
Solving resource constrained shortest path problems
with Branch-and-Cut

Markó Horvátha, Tamás Kisa,∗

aInstitute for Computer Science and Control, Hungarian Academy of Sciences, H1111
Budapest, Kende str. 13–17, Hungary

Abstract

In the resource constrained shortest path problem (RCSPP) a shortest path
satisfying additional resource bounds is sought. Each arc has a length and a
resource usage vector specifying the requirements from each resource of a finite
set of resources. The resource bounds limit the total usage along feasible paths
for each resource type. In this paper we introduce new cutting planes, separation
procedures, variable fixing methods, and a primal heuristic for solving RCSPP to
optimality. We provide detailed computational experiments, and a comparison
to cutting planes from the literature.

Keywords: Resource constrained shortest path, Integer programming,
Branch-and-Cut, Primal heuristics, Combinatorial optimization

1. Introduction

The resource constrained shortest path problem (RCSPP) is an extension of
the familiar shortest path problem in directed graphs. Given a directed graph
G = (V,E), where V is a finite set of nodes and E ⊆ V × V is a finite set
of directed arcs, a cost function c : E → Z on the arcs (negative values
are allowed), two special nodes s, t ∈ V with s 6= t and such that there is a
directed path from s to t in G, that is, a subgraph P = (VP , EP) of G with
VP = {v0, . . . , vk} ⊆ V , s = v0, t = vk, and EP =

⋃
i=1,...,k{ei}, where ei is

some arc of G directed from node vi−1 to node vi. The path is elementary if all
nodes v0 through vk are distinct. In the (elementary) shortest path problem an
(elementary) s−t path of smallest total cost is sought, i.e., a directed elementary
path from s to t such that the total cost of the arcs on the path is the smallest,
i.e.,

min
P∈Pst

c(P), (1)

∗Corresponding author, Tel.: +36 1 2796156
Email addresses: marko.horvath@sztaki.mta.hu (Markó Horváth),

tamas.kis@sztaki.mta.hu (Tamás Kis)

Preprint submitted to Elsevier September 18, 2014

where Pst is the set of all directed s − t paths. Now, suppose that in addition
to the above problem data we also have weights assigned to the arcs, that is,
to each arc the function w : E → Zm assigns an m-dimensional vector, which
we call resource requirements. There is also an m-dimensional vector W ∈ Zm,
which represents the maximum available quantities from the resources. In the
(elementary) resource constrained shortest path problem a directed (elementary)
path P from s to t is sought which has the smallest total cost, and which respects
the resource constraints ∑

e∈P
wre ≤W r, r = 1, . . . ,m. (2)

Clearly, a shortest s − t path may not respect the resource constraints. It is
usually assumed that all the resource requirements are non-negative, and there
can be lower bounds L as well on the resource consumptions, see e.g., [3]. In
the most general case, the wre may take negative values as well, see [11], but it
is a standard assumption that the graph admits neither a cycle of negative total
cost, nor one of negative total resource consumption, where a cycle is defined
like a path except that the first and the last nodes are the same.

We can formulate the problem by a mathematical program in which there
is a binary decision variable xe on each arc e ∈ E indicating whether the path
sought goes through the arc or not.

min
∑
e∈E

cexe (3)

s.t.
∑

e∈δout (i)

xe −
∑

e∈δin(i)

xe =

 1 i = s
0 i ∈ V \ {s, t}
−1 i = t

, i ∈ V (4)

∑
e∈E

wrexe ≤Wr, r = 1, . . . ,m (5)

x ∈ {0, 1}E (6)

In the above formulation, δin(i) and δout(i) denote the set of arcs entering and
leaving node i, respectively. The objective function (3) expresses the total cost
of the path sought. Constraints (4) along with (6) ensure that the feasible
solutions are paths. The resource usage of the paths are bounded by (5). If we
need elementary paths, and the graph G contains cycles, then additional means
are needed to eliminate cycles in the solution. For instance, the inequalities∑

e∈γ(S)

xe ≤ |S| − 1, ∀ S ⊂ V, (7)

eliminate all the cycles, where γ(S) is the set of arcs spanned by the subset of
nodes S ⊂ V , i.e., γ(S) := {e ∈ E | head(e), tail(e) ∈ S}.

The elementary RCSPP has been shown NP-hard in the strong sense for
graphs containing cycles by Dror [5]. However, the problem remains NP-hard

2

even if the graph is acyclic and all the arc weights and costs are non-negative
(cf. problem [ND30] in Garey and Johnson [9]). In fact, the latter problem can
be solved in pseudo-polynomial time, see e.g., Joksch [13].

Several types of methods have been proposed to solve variants of RCSPP,
for an overview, see e.g., Garcia [8], Irnich and Desaulniers [11]. For instance, in
path ranking methods, the first K shortest s− t paths are generated from which
the shortest resource feasible is chosen, if it exists. Clever ways of applying
path ranking for solving RCSPP have been suggested in e.g., [10, 15]. Node
labeling type methods are based on dynamic programming, where the nodes
of the graph are labeled with the length of the directed (elementary) paths
leading to them from the source node s, and also with the possible resource
consumptions on these paths. The first method in this class is from Joksch [13].
If all arc weights are positive, the method of Desrochers and Soumis [4] finds
the optimal solution in O(|E|U) time in case of a single resource with upper
bound U . An improved algorithm is proposed by Dumitrescu and Boland [6].
The third type of methods uses Lagrangian relaxation to relax the resource
constraints. For instance, Beasley and Christofides [3] propose Branch-and-
Bound in which lower bounds are computed using a Lagrange dual, and they also
apply various preprocessing and variable fixing methods to reduce the number
of search-tree nodes. The methods in the fourth category are based on linear
programming relaxation and cutting planes. For instance, Avella et al. [2] use
cutting planes to solve RCSPP with negative cycles. In Jepsen et al. [12], a
model with resource weights on the nodes is considered, and generalized subtour
elimination inequalities are proposed to ensure elementary paths. The authors
also suggest generalized capacity inequalities, but computational experiments
show that they are not effective in practice. Garcia [8] propose several types of
valid inequalities for the polytope of feasible solutions of RCSPP, some of which
being valid for RCSPP with cycles, while others only for the acyclic special case.
A detailed computational evaluation shows the merits of the various classes in
solving the two variants of the problem by Branch-and-Cut. In the proposed
algorithms preprocessing plays a very important role as well.

