (36)

10

are nonbasic). The other bases (feasible and infeasible as well) are not suitable
for cutting off x̂. The corresponding cuts are

19x1 − 210x2 ≥ −21 (40)

−19x1 − 210x2 ≥ −59. (41)

The two cuts are shown in Figure 1 (b). These cuts can of course be represented
as basic feasible solution of (CGLP)′1, but the corresponding objective function
values are −3.99 and −3.61, respectively, so they are not optimal solutions.
Clearly, (40) and (41) are dominated by −10x2 ≥ −1 on the LP relaxation,
but they do not admit a convex combination which dominates −10x2 ≥ −1.
Hence, {−10x2 ≥ −1} strictly dominates the set of cuts {(40), (41) } on the
LP relaxation.

Theorems 1, and 2 and Example 1 imply the following:

Corollary 1 Fix a disjunction dk,1x ≥ dk,10 ∨ dk,2x ≥ dk,20 . The set of lift-
and-project cuts dominates on the LP relaxation of (DP) the set of disjunctive
cuts (16) from the bases of the simplex tableau. If the disjunction is not a split,
and (CGLP)k admits (optimal) solutions that do not satisfy the condition of
Theorem 2, then the dominance may be strict.

For disjunctions of the form xk ≤ 0 ∨ xk ≥ 1, Balas and Perregaard have
proved that any lift-and-project cut is equivalent to a disjunctive cut (16) in
some (possibly infeasible) basis of the small tableau. Therefore, the two sets
of cuts are equivalent. It is easy to generalize their results to arbitrary split
disjunctions, the details are omitted.

Finally, we provide a non-trivial characterization of the bases of CGLP .

Proposition 4 The variables (uM1
, vM2

, u0, v0) with |M1|+|M2| = n constitute
a feasible basis of (CGLP)′k such that both u0 and v0 take positive values in
the corresponding basic solution if and only if there exists a nonnegative vector
w ∈ Rn+2 with wn+1, wn+2 > 0 such that wG = [0n+1, 1] and for each i with
wi > 0, the (n + 1) × (n + 1) matrix consisting of all the rows of G but row i,
and all the columns but the last one, is nonsingular, where G is the submatrix
corresponding to the variables (uM1

, vM2
, u0, v0), i.e.,

G =


ÃM1 b̃M1 1

−ÃM2
−b̃M2

1

dk,1 dk,10 1

−dk,2 −dk,20 1

 .

Proof First we prove necessity. Let w∗ := (u∗M1
, v∗M2

, u∗0, v
∗
0) be the values

of the basic variables (uM1
, vM2

, u0, v0). We claim that if w∗i > 0, then the
(n + 1) × (n + 1) submatrix G− of G consisting of all the rows but row i, and
all the columns but the last one is nonsingular. Suppose it is not the case, and
let w̃ 6= 0 be a nonzero vector with w̃i = 0 such that w̃G = [0n+1, w̃1] (we
do not require that w̃1 be equal to 1). Since w∗i > 0 and w̃i = 0, we have
w∗ + λ1w̃ 6= λ2w

∗ for any λ1 ∈ R \ {0}, λ2 ∈ R. Hence, there exist λ, µ ∈ R
such that (w∗+λw̃)1 6= 0, and µ(w∗+λw̃)G = [0n+1, 1] and µ(w∗+λw̃) 6= w∗.
This contradicts the fact that G is a basic submatrix of (CGLP)′k.

11

Conversely, assume there exists a nonnegative vector w ∈ Rn+2 with wn+1, wn+2 >
0 such that wG = [0n+1, 1] and for each i with wi > 0, the submatrix G− of G
consisting of all the rows of G but row i, and all the columns but the last one
is nonsingular. We claim that w is a basic feasible solution of (CGLP)′k, i.e., w
is the unique solution of the system wG = [0n+1, 1]. Suppose it is not the case,
and let w′ 6= w be such that w′G = [0n+1, 1]. We distinguish two cases:

• There is an index i with wi > 0 and w′i 6= 0. Then there exists λ ∈ R such
that wi − λw′i = 0. Hence, the vector w̃ := w− λw′ satisfies the following
two conditions: (i) w̃G = [0n+1, 1−λ], and (ii) w̃i = 0, while wi > 0. This
contradicts the assumption that the submatrix G− of G consisting of all
the rows but row i, and all the columns but the last one is nonsingular.

• For all row indices i with wi > 0, w′i = 0. This again contradicts the
assumption on G and w, unless all the coordinates of w are positive, in
which case w′ = 0, which contradicts w′1 = 1.

No more cases are possible, and the statement is proved. 2

4 Computations in the small tableau

The results of this section are generalizations of those of [8] for mixed 0/1 integer
linear programming. The formulas become more intricate, since we allow more
general disjunctions than xk ≤ 0 ∨ xk ≥ 1.

The main idea is that we perform pivots in the small tableau in order to get
a stronger cut of the form (16). To this end, we can use the procedure of Balas
and Perregaard [8] with appropriate modifications. Let ŝ be a basic feasible
solution of LP corresponding to the basic variables B, and nonbasic variables
N , such that at least one disjunctive constraint is violated. Suppose k ∈ Γ
identifies a violated disjunctive constraint, i.e., ŝk,1 < 0 and ŝk,2 < 0. This
gives a violated disjunctive cut (16), which will be improved subsequently. For
each i ∈ B we determine the reduced cost values rcui

and rcvi in (CGLP)′k.
If rcui < 0 or rcvi < 0, then we try to find a pivot column ` ∈ N , such that
after exchanging i and `, the disjunctive cut in the new basis B′ has a larger
violation than the current cut. If such a column is found, we proceed with the
new basis, otherwise we proceed with a new row with negative reduced cost, if
such a row exists, otherwise the procedure stops.