In this paper we will pursue a polyhedral approach, and use a Branch-and-
Cut method to solve the RCSPP.
Our results. We generalize some of the valid inequalities of Garcia [8] to
strengthen the LP relaxation of the RCSPP. We will focus on two kinds of
inequalities: s − t cut precedence, and subpath precedence. We will consider
various generalizations of these inequalities, and answer an open problem in [8],
that is, we provide new complexity results of separating subpath precedence as
well as infeasible subpath based inequalities. We will also propose a new primal
heuristic for finding feasible solutions, as well as variable fixing techniques to
be applied in the course of Branch-and-Cut. Our methods have been evaluated
in computational experiments, and our main finding is that our generalization
of the subpath precedence inequalities combined with the variable fixing and
primal heuristic methods is really effective in practice for solving large-scale
RCSPP instances.
Structure of the paper. The previous work which was the starting point of

3

our research is summarized in Section 2. New valid inequalities for RCSPP
along with the corresponding separation procedures are proposed in Section 3.
New variable fixing methods and primal heuristics are described in Section 4.
Detailed computational evaluation is provided in Section 5. We conclude the
paper in Section 6.
Notation. For a directed graph G = (V,E), if e ∈ E is a directed arc from node
i to node j, then the head of e is node j, and will be denoted by head(e), and
the tail of e is node i, and will be denoted by tail(e). The set of arcs entering
node v is denoted by δin(v) := {e ∈ E | head(e) = v}, whereas those leaving
v constitute the set δout(v) := {e ∈ E | tail(e) = v}. We say that node j is
reachable from node i if G contains a directed path from node i to node j (recall
the definition of a directed path in the first paragraph of the Introduction).
The set of nodes reachable from node i ∈ V on directed paths is denoted by
ρout(i), and symmetrically, let ρin(i) be the set of nodes from which node i can
be reached in G. We assume that i ∈ ρout(i) and i ∈ ρin(i). For a subset
S ⊆ V of nodes, let γ(S) be the set of all arcs spanned by S, i.e., γ(S) = {e ∈
E | head(e), tail(e) ∈ S}.

For a path π = ({v0, . . . , vp}, {e0, . . . , ep−1}) we denote the subpath consist-
ing of the first i arcs of π by π[0, i]. The extension of π with an arc ep with
tail(ep) = vp is denoted by π ⊕ ep.

For a subset of arcs A ⊆ E and any weighting y : E → R of the arcs,
y(A) :=

∑
e∈A y(e) is the sum of weights of those arcs in A. For a pair of nodes

i, j, let σrij denote the length of the shortest i − j path in G with respect to
arc weights wre , whereas σcij denotes that with respect to the arc costs ce. If no
i− j path exists, σrij and σcij are∞. For arcs e1, e2 ∈ E we say that the arc-pair
(e1, e2) is compatible if σrs,tail(e1)+wre1 +σrhead(e1),tail(e2)+wre2 +σrhead(e2),t ≤W

r

holds for all resources r; otherwise we say the arc-pair is incompatible. The
RCSPP polytope is the set of binary vectors satisfying (4)-(7), noting that if
the underlying graph contains no directed cycles (acyclic in short), then the
inequalities (7) are superfluous.

2. Preliminaries and related work

In this section we recapitulate previous results that we will extend in Sections
3 and 4. The inequalities presented in this section are valid for the RCSPP
polytope.

2.1. Node precedence inequalities

The class of these inequalities is based on the idea that a resource-feasi-
ble path through some arc e can leave node head(e) only on some arc e′ ∈
δout(head(e)) with σrs,tail(e) +wre +wre′ +σrhead(e′),t ≤W

r for each resource r, as

shown by Garcia [8]. That is, let φoute,r := {e′ ∈ δout(head(e)) | σrs,tail(e) + wre +

wre′+σ
r
head(e′),t ≤W

r}. Since we aim at finding elementary paths, we can safely

drop from φoute,r those arcs e′ with head(e′) = tail(e) (if any), to obtain the set

4

F out
e,r := {e′ ∈ φoute,r | head(e′) 6= tail(e)}. Then the node precedence inequality

for arc e with respect to resource r is

xe ≤ x(F out
e,r). (8)

The validity of this inequality for the RCSPP polytope is easily seen from the
definitions. One can also define an analogous inequality using the sets φine,r :=

{e′ ∈ δin(tail(e)) | σrs,tail(e′) + wre′ + wre + σrhead(e),t ≤ W r}, and F in
e,r := {e′ ∈

φine,r | tail(e′) 6= head(e)}. The resulting reverse node precedence inequality for
arc e with respect to resource r is

xe ≤ x(F in
e,r). (9)

Garcia [8] has also provided a polynomial time exact separation algorithm for
node precedence inequalities.

2.2. s− t cut precedence inequalities

This class of inequalities generalizes the node precedence inequalities of the
previous section. Let S ⊂ V be a set of nodes with s ∈ S and t /∈ S, and e ∈ E
with head(e) ∈ S \ {s}. Then any resource feasible s − t path π through arc e
must cross the s− t cut δout(S) on some arc in γ(ρout(head(e))) (the set of arcs
e′ ∈ E such that tail(e′) is reachable from node head(e) on a directed path in G).
In addition, π must pass through some arc e′ ∈ δout(S)∩ γ(ρout(head(e))) with
σrs,tail(e)+w

r
e+σrhead(e),tail(e′)+w

r
e′+σ

r
head(e′),t ≤W

r for each resource r. Again,

Garcia [8] defined the set Φout
e,r = {e′ ∈ E | σrs,tail(e) +wre+σrhead(e),tail(e′) +wre′+

σrhead(e′),t ≤ W r} for each resource r. For any S ⊂ V with s ∈ S, t /∈ S, and

e ∈ E with head(e) ∈ S \ {s}, F out
e,r (S) = {e′ ∈ δout(S) | e′ ∈ Φout

e,r , tail(e′) 6=
tail(e), head(e′) 6= tail(e)}. Then the s− t cut precedence inequality for resource
r is

xe ≤ x(F out
e,r (S)). (10)

Clearly, the node precedence inequalities of the previous section are just special
cases of s − t cut precedence inequalities. This class of inequalities can be
separated by computing a minimum head(e)− t cut in a graph derived from G,
for details, see [8].

For e ∈ E one can define analogously the set Φin
e,r = {e′ ∈ E | σrs,tail(e′) +

wre′ + σrhead(e′),tail(e) + wre + σrhead(e),t ≤ W r}, and for any S ⊂ V with s ∈ S,

t /∈ S, and tail(e) ∈ S \ {t}, F in
e,r(S) = {e′ ∈ δout(S) | e′ ∈ Φin

e,r, tail(e′) 6=
head(e), head(e′) 6= head(e)}. Then the reverse s − t cut precedence inequality
for resource r is

xe ≤ x(F in
e,r(S)). (11)

2.3. Subpath precedence inequalities

Let π =
(
{i1, . . . , ip},

⋃
j=1,...,p−1{ej}

)
be a path from node i1 to node ip

in G such that i1 6= t, ip 6= s, i2, . . . , ip−1 /∈ {s, t}, and ej being a directed

5

arc of G from node ij to ij+1. We say that π is an infeasible subpath with

respect to resource r if σrs,i1 +
∑p−1
k=1 w

r
ek

+ σrip,t > W r. If e1 is an arc of a
feasible s− t path π∗, then π∗ cannot contain all the arcs of π, and therefore, it
must leave the subpath π on some arc adjacent to one of the nodes i2, . . . , ip−1.
Suppose π∗ leaves π on the arc e′ directed from node ik of π to some node
j 6= ik+1. Since π∗ is feasible for resource r, the condition σrs,i1 +

∑k−1
`=1 w

r
e`

+
wre′+σrhead(e′),t ≤W

r is satisfied. Using this observation, Garcia [8] has defined

the sets φoutπ,r (k) = {e′ ∈ δout(ik) | σrs,i1 +
∑k−1
`=1 w

r
e`

+ wre′ + σrhead(e′),t ≤ W r},
and F out

π,r (k) = {e′ ∈ φoutπ,r (k) | head(e′) 6= ik+1, i1, . . . , ik−1} for k = 2, . . . , p− 1.

Letting F out
π,r =

⋃p−1
k=2 F

out
π,r (k), the subpath precedence inequality with respect to

the infeasible subpath π is
xe1 ≤ x(F out

π,r). (12)

It is clear again, that a subpath precedence inequality for an infeasible path
with length 2 is nothing but a node precedence inequality of the Section 2.1.

One can define analogously the sets φinπ,r(k) = {e′ ∈ δin(ik) | σrs,tail(e′) +

wre′ +
∑p−1
`=k w

r
e`

+ σript ≤ W r}, and F in
π,r(k) = {e′ ∈ φinπ,r(k) | tail(e′) 6=

ik−1, ik+1, . . . , ip} for k = 2, . . . , p − 1. Letting F in
π,r =

⋃p−1
k=2 F

in
π,r(k), the re-

verse subpath precedence inequality with respect to the infeasible subpath π is

xep ≤ x(F in
π,r). (13)

Both of these classes of inequalities are valid for the RCSPP polytope. However,
Garcia [8] neither provided a polynomial time separation procedure, nor a proof
that the separation problem is intractable (NP-hard). Nevertheless, he gave a
separation heuristic which worked well in practice.

2.4. Strengthening the inequalities

All the inequalities presented in this section so far have one of the following
two forms:

xe ≤ x(F out
e,r), (14)

or
xe ≤ x(F in

e,r), (15)

where F out
e,r is a set of arcs that lie on a directed head(e)− t path, F in

e,r is a set
of arcs that lie on a directed s − tail(e) path, and the inequalities are derived
by considering only the resource weights wr on the arcs. Garcia [8] argued that
inequalities of these forms can be strengthened by the following trick. Consider
e.g., the class (14). Let Be,r = {e′ ∈ δin(head(e)) | σrs,tail(e′) +wre′ ≥ σrs,tail(e) +

wre}. Then (14) can be strengthened:

Proposition 1. If (14) is valid for the RCSPP polytope, then so is

x(Be,r) ≤ x(F out
e,r).

6

A similar strengthening method applies to inequalities in the class (15).
Define the set Ae,r = {e′ ∈ δout(tail(e)) | wre′ + σrhead(e′),t ≥ w

r
e + σrhead(e),t}.

Proposition 2. If (15) is valid for the RCSPP polytope, then so is

x(Ae,r) ≤ x(F in
e,r).

Using a simple observation in case of multiple resources, one can strengthen
inequalities of the forms (14) and (15) in the following way:

Proposition 3. If (14) is valid for the RCSPP polytope for all resource r =
1, . . . ,m, then so is

x

(
m⋂
r=1

Be,r

)
≤ x

(
m⋂
r=1

F out
e,r

)
Proposition 4. If (15) is valid for the RCSPP polytope for all resource r =
1, . . . ,m, then so is

x

(
m⋂
r=1

Ae,r

)
≤ x

(
m⋂
r=1

F in
e,r

)

2.5. Preprocessing and heuristics

Several preprocessing methods have been proposed for the RCSPP to reduce
the size of the underlying graph G. Aneja et al. [1] deleted all nodes and arcs
that cannot appear in a feasible s − t path in G corresponding to a single
resource. That is, they calculated the values σrsi and σrit, i.e., the length of the
shortest s− i path and length of the shortest i− t path in G, respectively, with
arc weights wr, for each resource r and for every node i. Then they erased
all nodes i such that σrsi + σrit > W r holds for some resource r, since such a
node cannot appear in a feasible s − t path. Similarly, any arc e such that
σrs,tail(e) + wre + σrhead(e),t > W r holds for some resource r can be eliminated
from the graph. This procedure can be applied repeatedly until no other nodes
and arcs can be deleted or no s − t path remains in the reduced graph (which
means that the problem is infeasible).