We summarise the cut-generation procedure in Algorithm 1. The loop is
repeated as long as a more violated cut is found than the actual one. Upon ter-
mination, the cut is computed in the space of structural variables, i.e., all surplus
variables with πj 6= 0, j ∈ N , are replaced by the corresponding inequalities of
LP .

Notice that the algorithm may terminate without finding the optimal solu-
tion of (CGLP)′k, since it may occur that there are rows with negative reduced
cost, but no improving column is found. We emphasize that this cannot happen
in the case of split disjunctions. To illustrate this, consider our example again.

Example 1 (cont.) One may verify that in the basis for x̂1 = (0, 2) there is
only one row with negative reduced cost, namely, the row of the basic variable
x2 (the slack of (36) is nonbasic). But no improving pivot exists.

12

Algorithm 1 Cut-generation

Require: simplex tableau of LP, feasible basis B, basic solution ŝ, disjunctive
constraint k ∈ Γ such that ŝk,1 < 0 and ŝk,2 < 0.

Ensure: disjunctive cut αx ≥ β violated by ŝ.
1: Compute the disjunctive cut πsN ≥ π0 with respect to N .
2: cutviol := π0 − πŝN , maxviol := 0.
3: while cutviol > maxviol do
4: maxviol := cutviol .
5: Determine i ∈ B with negative reduced cost rcui

or rcvi in (CGLP)′k.
6: if no i ∈ B exists with negative reduced cost rcui

or rcvi then
7: goto line 19.
8: end if
9: Find ` ∈ N such that pivoting on (i, `) yields a new basis in which the

disjunctive cut (16) has a violation larger than maxviol .
10: if an improving column is found then
11: goto step 15
12: else
13: Choose another row with negative reduced cost and goto step 9. If no

more rows with negative reduced cost exist, goto step 19.
14: end if
15: Pivot on (i, `) in the simplex tableau of LP. B := B \ {i} ∪ {`}, N :=

N \ {`} ∪ {i}.
16: Compute the disjunctive cut πsN ≥ π0 with respect to N .
17: cutviol := π0 − πŝN .
18: end while
19: Determine αx ≥ β from πsN ≥ π0 by substitutions into surplus variables.

13

In the next two subsections we explain how to select the basic variable i ∈ B
to leave the basis and then how to choose the nonbasic variable ` ∈ N to enter
the basis.

4.1 Computation of reduced costs

Given the set of nonbasic variables in the current simplex tableau, by Thoerem 1
there is at least one feasible basis (uM1

, vM2
, u0, v0) of (CGLP)′k such that

M1 ∪M2 = N . That is, for j ∈ N , let ∆j = d̄k,2j d̄k,10 − d̄k,1j d̄k,20 . To induce a
feasible basic solution, M1 has to contain all the j ∈ N with ∆j > 0, and M2 has
to contain all the j ∈ N with ∆j < 0. However, those j ∈ N with ∆j = 0 can
be distributed arbitrarily between M1 and M2. To simplify the presentation,
we introduce new notation: āk1j = d̄k,1j , āk2j = d̄k,2j for j ∈ N ∪ {0}, and

ŝk1 := ŝk,1, ŝk2 := ŝk,2.

Lemma 3 Let ŝ, B, and N be the basic solution, the set of basic, and the
set of nonbasic variables, respecively, in the current simplex tableau such that
āk10, āk20 < 0. Moreover, let (uM1

, vM2
, u0, v0) be a set of basic variables of

(CGLP)′k. The reduced costs of the variables ui and vi with i ∈ B can be
computed as

rcui
=
∑
j∈M1

āij ŝj − σ(1 + ξi)−
āi0ω

θ
+ ŝi (42)

rcvi =
∑
j∈M1

−āij ŝj − σ(1− ξi) +
āi0ω

θ
(43)

where

ξi =
∑
j∈M1

āij −
∑
j∈M2

āij ,

τ1 =
∑
j∈M1

āk1j −
∑
j∈M2

āk1j ,

τ2 =
∑
j∈M1

āk2j −
∑
j∈M2

āk2j ,

θ = āk1,0(1 + τ2) + āk2,0(1− τ1),

σ =
∑
j∈M1

(āk2j āk10 − āk1j āk20)ŝj
θ

− āk20ŝk1
θ

,

ω = (1 + τ2)
∑
j∈M1

āk1j ŝj + (1− τ1)
∑
j∈M1

āk2j ŝj + (1 + τ2)ŝk1 .

Proof Our first goal is to compute a dual solution for the basis. Let G be the
basis submatrix of (CGLP)′k corresponding to the variables (M1,M2, u0, v0).
Observe that the objective function coefficients of the basic variables are c∗ =
(ŝM1

, 0M2
, ŝk1 , 0). Therefore, the dual solution of (CGLP)′k in the basis is y∗ =

c∗G−1.

14

Recall the following decomposition technique for computing the inverse of a
square matrix G given in block form:

G−1 =

(
D F
E C

)−1

=(
D−1 +D−1F (C − ED−1F)−1ED−1 −D−1F (C − ED−1F)−1

−(C − ED−1F)−1ED−1 (C − ED−1F)−1

)
.