Beasley and Christofides [3] considered cost bounds to erase additional arcs
and nodes from the underlying graph G. In a tree search procedure in each
subproblem corresponding to a search-tree node they calculated cost bounds
through Lagrangean relaxation and eliminated arcs and nodes that could not
appear in an optimal s− t path in G. Dumitrescu and Boland [6] combined and
simplified these approaches. They used the original arc costs instead of those
derived from the Lagrangean dual to obtain upper bounds on the optimum value
and created a combined preprocessing method. This preprocessing scheme has
an additional advantage, namely, it may return an upper bound on the optimal
solution value which can be used to improve the Branch-and-Cut procedure.
For details we refer the reader to [6].

Garcia [8] also extended the preprocessing scheme of Aneja et al. Since the
condition σrsi+σ

r
it ≤W r is necessary for each resource r, but not sufficient for the

7

existence of an s−t path through node i which is feasible for all resources, Garcia
applied the preprocessing procedure for a subgraph of G which contains each
s− t path through node i. That is, one can create the graph G[i] = (V [i], E[i])
where V [i] = ρin(i) ∪ ρout(i) and E[i] = γ(ρin(i)) ∪ γ(ρout(i)), and apply the
preprocessing scheme of Aneja et al. for this graph repeatedly. If the procedure
terminates because no more s−t path left in G[i], then node i can be eliminated
from the original graph G, since every s − t path through i is infeasible for at
least one resource constraint.

The latter approach can be applied not only to a node i, but also to an
arc e. That is, we can create the graph G[e] = (V [e], E[e]) where V [e] =
ρin(tail(e)) ∪ ρout(head(e)) and E[e] = γ(ρin(tail(e))) ∪ {e} ∪ γ(ρout(head(e))),
and apply for it the preprocessing scheme of Aneja et al. repeatedly. Since
preprocessing of G[e] for all e ∈ E can be expensive, Garcia [8] did not use this
approach as a preprocessing procedure but created a variable fixing method
which can be applied in a Branch-and-Cut procedure. That is, if a fractional
solution x∗ to the LP relaxation is available, one can preprocess G[e] for all arc
e such that x∗e > 0. In this case the deletion of an arc e means to fix variable
xe to 0.

3. New valid inequalities and separation procedures

In this section we generalize the valid inequalities of Section 2.

3.1. Cut based inequalities

Fix a pair of edges e1, e2 of G with e1 6= e2, and let i1 := tail(e1), j1 :=
head(e1) and i2 := tail(e2), j2 := head(e2). A necessary condition for a resource-
feasible path π visiting e1 and e2 in this order to exist is that for each resource
r, the inequality

σrs,i1 + wre1 + σrj1,i2 + wre2 + σrj2,t ≤W
r (16)

holds. However, this condition is weak, and we can make it stronger. We define
the set

Φ(·,e1,e2),r = {e ∈ E |
σrs,tail(e) + wre + σrhead(e),i1 + wre1 + σrj1,i2 + wre2 + σrj2,t ≤W

r
}

and then for any s− i1 cut S, the set

F(·,e1,e2),r(S) =
{
e ∈ δout(S) ∩ Φ(·,e1,e2),r | tail(e), head(e) /∈ {j1, i2, j2, t}

}
.

The new inequality with respect to the set F(·,e1,e2),r(S) is

xe1 + xe2 − 1 ≤ x(F(·,e1,e2),r(S)). (17)

Proposition 5. If G contains no directed path from j2 to i1, then the inequality
(17) is valid for the RCSPP polytope.

8

Proof. Consider any resource-feasible elementary s− t path P , and let xP be its
characteristic vector, i.e., xPe = 1 if P contains the arc e, otherwise 0. If P does
not contain any of {e1, e2}, then the left-hand-side of (17) is at most 0, while
the right-hand-side is at least zero by the non-negativity of x, and the claim
follows. So, suppose P passes through both of e1 and e2, i.e., xPe1 = xPe2 = 1.
Since G contains no directed path from j2 to i1, it follows that P passes through
e1 first, and then through e2. We claim that the right-hand-side of (17) is at
least 1. It suffices to verify that xPe = 1 for some arc e ∈ F(·,e1,e2),r(S). Being a
resource-feasible elementary s− t path passing through e1 and then e2, P must
start in s and visit i1, therefore, all the arcs e′ on the subpath P ′ from s to i1
belong to Φ(·,e1,e2),r and P ′ contains no nodes from {j1, i2, j2, t}. Since S is an
s− i1 cut, at least one edge e′ of P ′ must belong to F(·,e1,e2),r(S), and the claim
is verified.

One can define analogously the set

Φ(e1,·,e2),r = {e ∈ E |
σrs,i1 + wre1 + σrj1,tail(e) + wre + σrhead(e),i2 + wre2 + σrj2,t ≤W

r
}

and then for any j1 − i2 cut S, the set

F(e1,·,e2),r(S) =
{
e ∈ δout(S) ∩ Φ(e1,·,e2),r | tail(e), head(e) /∈ {s, i1, j2, t}

}
that gives rise to the new inequality

xe1 + xe2 − 1 ≤ x(F(e1,·,e2),r(S)). (18)

And one can also define analogously the set

Φ(e1,e2,·),r = {e ∈ E |
σrs,i1 + wre1 + σrj1,i2 + wre2 + σrj2,tail(e) + wre + σrhead(e),t ≤W

r
}

and then for any j2 − t cut S, the set

F(e1,e2,·),r(S) =
{
e ∈ δout(S) ∩ Φ(e1,e2,·),r | tail(e), head(e) /∈ {s, i1, j1, i2}

}
that gives rise to the new inequality

xe1 + xe2 − 1 ≤ x(F(e1,e2,·),r(S)). (19)

Proposition 6. If G contains no directed path from j2 to i1, then the inequal-
ities (18) and (19) are valid for the RCSPP polytope.