This formula can always be applied when G and submatrix D are invertible. In
our case the basis is

G =


IM1 āTk1,M1

−āTk2,M1

−IM2
āTk1,M2

−āTk2,M2

āk10 −āk20

1 1 1 1


Let D =

(
IM1

−IM2

)
, C =

(
āk10 −āk20

1 1

)
, and E, F are the other two

blocks. Then we have

C−ED−1F =

(
āk10 −āk20

1−
∑
j∈M1

āk1j +
∑
j∈M2

āk1j 1 +
∑
j∈M1

āk2j −
∑
j∈M2

āk2j

)
One may verify that

(C − ED−1F)−1 =

(
1+

∑
j∈M1

āk2j−
∑

j∈M2
āk2j

θ

āk20

θ

−
1−

∑
j∈M1

āk1j+
∑

j∈M2
āk1j

θ

āk10

θ

)

where θ =
∑
j∈M1

(āk10āk2j−āk20āk1j)+
∑
j∈M2

(āk20āk1j−āk10āk2j)+āk10+āk20.
Letting τ1 =

∑
j∈M1

āk1j −
∑
j∈M2

āk1j , and τ2 =
∑
j∈M1

āk2j −
∑
j∈M2

āk2j ,
we can rewrite this as

(C − ED−1F)−1 =

(
1+τ2
θ

āk20

θ

− 1−τ1
θ

āk10

θ

)
, where θ = āk10(1 + τ2) + āk20(1− τ1).

We compute

(ŝM1
, 0M2

)D−1F = (ŝM1
, 0M2

)F = (āk1,M1
ŝM1

,−āk2,M1
ŝM1

)

and

(ŝM1 , 0M2)D−1F (C − ED−1F)−1

= (āk1,M1 ŝM1 ,−āk2,M1 ŝM1)

(
1+τ2
θ

āk20

θ

− 1−τ1
θ

āk10

θ

)
=
(

(1+τ2)āk1,M1
ŝM1

+(1−τ1)āk2,M1
ŝM1

θ −
∑

j∈M1
(āk10āk2j−āk20āk1j)ŝj

θ

) (44)

Therefore, we have

(ŝM1
, 0M2

)(D−1 +D−1F (C − ED−1F)−1ED−1)

= (ŝM1 , 0M2)−
∑
j∈M1

(āk10āk2j − āk20āk1j)ŝj

θ
(1M1 ,−1M2)

(45)

15

Moreover, we have

(−ŝk1 , 0)
(
C − ED−1F

)−1
=
(
− (1+τ2)ŝk1

θ − āk20ŝk1

θ

)
Therefore,

(−ŝk1 , 0)
(
C − ED−1F

)−1
ED−1 = − āk20ŝk1

θ
(1M1

,−1M2
) (46)

By combining (44), (45), (46), we obtain

y∗ =

(
ŝM1
− σ1M1

, σ1M2
,− (1 + τ2)āk1,M1ŝM1 + (1− τ1)āk2,M1 ŝM1 + (1 + τ2)ŝk1

θ
, σ

)
Now we compute the reduced costs of variables ui and vi for i ∈ B:

rcui = ŝi − y∗(−āi,−āi0, 1) = ŝi + āi,M1 ŝM1 − σ(1 + ξi)−
āi0ω

θ

rcvi = −y∗(āi, āi0, 1) = −āi,M1
ŝM1
− σ(1− ξi) +

āi0ω

θ

2

Notice that Balas and Perregaard [8] used a completely different method for
determining the reduced costs. The above technique simplifies in the case of
split disjunction and is an easier derivation than that of Balas and Perregaard.

For computing efficiently all the reduced costs, we fix a partitioning M1 ∪
M2 = J , and compute the terms ω, σ and θ, which are independent of row i.
Let M3 = {j ∈ N | āk10āk2j − āk20āk1j = 0}.

Proposition 5 Let M ′1 ∪M ′2 be any partitioning of J such that M1 \M3 =
M ′1 \M3 and M2 \M3 = M ′2 \M3. Then the values of σ and θ are the same
with respect to M1 ∪M2, and M ′1 ∪M ′2.

Proof Concerning θ:

θ = āk1,0(1 + τ2) + āk2,0(1− τ1)

= āk10 + āk20 +
∑
j∈M1

(āk10āk2j − āk20āk1j)−
∑
j∈M2

(āk10āk2j − āk20āk1j)

= āk10 + āk20 +
∑

j∈M1\M3

(āk10āk2j − āk20āk1j)−
∑

j∈M2\M3

(āk10āk2j − āk20āk1j)

= āk10 + āk20 +
∑

j∈M ′
1\M3

(āk10āk2j − āk20āk1j)−
∑

j∈M ′
2\M3

(āk10āk2j − āk20āk1j)

= āk10 + āk20 +
∑
j∈M ′

1

(āk10āk2j − āk20āk1j)−
∑
j∈M ′

2

(āk10āk2j − āk20āk1j).

The proof for σ is similar. 2.

Unfortunately, the above statement does not hold for ω, i.e., it matters how
the elements of M3 are distributed between M1 and M2.

With respect to a fixed partitioning M1 ∪M2 = N , for each row i it suffices
to determine āi0, and compute ξi and

∑
j∈M1

āij ŝj to obtain rcui and rcvi .

16

4.1.1 The mixed 0− 1 programming special case

Concerning the mixed 0− 1 programming case, it can be shown that Lemma 3
reduces to Theorem 9 of [8] and Theorem 2.9 of [15]. That is, the first two terms
in the definition of rcui and rcvi are easily seen equivalent to that of the 0− 1
case. Concerning the term āi0ω/θ, we exploit that in case of split disjunctions,
āk1j = −āk2j and āk10 + āk20 = 1, which implies τ1 = −τ2, and

āi0ω

θ
=
āi0((1 + τ2)

∑
j∈M1

āk1j ŝj + (1− τ1)
∑
j∈M1

āk2j ŝj + (1 + τ2)ŝk1)

āk10(1 + τ2) + āk20(1− τ1)

=
āi0((1 + τ2)

∑
j∈M1

āk1j ŝj + (1 + τ2)
∑
j∈M1

−āk1j ŝj + (1 + τ2)ŝk1)

1 + τ2
= āi0ŝk1 .

Consequently,

rcui =
∑
j∈M1

āij ŝj − σ(1 + ξi)− āi0ŝk1 + ŝi,

rcvi =
∑
j∈M1

−āij ŝj − σ(1− ξi) + āi0ŝk1 ,

which is equivalent to formulae (2.22) of [15].

4.2 Selection of pivot element

After selecting the pivot row based on reduced costs, an element has to be chosen
to pivot on. Suppose row i ∈ B is the pivot row and column ` ∈ N is chosen as
pivot column. Pivoting on āi` in the small tableau consists of adding −ār`/āi`
times row i to row r, for each row r 6= i, and multiplying row i by 1/āi`. Since
i ∈ B and ` ∈ N , this operation transforms row r as follows:

sr + γsi +
∑
j∈N

(ārj + γāij)sj = ār0 + γāi0,

where γ = −ār`/āi`. In particular, after the pivot, the rows of k1 and k2 become

sk1 + γ1si +
∑
j∈N

(āk1,j + γ1āij)sj = āk1,0 + γ1āi0,

sk2 + γ2si +
∑
j∈N

(āk2,j + γ2āij)sj = āk2,0 + γ2āi0,
(47)

where γ1 = −āk1,`/āi` and γ2 = −āk2,`/āi`. The disjunctive cut from the
updated tableau rows (47) is

πisi +
∑
j∈N

πjsj ≥ π0, (48)

where

π0 := (āk1,0 + γ1āi0)(āk2,0 + γ2āi0)/θ,

πi := max{π1
i , π

2
i }/θ,

πj := max{π1
j , π

2
j }/θ for all j ∈ N,

π1
i := γ1(āk2,0 + γ2āi0), π1

j := (āk1,j + γ1āij)(āk2,0 + γ2āi0),

π2
i := γ2(āk1,0 + γ1āi0), π2

j := (āk2,j + γ2āij)(āk1,0 + γ1āi0).

17

The normalisation constant θ is needed to ensure that the cut is equivalent to
a feasible solution of (CGLP)′k. Recall from the proof of Theorem 1 that

θ = (π − π1) + (π − π2) + (āk20 + γ2āi0) + (āk10 + γ1āi0)

=
∑
j∈N
|π1
j − π2

j |+ |π1
i − π2

i |+ (āk20 + γ2āi0) + (āk10 + γ1āi0)

=
∑
j∈N
|āk1,j(āk20 + γ2āi0)− āk2,j(āk10 + γ1āi0) + āij(γ1āk20 − γ2āk10)|

+ |γ1āk20 − γ2āk10|+ (āk20 + γ2āi0) + (āk10 + γ1āi0).

Clearly, we choose that column ` ∈ N for which

πiŝi +
∑
j∈N

πj ŝj − π0,

is minimal, and

āk1,0 + γ1āi0 > 0 and āk2,0 + γ2āi0 > 0.

If āk1,0 + γ1āi0 ≤ 0 or āk2,0 + γ2āi0 ≤ 0 for all columns ` ∈ N , then no pivot
column can be chosen with respect to row i. Finally, by Theorem 1, the basis
(N \ {i}) ∪ {`} induces a feasible solution of (CGLP)′k.

Numerically the formulae of π0, πi and those of the πj-s are unattractive as
they contain terms with 4 numbers. We can eliminate those terms by adding
−πi times row i of the simplex tableau to (π, π0).

Lemma 4 If π1
i ≥ π2

i then adding −πi(si + āNi sN − āi0) to the cut (48) yields

π′0 = āk10(āk20 + γ2āi0)/θ,

π′i = 0,

π′j =
max{āk1,j(āk20 + γ2āi0), āk2j(āk10 + γ1āi0) + āij(γ2āk10 − γ1āk20)}

θ
.

while if π1
i ≤ π2

i , then

π′0 = āk20(āk10 + γ1āi0)/θ,

π′i = 0,

π′j =
max{āk2,j(āk10 + γ1āi0), āk1j(āk20 + γ2āi0) + āij(γ1āk20 − γ2āk10)}

θ
.

In either case, πiŝi +
∑
j∈N πj ŝj − π0 = π′iŝi +

∑
j∈N π

′
j ŝj − π′0.

Proof First suppose π1
i ≥ π2

i , i.e., πi = π1
i = γ1(āk20 + γ2āi0). Since

θπ0 = (āk20 + γ2āi0)(āk10 + γ1āi0) = āk20āk10 + γ2āi0āk10 + γ1āi0āk20 + γ1γ2ā
2
i0,

we have
θπ0 − γ1(āk20 + γ2āi0)āi0 = āk10(āk20 + γ2āi0).

To verify the formula for πj , we compute the modified π1
j and π2

j values:

θπ1
j − θπiāij = θπ1

j − γ1(āk20 + γ2āi0)āij = āk1j(āk20 + γ2āi0),

18

and

θπ2
j − θπiāij = θπ2

j − γ1(āk20 + γ2āi0)āij

= āk2j āk10 + γ2āij āk10 + γ1āk2j āi0 + γ1γ2āij āi0 − γ1(āk20 + γ2āi0)āij

= āk2j(āk10 + γ1āi0) + āij(γ2āk10 − γ1āk20).