Now we give an example showing that a member of this new class of in-
equalities is violated, while all s − t cut precedence inequalities (10), (11) are
satisfied.

9

s

1

2

3

4

5

t

1

3

1

1

1

3

1

1

1

3

1
W = 8

Figure 1: Network of Example 1.

Example 1. Consider the graph in Figure 1. There is one resource, and the
resource weights are indicated by the arcs. The only resource-infeasible path
π = (s, 2, 4, t) is not cut off by any s− t cut precedence inequalities, but for the
arcs (s, 2) and (4, t), and cut S = {s, 1, 2}, the inequality (18)

xs,2 + x4,t − 1 ≤ x2,3

is violated by the incidence vector of π.

Given a feasible solution x∗ of the LP relaxation of (3)-(6), possibly aug-
mented by some valid inequalities for RCSPP, and in which some variables may
be fixed to 0 or 1 due to branching or preprocessing. To separate inequalities
in this class, we fix e1 and e2 such that there is not any directed path from j2
to i1, and we consider the inequalities (17), (18), and (19) in turn. Suppose we
want to find violated (17) inequalities. Firstly, we define a capacity function
g : E → R as follows. If an arc e is in Φ(·,e1,e2),r(S) and tail(e) /∈ {j1, i2, j2, t}
and head(e) /∈ {j1, i2, j2, t}, than let g(e) be equal to x∗e, otherwise g(e) = 0.
Then we determine a minimum capacity s − i1 cut S with respect to g. If
the minimum capacity is strictly smaller than x∗e1 + x∗e2 − 1, then a violated
inequality is found (determined by S). It is easy to see that this procedure
is of polynomial time, and since the number of pairs of arcs is O(|E|2), the
inequalities (17), (18), and (19) can be separated in polynomial time.

Finally notice that the strengthening methods of Section 2.4 can be applied
to (17), (18), and (19) as well.

3.2. Infeasible subpath based inequalities

Let π = ({i1, . . . , ip}, {e1, . . . , ep−1}) be an infeasible subpath of G for re-
source r (cf. Section 2.3), with p ≥ 4. We will argue that any resource-feasible
path visiting e1 and ep−1 must leave the subpath π at some node i2, . . . , ip−2,
otherwise it would contain all the arcs e1, . . . , ep−1, and thus it would be infea-
sible for resource r. Therefore, for each k = 2, . . . , p − 2, we define the set of
arcs

φ̃outπ,r (k) = {e ∈ δout(ik) | σrs,i1 +

k−1∑
`=1

wre` +wre+σrhead(e),ip−1
+wrep−1

+σrip,t ≤W
r},

10

and using φ̃outπ,r (k), the arc set

F̃ out
π,r (k) = {e ∈ φ̃outπ,r (k) | head(e) 6= ik+1, head(e) 6= i1, . . . , ik−1}.

Using F̃ out
π,r =

⋃p−2
k=2 F̃

out
π,r (k), we define the inequalities

xe1 + xep−1
− 1 ≤ x(F̃ out

π,r). (20)

Proposition 7. If G contains no directed path from ip to i1, then the inequality
(20) is valid for the RCSPP polytope.

Proof. Let P be a resource-feasible path and xP the corresponding vertex of the
RCSPP polytope. If xPe1 = 0 or xPep−1

= 0, then (20) is satisfied because the left-
hand side is at most 0, while the right-hand-side is non-negative. Now suppose
xPe1 = xPep−1

= 1, i.e., P goes through both of e1, and ep−1. Since G contains no
directed path from ip to i1 by assumption, P passes through e1 first. Clearly,
P cannot contain all the arcs e2 through ep−2 as well, because π is a resource
infeasible subpath for resource r. Hence, P must contain an arc emanating from
one of the nodes i2, . . . , ip−2. So let e′ be the first arc on P emanating from node
ik of π. Since the path is simple, head(e′) 6= i1, . . . , ik−1, and head(e′) 6= ik+1.
Moreover, since P is resource-feasible, e′ ∈ F̃ out

π,r (k) follows, and then xPe′ = 1,
and the statement of the proposition is proved.

One can define analogously the sets

φ̃inπ,r(k) = {e ∈ δin(ik) | σrs,i1 + wre1 + σri2,tail(e) + wre +

p−1∑
`=k

wre` + σrip,t ≤W
r},

for each k = 3, . . . , p− 1, and using φ̃inπ,r(k), the arc set

F̃ in
π,r(k) = {e ∈ φ̃inπ,r(k) | tail(e) 6= ik−1, tail(e) 6= ik+1, . . . , ip}.

Let F̃ in
π,r =

⋃p−1
k=3 F̃

in
π,r(k), and we define the inequalities

xe1 + xep−1
− 1 ≤ x(F̃ in

π,r). (21)

Proposition 8. If G contains no directed path from ip to i1, then the inequality
(21) is valid for the RCSPP polytope.

The following two examples show that neither the subpath precedence (de-
fined in Section 2.3), nor the Infeasible subpath based inequalities dominate the
other.