The case of π1
i ≤ π2

i can be verified similarly. Finally, since variable si is in the
basis, ŝi + āNi ŝN = āi0, and therefore, we have modified the value of (48) by 0.
2

In the case of simple disjunctions, where the cuts are derived from single
rows of the simplex tableau, there is an O(n log n) time procedure for finding
the best pivot column. Unfortunately, such an efficient procedure is not known
when the cuts are derived from pairs of rows, i.e., we can find the best pivot in
O(n2) time, by mimicking each feasible pivot in the pivot row, and computing
and evaluating the resulting cut.

4.3 Termination of the Lift-and-Project procedure

The Lift-and-Project procedure stops in the following cases:

1) The reduced costs of the variables ui and vi are nonnegative for all i ∈ B.
As we will see in Section 5, this condition implies that an optimal solution
of (CGLP)′1 is found, see Theorem 3.

2) For each i ∈ B with rcui < 0 or rcvi < 0, either

i) no pivot column can be chosen, i.e., for every ` ∈ N , either āi` = 0, or
āk1,0 + γ1āi0 ≤ 0, or āk2,0 + γ2āi0 ≤ 0; or

ii) for each eligible column ` ∈ N , pivoting on āi` yields a Lift-and-Project
cut inferior to the current one.

We mention that in case of split-disjunctions, outcome 2ii) is impossible. How-
ever, in case of general two-term disjunctions, it may indeed occur as shown
below.

Example 2 In this example we use the data of Example 1. It will be convenient
to write the linear system of the LP relaxation of (32)-(39) in standard form:

−x1 −s1 = −2
−x2 −s2 = −2

x1 +10x2 −s3 = 1
−x1 +10x2 −s4 = −1

Notice that all the variables, structural as well as surplus, are nonnegative. The
optimal basis B consists of {s1, x2, s3, s4}, the nonbasics are N = {x1, s2},
and the optimal simplex tableau of the LP relaxation (without reduced costs)
is depicted in Table 1. The disjunctive cut from this tableau is (40), i.e.,
19x1 − 210x2 ≥ −21, and it has a violation of −3.99 (after proper normal-
ization, see Theorem 1).

The basis of (CGLP)′1 corresponding to the nonbasic variables in the small
tableau is {u1, v4, u0, v0}, and the nonbasic part of the simplex tableau for this

19

(CGLP)′1 var.
u2 v2

u3 v3

u5 v5

u6 v6

var. s1 x2 s3 s4 x1 s2 rhs.

s1 1 1 2
x2 1 1 2
s3 1 −1 10 19
s4 1 1 10 21

Table 1: The optimal simplex tableau of Example 1, and the nonbasic variables
of (CGLP)′1 corresponding the rows in the basis.

var v1 u2 v2 u3 v3 u4 u5 v5 u6 v6 rhs.
u1 −0.20 0.20 0.60 0.40 0.40 0.80 0.80 0.80 0.40

v4 0.40 −0.40 0.80 0.20 0.20 −0.60 0.40 0.40 0.20
u0 0.42 0.58 −0.16 0.16 0.26 0.42 −0.58 1.00 0.42 0.21
v0 0.38 0.62 −0.24 0.24 0.14 0.38 0.38 1.00 −0.62 0.19

Table 2: The nonbasic part of the simplex tableau of (CGLP)′1 in the basis
{u1, v4, u0, v0}.

basis is depicted in Table 2. Only the reduced cost of v2 is negative, i.e., rcv2 =
−3.04, and the reduced costs of all other nonbasic variable of (CGLP)′1 are
positive. The pivot element in the column of v2 is unique, so v2 should enter, and
v4 should leave the basis of (CGLP)′1. The new basis consists of the variables
{u1, v2, u0, v0}. The crucial observation is that the linear relaxation of (32)-(39)
has no basis corresponding to the basis {u1, v2, u0, v0} of (CGLP)′1, as we have
already seen in Example 1.

Now, let us examine what happens when pivoting in the small tableau. Notice
that v2, and u2 are the variables of (CGLP)′1 which correspond to the row of
s1 in the small tableau, see Table 1. The only possible pivot element in the
row of s1 is in the column of x1. However, making this pivot would remove
u1 from the basis of (CGLP)′1 (since x1 becomes basic in the small tableau,
thus both u1 and v1 must be nonbasic in the corresponding basis of (CGLP)′1,
cf. Theorem 1), and add to it v2 (since u2 and v2 correspond to the row of
s1 in the small tableau). The resulting lift-and-project cut is equivalent to the
disjunctive cut −19x1 − 210x2 ≥ −59, and it has a violation of −3.61 (after
normalization, cf. Theorem 1), which is strictly inferior to the (normalized)
violation of 19x1−210x2 ≥ −21, which was −3.99. To summarize, by pivoting in
the small tableau only, we may definitely miss the optimal solutions of (CGLP)′k,
if the optimal basic solutions of (CGLP)′k cannot be represented by disjunctive
cuts from some bases of the small tableau.

5 A sufficient condition for the optimality of the
cut-generation method in the LP tebleau

Let B and N be the set of basic, and nonbasic variables, respectively, of the
small tableau. In the corresponding basis of CGLP, the basic variables are
(uM1

, vM2
, u0, v0), where uM1

and vM2
are sets of variables with indices in M1

20

and M2, respectively, and M1,M2 ⊂ N with |M1| + |M2| = n, see Theorem 1
and Proposition 4.

Since the cut-generation methods are based on the idea of the primal simplex
method, a natural condition for termination is that none of the variables ui and
vi of CGLP with i ∈ B have a negative reduced cost. However, an important
question is whether this condition is sufficient, i.e., if all the variables of CGLP
corresponding to set B have non-negative reduced costs, then the current solu-
tion of CGLP is optimal. We prove next that this is indeed the case. Firstly,
we prove a technical lemma.

Lemma 5 Suppose the objective function of CGLP is
∑
i∈{0,...,m+n}(g

u
i ui +

gvi vi). In any feasible basis of CGLP the reduced costs of the variables ui and
vi with i = 1, . . . ,m+ n satisfy the condition:

rcui + rcvi = gui + gvi − 2σ, (49)

where σ is the objective function value of the basic solution.

Proof Let G be the basis submatrix of CGLP and g′ the corresponding part
of the coefficients of the objective function. Then the dual solution associated
with G is ȳ = g′G−1. Let yn+2 be the dual variable corresponding to the
normalization constraint of CGLP. We claim that ȳn+2 = σ. To see this, we
compute the dual objective function value of CGLP:

ȳn+2 = ȳ · en+2 = g′ · (G−1 · en+2) = g′ · z̄ = σ,

where en+2 is the right-hand-side of the constraints of CGLP, and z̄ is the right-
hand-side multiplied by the basis inverse, i.e., the values of the basic variables
of CGLP.

Now we compute rcui
, the reduced cost of ui for arbitrary i > 0. The column

of CGLP corresponding to ui is (Ãi, bi, 1)T . Therefore,

rcui
= gui −

n∑
j=1

ȳjÃij − ȳn+1b̃i − ȳn+2.

Consequently,
∑n
j=1 ȳjÃij + ȳn+1b̃i = gui − ȳn+2 − rcui .

It remains to compute rcvi . The column of CGLP corresponding to vi is
(−Ãi,−b̃i, 1)T . Therefore,

rcvi = gvi − (

n∑
j=1

ȳj(−Ãij)− ȳn+1b̃i)− ȳn+2 = gvi + (gui − ȳn+2 − rcui
)− ȳn+2.

Since ȳn+2 = σ, we have shown that rcui
+ rcvi = gui + gvi − 2σ, as claimed. 2

This result has a number of consequences.

Corollary 2 Suppose the objective function of CGLP is
∑
i∈{0,...,m+n}(g

u
i ui +

gvi vi), and gui , g
v
i ≥ 0 for i = 1, . . . ,m + n. Moreover, ū0, v̄0, ūj with j ∈ M1,

and v̄j with j ∈M2 constitute a basic feasible solution of value σ < 0. Then for
j ∈M1, rcvj = guj + gvj − 2σ > 0, and for j ∈M2, rcuj = guj + gvj − 2σ > 0.

21

Proof Suppose j ∈ M1. Then rcuj
= 0 since uj is a basic variable. Apply

Lemma 5 to deduce that rcvj = guj + gvj − 2σ. Since guj , g
v
j ≥ 0, and σ < 0

by assumption, we also have rcvj > 0. The argument for rcuj with j ∈ M2 is
analogous. 2

Corollary 3 Suppose ui and vi are both nonbasic. Then it suffices to compute
one of rcui

and rcvi , the value of the other can be determined using (49).

The main statement is as follows:

Theorem 3 Suppose the cut-generation procedure in the small tableau termi-
nates with rcui

≥ 0 and rcvi ≥ 0 for all i ∈ B, and the corresponding basic fea-
sible solution w = (ū, v̄, ū0, v̄0) of CGLP has negative objective function value.
Then w is an optimal solution of CGLP.

Proof It suffices to verify that all assumptions of Corollary 2 are satisfied.
Firstly, guj = (Ãjx

∗ − b̃j) ≥ 0 for j = 1, . . . ,m + n, since x∗ is a feasible basic
solution of LP. Moreover, gvj = 0 for j = 1, . . . ,m + n by definition. We also
know that σ, the objective function value of CGLP, is negative by assumption.
This implies that u0 and v0 are basic as well. Therefore, Corollary 2 can be
applied, and it implies that rcvj > 0 for j ∈ M1 and rcuj > 0 for j ∈ M2,
where M1 and M2 index the basic uj and vj variables not including u0 and v0,
respectively. Since rcui

, rcvi ≥ 0 for i ∈ B, we conclude that w is a basic feasible
solution with non-negative reduced costs for all of the variables. Therefore, it
is an optimal solution of CGLP. 2

6 Computational evaluation

6.1 The branch-and-cut procedure

The L&P cut generation method (Algorithm 1) has been embedded in a branch-
and-cut algorithm for solving facial disjunctive programs with two-term disjunc-
tions. One round of the cut-generation procedure consists of generating a dis-
junctive cut for each violated disjunctive constraint, but only the first 50 most
violated disjunctions are considered, where the violation of a disjunction k ∈ Γ
is measured as sk,1 · sk,2. All the cuts are generated with respect to the same
basic feasible solution of the linear program. After adding simultaneously all
the cuts found to the linear program, it is reoptimised. After the generation of
cuts, if the node cannot be fathomed by the standard rules of branch-and-cut,
branching occurs. Each unfathomed node has two descendant nodes, which are
obtained by adding the first and the second term, respectively, of a violated
disjunction to the linear program. The disjunction k ∈ Γ with largest sk,1 · sk,2
value is selected for branching. In another variant of the method, CGLP cuts
were generated in the root node by solving (CGLP ′)k (system (23)) for the
violated disjunctions k ∈ Γ.