Example 2. Let us consider the graph in Figure 2. The arcs are indicated
with the single resource requirement. There are two infeasible subpaths: π1 =

11

(s, 2, 5, t) and π2 = (s, 2, 3, 5, t). Let us write the subpath precedence inequalities
(12) and the infeasible subpath inequalities (20):

subpath precedence inequality for π1 : xs,2 ≤ x2,3 + x2,4 + x5,6 (22)

subpath precedence inequality for π2 : xs,2 ≤ x2,4 + x2,5 + x5,6 (23)

infeasible subpath inequality for π1, π2 : xs,2 + x5,t ≤ x2,4 + 1 (24)

Condition (24) excludes both π1 and π2, but (22) excludes only π1 and (23)
excludes only π2.

s

1

2

3

4

5

6

t

1

3

1

1

1

1

3

2

1

1

1

3

1

W = 8

Figure 2: Network for Example 2.

Example 3. Let us consider the graph in Figure 3. The arcs are indicated
with the single resource requirement. There are three infeasible subpaths: π1 =
(s, 2, 4, t), π2 = (s, 2, 4, 6, t) and π3 = (s, 2, 4, 6). Let us write the subpath prece-
dence inequalities (12) and the infeasible subpath inequalities (20):

subpath precedence inequality for π1, π2, π3 : xs,2 ≤ x2,3 + x4,5 (25)

infeasible subpath inequality for π1 : xs,2 + x4,t ≤ x2,3 + 1 (26)

infeasible subpath inequality for π2 : xs,2 + x4,6 ≤ x2,3 + 1 (27)

infeasible subpath inequality for π3 : xs,2 + x6,t ≤ x2,3 + 1 (28)

Condition (25) excludes all of π1, π2 and π3, but (26), (27) and (28) only
exclude π1, π2 and π3, respectively.

The separation of the inequalities (20) and (21) is not an easy problem.
Firstly, we prove that the separation of the subpath precedence inequalities
(12) and (13) is NP-hard, thus solving an open problem raised in [8].

Problem (SPP-SEP). Subpath Precedence Separation
Instance: We are given a directed graph G = (V,E), a fractional solution
x∗ ∈ [0, 1]E for the LP relaxation of (3) - (6), arc weights we ∈ R for each
e ∈ E, two vertices s, t ∈ V , and capacity W ∈ R.

12

s

1

2

3

4

5

6

t

1

3

1

1

1

3

1

1

1

1

3

1

2
W = 8

Figure 3: Network for Example 3.

Question: Is there an s− t subpath π = ({i1, . . . , ip}, {e1, . . . , ep−1}) in G such
that p ≥ 4, σs,i1 + w(Eπ) + σip,t > W and x∗e1 > x∗(F out

π)?

In the following NP-hardness proof we will make use of the well-known Knap-
sack Problem.

Problem (KP). Knapsack Problem
Instance: We are given a set of n items, each with a non-negative profit pi, and
a non-negative weight ai. Additionally we are given a capacity value c, and a
desired profit value P . All problem data is integer.
Question: Is there a subset J of items such that p(J) > P and a(J) < c?

Let psum =
∑n
i=1 pi denote the sum of all profits in an instance of the knap-

sack problem. After these preliminaries, we are ready to prove the following:

Proposition 9. SPP-SEP is NP-hard.

Proof. We reduce the NP-hard KP problem to SPP-SEP. Given an instance of
the KP problem, renumber the items such that a1 ≤ a2 ≤ . . . ≤ an. Without
loss of generality we may assume that c > 0, 1 ≤ ai ≤ c and 1 ≤ pi ≤ P for
all i = 1, . . . , n. Divide every weight and capacity value by an + c to obtain the
values āi and c̄:

āi =
ai

an + c
(i = 1, . . . , n) and c̄ =

c

an + c

If it is necessary, we multiply the values p1, . . . , pn, and P by a suitable integer
to ensure that

c̄ ≤ (P + psum + 1)/(P + psum + 2). (29)

Clearly, this can be done, since c̄ is smaller than 1. For the sake of simplicity
we do not use another notations for these modified values, that is, we assume
that (29) is met for the values p1, . . . , pn, and P .

We create an acyclic digraph G as follows. G has n + 3 nodes denoted by
0, 1, . . . , n + 2, where s = 0 is the source and t = n + 2 is the sink. Every pair

13

of nodes (i, i + 1), i = 1, . . . , n + 1, is connected by two arcs, e+i,i+1 and e0i,i+1.
Furthermore, there are n more arcs from node 0 to each of the nodes 1, . . . , n:
e0,i = (0, i) for i = 1, . . . , n, and finally from node 0 to node 1: e+0,1 = (0, 1) and
from node 1 to node n + 2: e1,n+2 = (1, n + 2). We define the arc-weights w,
and an s− t flow x∗ as follows:

w(e+0,1) = psum + 1, x∗(e+0,1) = c̄

w(e+i,i+1) = pi, x∗(e+i,i+1) = 0, i = 1, . . . , n

w(e+n+1,n+2) = psum + 1, x∗(e+n+1,n+2) = ān
w(e0i,i+1) = 0, x∗(e0i,i+1) = āi, i = 1, . . . , n
w(e0n+1,n+2) = 0, x∗(e0n+1,n+2) = 0
w(e0,i) = 0, x∗(e0,i) = āi − āi−1, i = 1, . . . , n
w(e1,n+2) = P + psum + 2, x∗(e1,n+2) = c̄

where ā0 = 0. Let W = P + 2psum + 2. This network along with the flow x∗

is depicted in Figure 4. It is clear that x∗ is an s − t flow of value ān + c̄ = 1,
and x∗ is a feasible solution for the LP relaxation of the RCSPP problem, since∑
e∈E x

∗
ewe = (ān+ c̄)(psum+ 1) + c̄(P +psum+ 2) ≤ P + 2psum+ 2 = W holds,

due to (29). We claim there exists a solution for KP if and only if there exists
a solution for SPP-SEP in G.

First suppose the separation problem SPP-SEP admits a solution, and let
π = (i1, . . . , ip) be an infeasible subpath with p ≥ 4 such that x∗(F out

π) <
x∗(π[0, 1]). Since arc e1,n+2 cannot appear in an infeasible subpath with mini-
mum length 3, Eπ does not contain e1,n+2. It is clear that σs,i = σi,t = 0 for all

i = 0, . . . , n + 2, and
n∑
i=1

max{w(e+i,i+1), w(e0i,i+1)} = psum, hence an infeasible

subpath with minimum length 3 contains both of the arcs e+0,1 and e+n+1,n+2,
and thus π is an s − t path. Now we determine F out

π . Firstly, notice that
e1,n+2 /∈ F out

π , since w(e+0,1)+w(e1,n+2) = P +psum+3 > W , i.e., the s− t path

consisting of the edges e+0,1 and e1,n+2 is not resource feasible. If π contains an

arc e+i,i+1 for some i = 1, . . . , n + 1, then F out
π comprises the arc e0i,i+1, since

w(π[0, i]) ≤ 2psum + 1, w(e0i,i+1) = 0, and σi+1,n+2 = 0. On the other hand,

if π contains an arc e0i,i+1 for some i = 1, . . . , n, then F out
π comprises the arc

e+i,i+1, since w(π[0, i]) ≤ 2psum+1, w(e+i,i+1) = pi, and σi+1,n+2 = 0. Therefore,

letting J :=
{
i ∈ {1, . . . , n} : e+i,i+1 ∈ Eπ

}
, we have proved that

F out
π =

(⋃
i∈J
{e0i,i+1}

)
∪

(⋃
i/∈J

{e+i,i+1}

)
∪ {e0n+1,n+2}.

Thus, if π is a solution for SPP-SEP, i.e., π is an infeasible subpath and x∗

violates (12), i.e., x∗(F out
π) < x∗(e+0,1) = c̄, then J is a solution for KP, since

p(J) = w(π)−w(e+0,1)−w(e+n+1,n+2) > P , and ā(J) = x∗(F out
π) < c̄ if and only

if a(J) < c.

14

0 1 2 . . . n n+ 1 n+ 2

(psum + 1, c̄) (p1, 0)

(0, ā1)

(p2, 0)

(0, ā2)

(pn−1, 0)

(0, ān−1)

(pn, 0)

(0, ān)

(psum + 1, ān)

(0, 0)
(0, ā1)

(0, ā2 − ā1)

(0, ān − ān−1)

(P + psum + 2, c̄)

W = P + 2psum + 2

(w, x∗)

Figure 4: The constructed graph

Conversely, let J be a solution for KP. We define the path π with

Eπ = {e+0,1, e
+
n+1,n+2} ∪

(⋃
i∈J
{e+i,i+1}

)
∪

(⋃
i/∈J

{e0i,i+1}

)
.

It is easy to verify that F out
π =

(⋃
i∈J
{e0i,i+1}

)
∪

(⋃
i/∈J
{e+i,i+1}

)
∪ {e0n+1,n+2},

and the inequality (12) is violated by x∗.

Now we turn to the separation problem for the inequalities (20) and (21).

Problem (IS-SEP). Infeasible Subpath Separation
Instance: We are given a directed graph G = (V,E), arcs e1, e2, a fractional
solution x∗ ∈ [0, 1]E , arc weights we ∈ R for each e ∈ E, two vertices s, t ∈ V ,
and capacity W ∈ R.
Question: Is there a subpath π = ({i1, . . . , ip}, {e1, . . . , ep−1}) in G such that
p ≥ 5, e1 = e1, ep−1 = e2, σs,i1 + w(Eπ) + σip,t > W and x∗e1 + x∗ep−1

− 1 >

x∗(F̃ out
π)?

Proposition 10. IS-SEP is NP-hard.

Proof. The construction is almost the same as that in the proof of Proposition 9.
To be suitable for the present claim, extend the graph G with a new node and a
new arc, denoted by n+ 3 and en+2,n+3, respectively, where head(en+2,n+3) =
n + 3 and tail(en+2,n+3) = n + 2. The weight of the new arc is 0, and let
x∗en+2,n+3

= 1. Accordingly, the new sink node is t = n + 3, the source node

remains s = 0. Let e1 = e+0,1 and e2 = en+2,n+3.
One may verify that the KP problem admits a solution J if and only if there

is an infeasible subpath π with length at least 4, with e+0,1 as the first edge,

en+2,n+3 as the last edge, and x∗(e+0,1) + x∗(en+2,n+3)− 1 > x∗(F̃ out
π).

15

For separating the inequalities (20), we propose the heuristic method shown
in Algorithm 1. By using the procedure infeasible subpath dfs we find an
infeasible s − t subpath which lies (or partially lies) in the support graph of
the solution x∗. In the general step we have a feasible subpath π consisting of
the arcs e1, . . . , ep−1 in this order (line 8), and we revise the outgoing arcs from
its last node head(ep−1) (line 10). If the actual arc does not create a cycle,
the solution value on the arc is positive, and the extended path is also resource
feasible, we store the arc in the set F (line 13). Otherwise, if the extended
path is infeasible and still elementary we call the procedure eval out to create
inequality (20) for that path (line 17). This simple procedure verifies all the
arcs that leave the subpath (lines 28-29) and checks whether an arc is in F̃ out

π;r

(line 30). Finally, if we get a violated inequality, we store it in the set C (line
36).

Although one can devise a similar method to separate inequalities (21) by
modifying the procedure eval out, however, it is better to combine the sep-
aration of inequalities (20) and (21), because the procedure infeasible sub-
path dfs is the same in both cases. That is, after an infeasible path is found,
we call procedure eval out and a similar procedure eval in to separate in-
equalities (20) and (21), respectively.

4. Variable fixing and heuristics

In this section we present our primal heuristic and our variable fixing method.