In our experiments, in the root node of the search tree disjunctive cuts were
generated in at most 3 rounds. The L&P cut generation method performed at
most 50 pivots. The method always selected the first row with negative reduced
cost rcui

or rcvi , and the column giving the most negative objective function
value (largest violation in the row). In the search tree, disjunctive cuts were
generated only in one round in the nodes of depth not greater than 4, and with
one pivot only.

22

6.2 The test environment

The algorithm has been implemented in C++ programming language using the
Xpress-MP mathematical programming package. All tests have been conducted
on a PC with Pentium IV processor, 2 GHz clock speed, 512 MB RAM and
Windows XP operating system.

6.3 Evaluation on LPCC instances

We have evaluated our method on test instances for Linear Programs with
Complementarity Constraints (LPCCs). Given c ∈ Rn, d ∈ Rm, f ∈ Rr,
q ∈ Rm, A ∈ Rr×n, B ∈ Rr×m, M ∈ Rm×m, and N ∈ Rm×n. The linear
programming with linear complementarity constraints problem aims at finding
the optimal solution (x, y) ∈ Rn × Rm of the program

min
(x,y)

cx+ dy

LPCC : s.t. Ax+By ≥ f,
Nx+My ≥ −q,
x, y ≥ 0,

yk(qk +Nkx+Mky) = 0, k = 1, . . . ,m.

Clearly, LPCC is a disjunctive program with disjunctions −yk ≥ 0 ∨ −Nkx−
Mky ≥ qk, k = 1, . . . ,m. We have compared our results to those of Hu et
al. [12] using the test instances [16], which were obtained by a sophisticated
Bender’s decomposition method in which pure integer programs (IPs) were used
to test whether a system of inequalities each of the form

∑
i∈I zi +

∑
j∈J (1 −

zj) ≥ 1 admits a feasible binary solution, and linear programs (LPs) were solved
repeatedly, to find new extreme points, or rays of a Bender’s reformulation, and
also to detect infeasibility or unboundedness [12].

We tested our method on datasets with 50, and 300 complementarity con-
straints. In the datasets with 300 complementarity constraints, B = 0. We
summarize our findings in Tables 3, 4, 5 and 6. In Tables 3 and 4, columns lb
and opt provide the value of the LP relaxation and that of the optimal solu-
tion, respectively. The columns LPs and IPs are taken from [12] and indicate the
number of linear and integer programs solved, respectively. Finally, the last four
columns provide information about our method: the number of nodes explored,
the number of L&P cuts generated, the total number of cut-generation rounds,
and the run-time of the computation in seconds. Notice that the linear program
is reoptimized once for each node and after each round of the cut-generation
method. We can observe that our method solves considerably fewer linear pro-
grams than that of Hu et al. In Tables 5 and 6 we compare three variants of
the method presented in this paper: pure branch-and-bound, branch-and-cut
with L&P cuts, and branch-and-cut with CGLP cuts. The last row provides
the average values in each table.

As can be seen, on these instances, pure branch-and-bound is the fastest
method, albeit it does not rule out that a different branching strategy might
give even better results when combined with cut generation. One should also
note that these instances are easy as the number of nodes needed by any method
is below 50 in all but one cases. In particular, on the large instances with

23

Table 3: Comparion of Hu et al. [12] and branch-and-cut with L&P cuts on
general LPCCs with B 6= 0, n = m = 50, r = 55.

Hu et al. L&P
lb opt LPs IPs nodes cuts rounds time
1 28.7739 29.0501 21 2 8 19 6 0.2
2 36.1885 37.5509 229 9 25 36 6 0.34
3 33.8630 37.0022 4842 696 107 87 10 0.75
4 33.7618 34.2228 102 7 29 20 6 0.25
5 21.4187 22.2835 209 24 35 39 8 0.32
6 29.8919 30.0829 108 13 31 26 6 0.34
7 37.6712 38.0405 92 7 17 15 7 0.13
8 20.8210 22.3969 187 21 35 35 6 0.27
9 39.0227 40.3380 321 14 31 58 6 0.43

10 40.0135 41.3957 190 19 43 44 8 0.42

Table 4: Comparion of Hu et al. [12] and branch-and-cut with L&P cuts on
general LPCCs with B = 0, n = m = 300, r = 300.

Hu et al. L&P
lb opt LPs IPs nodes cuts rounds time
1 2469.4402 2478.2256 125 1 15 26 6 7.32
2 3213.7179 3270.1844 4071 62 31 59 6 5.65
3 3639.4496 3660.5412 350 2 8 24 6 3.63
4 3127.3706 3176.4108 1249 15 25 70 6 6.91
5 2958.9144 2959.9495 5 1 2 7 1 1.45
6 2630.3286 2672.5709 4511 70 29 47 6 6.66
7 2616.985 2617.2638 0 0 2 2 1 0.69
8 2766.9542 2771.2372 26 1 7 17 6 2.37
9 2842.4483 2847.6926 319 2 7 11 4 2.75

10 3207.6865 3230.9896 1569 16 10 26 6 3.54

n = m = r = 300, branch-and-bound generates 15.7 nodes on average, while
with L&P cuts the average is 13.6, and with CGLP cuts it is only 11.2. On the
other hand, the method with L&P cuts terminates much faster than that with
CGLP cuts, but the number of search tree nodes is usually a bit higher when
using the L&P cut generation procedure with the above parameters.

On large instances, in about one-third of the cases L&P cuts decrease the
number of nodes significantly compared to branch-and-bound, which shows that
either stronger cuts are needed, or one should consider harder instances where
cut-generation pays off. We also note that in the 0/1 case, the modularization
technique of Balas [2] is applied to L&P cuts, and it gives excellent results, see
e.g. [3],[6], but this technique is not available for the cuts emerging in LPCCs.

24

Table 5: Comparion of pure B&B, branch-and-cut with L&P cuts, and branch-
and-cut with CGLP cuts on general LPCCs with B 6= 0, n = m = 50, r = 55.

B&B L&P CGLP
nodes time (s) nodes cuts time (s) nodes cuts time (s)
1 8 0.05 8 19 0.2 8 13 0.34
2 33 0.08 25 36 0.34 25 26 0.58
3 111 0.2 107 87 0.75 91 63 1.15
4 29 0.05 29 20 0.25 35 27 0.58
5 31 0.06 35 39 0.32 19 26 0.62
6 27 0.06 31 26 0.34 31 23 0.5
7 17 0.06 17 15 0.13 13 8 0.27
8 45 0.07 35 35 0.27 27 19 0.45
9 35 0.09 31 58 0.43 31 50 0.82

10 41 0.09 43 44 0.42 41 23 0.55
avg. 37.7 0.08 36.1 37.9 0.345 32.1 27.8 0.586

Table 6: Comparion of pure B&B, branch-and-cut with L&P cuts, and branch-
and-cut with CGLP cuts on general LPCCs with B = 0, n = m = 300, r = 300.

B&B L&P CGLP
nodes time (s) nodes cuts time (s) nodes cuts time (s)
1 15 0.81 15 26 7.32 11 24 33.89
2 39 1.49 31 59 5.65 31 58 64.98
3 15 0.87 8 24 3.63 8 22 31.48
4 25 1.3 25 70 6.91 23 77 66.66
5 7 0.43 2 7 1.45 1 4 7.91
6 23 0.99 29 47 6.66 15 51 51.52
7 3 0.41 2 2 0.69 2 3 7.74
8 13 0.59 7 17 2.37 3 14 20.96
9 4 0.52 7 11 2.75 7 12 23.17

10 13 0.78 10 26 3.54 11 24 27.29
avg. 15.7 0.82 13.6 28.9 4.10 11.2 28.9 33.56

25

7 Final remarks

In this paper we have described a simple generalization of the method of Balas
and Perregaard for strengthening cuts from split disjunctions. Although our
generalization has some limitations, but it is still able to generate cutting planes
competitive with those obtained by solving the Cut Generating Linear Program
to optimality by an LP solver. However, new application areas are needed in
order to really benefit from these cuts in practice.

Acknowledgements

The author is grateful to the Associate Editor and to the two anonymous referees
for constructive comments that helped to improve the paper. This work has been
supported by the János Bolyai Research Grant BO/00412/12/3.

References

[1] Andersen, K, Cornuéjols, G., Li, Y., Split closure and intersection cuts,
Mathematical Programming, Ser A, 102 (2005) 457-493.

[2] Balas, E., Disjunctive Programming, Annals of Discrete Mathematics, 5
(1979) 3-51.

[3] Balas, E., Ceria, S., Cornuéjols, G., A lift-and-project cutting plane al-
gorithm for mixed 0-1 programs, Mathematical Programming, 58 (1993)
295-324.

[4] Balas, E., Ceria, S., Cornuéjols, G., Mixed 0-1 programming by lift-and-
project in a branch-and-cut framework, Management Science, (1996).

[5] Balas, E., Disjunctive programming: Properties of the convex hull of fea-
sible points, Discrete Applied Mathematics, 89 (1998) 3-44.

[6] Balas, E., Projection and lifting in combinatorial optimization, In:
M. Jünger, D. Naddef (eds.), Computational Combinatorial Optimization,
LNCS 2241 (2001) 26-56.

[7] Balas, E., Perregaard, M., Lift-and-project for mixed 0 − 1 programming:
recent progress. Discrete Applied Mathematics 123 (2002) 129-154.

[8] Balas, E., Perregaard, M., A precise correspondence between lift-and-
project cuts, simple disjunctive cuts, and mixed-integer Gomory cuts for
0-1 programming, Mathematical Programming, Ser B, 94 (2003) 221-245.

[9] Balas, E., Bonami, P., New variants of lift-and-project cut generation from
the LP tableau: open source implementation and testing, IPCO 2007,
LNCS 4513 (2007) 89-103.

[10] Balas, E., Cornuéjols, G., Kis, T., Nannicini, G., Combining Lift-and-
Project and Reduce-and-Split, INFORMS J. on Computing, in press, 2012.

[11] Ceria, S., Pataki, G., Solving integer and disjunctive programs by lift and
project, IPCO VI, LNCS 1412 (1998) 271-283.

26

[12] Hu, J., Mitchell, J.E., Pang, J-S., Bennett, K.P., Kunapuli, G., On the
Global Solution of Linear Programs with Linear Complementarity Con-
straints, SIAM J. Optimization, 19 (2008) 445-471.

[13] Jeroslow, R.G., Cutting-planes for complementarity constraints, SIAM
J. Control and Optimization, 16 (1978) 56-62.

[14] Perregaard, M., Balas, E., Generating cuts from multiple-term disjunctions,
In: K. Aaardal, B. Gerards (eds.), IPCO 2001, LNCS 2081 (2001) 348-360.

[15] Perregaard, M., Generating Disjunctive Cuts for Mixed Integer Programs,
PhD Dissertation, Carnegie Mellon University, Graduate School of Indus-
trial Administration, 2003.

[16] http://www.rpi.edu/∼mitchj/generators/lpcc/.

27