4.1. DFS based feasible solution search heuristic

The aim of our primal heuristic is to find an s− t path which is feasible for
all resource constraints when a fractional solution x∗ to the LP relaxation is
available. If such an s − t path is found we may strengthen the actual upper
bound in the Branch-and-Cut procedure, thus we may improve its performance.
The basis of the heuristic is the observation that a fractional solution x∗ to
the LP relaxation is a convex combination of some s − t paths, and since it
respects the resource constraints, at least one of these s − t paths respects as
well. Thus, we perform a depth-first-search from s on the support graph of x∗,
i.e., G∗ = (V,E∗) where E∗ = {e ∈ E | x∗e > 0}. Once we reach a previously
processed node i, we may improve the best upper bound along an s − t path
through i. The sketch of our procedure can be seen in Algorithm 2.
At the beginning we create an empty stack S and insert s into it. During the

procedure the following two conditions always hold:

• When we process a node u, the label costs(u) denotes the cost of an s−u
path πs(u), and the label ϑrs(u) denotes the resource consumption from
the resource r of the same path. Furthermore, path(v) is true if and only
if πs(u) contains v.

• After a node u has been processed, i.e., processed(v) is true, the label
costt(u) denotes the cost of an u − t path πt(u), and the label ϑrt (u)
denotes the resource consumption from the resource r of the same path.

16

Algorithm 1 Heuristic for separating inequalities (20) for x∗ ∈ [0, 1]E

1: C ← ∅
2: for e1 ∈ E∗ do
3: π ← e1
4: infeasible subpath dfs(π)
5: end for
6: return C
7:

8: procedure infeasible subpath dfs(π = (e1, e2, . . . , ep−1)):
9: F ← ∅

10: for ep ∈ δout(head(ep−1)) do
11: if σrs,tail(e1) + wr(π) + wrep + σrhead(ep),t ≤W

r then

12: if x∗ep > 0 and head(ep) 6∈ Vπ ∪ {s} then
13: F ← F ∪ {ep}
14: end if
15: else
16: if head(ep) 6∈ Vπ ∪ {s} then
17: eval out(π ⊕ ep)
18: end if
19: end if
20: end for
21: for ep ∈ F such that head(ep) 6= t do
22: infeasible subpath dfs(π ⊕ ep)
23: end for
24: end procedure
25:

26: procedure eval out(π = (e1, e2, . . . , ep)):
27: y ← x∗e1 + x∗ep − 1
28: for j = 1, . . . , p− 2 do
29: for e′ ∈ δout(head(ej))− {ej+1} do
30: if σrs,tail(e1)+wr(π[0, j])+wre′+σ

r
head(e′),tail(ep)

+wrep +σhead(ep),t ≤W r

and head(e′) /∈ V (π) ∪ {s} then
31: y ← y − x∗e′
32: end if
33: end for
34: end for
35: if y > 0 then

36: C ← C ∪
{
xe1 + xep − 1 ≤ x(F̃ out

π;r)
}

37: end if
38: end procedure

17

Algorithm 2 DFS based feasible solution search heuristic

1: U ← best upper bound
2: ϑrs(s)← 0 and ϑrt (t)← 0 for all r
3: ϑrs(u)←∞ for all u ∈ V − s and ϑrt (u)←∞ for all u ∈ V − t for all r
4: costs(s)← 0, costs(u)←∞ for all u ∈ V − s
5: costt(t)← 0, costt(u)←∞ for all u ∈ V − t
6: processed(u)← false for all u ∈ V
7: path(u)← false for all u ∈ V
8: insert s into an empty stack S
9: while S 6= ∅ do

10: u← S.top()
11: if processed(u) = true then
12: update U
13: path(u)← false
14: S.pop()
15: else
16: path(u)← true
17: for e ∈ δout(u) ∩ E∗ do
18: v ← head(e)
19: if path(v) = false then
20: if processed(v) = false then
21: costs(v) = costs(u) + c(e)
22: ϑrs(v)← ϑrs(u) + wre for all r
23: insert v into S
24: else
25: if costt(u) < c(e) + costt(v) and ϑrt (u) ≤ wre + ϑrt (v) for all r

then
26: costt(u)← c(e) + costt(v)
27: ϑrt (u)← wre + ϑrt (v) for all r
28: end if
29: update U
30: end if
31: end if
32: end for
33: processed(u)← true
34: end if
35: end while

18

After the initialization steps (lines 1 - 7), these conditions clearly hold. In a
general step, we consider the node u most recently inserted on stack S. If u
has already been processed, i.e., processed(u) = true, we remove u from S.
Otherwise, we set path(u) to true, and visit each outgoing arc e ∈ δout(u) in
turn. If adding some e ∈ δout(u) to the path πs(u) would create a cycle, that
is, the head node v = head(e) is on the path πs(u) (i.e., path(v) = true) we
finish processing this arc. Otherwise, we distinguish between two cases: (i) if
v = head(e) is not processed, we change the labels of v with respect to the
path πs(v) = πs(u) ⊕ e (lines 21-22), and insert v into S; (ii) if v has already
been processed (being part of a path explored before), we change the label of
u corresponding to the u − t path e ⊕ πt(v) (lines 26-27). After we revised all
outgoing arcs from u, we set processed(u) to true.

If an s−t path is found (lines 11 and 24), we may update U (lines 12 and 29),
that is, if ϑrs(u) + ϑrt (u) ≤ W r for each resource r and costs(u) + costt(u) < U
we replace U with costs(u) + costt(u).

4.2. Cost based variable fixing

The basic idea of the method is that if all s − t paths through an arc e
have bigger total cost than the actual upper bound on the optimal path length,
then e cannot appear in an optimal s − t path, hence can be eliminated from
the graph. This simple observation has also appeared in the Dumitrescu-Boland
preprocessing scheme (c.f. Section 2.5), but it can be applied during the Branch-
and-Cut procedure.

Once a fractional solution x∗ is available at the current Branch-and-Cut
node, we create a subgraph Ḡ of G as follows. In the beginning Ḡ is identical
to G. If an arc e (i.e., the corresponding variable xe) is previously fixed to
0, we delete e from Ḡ. If an arc e (i.e., the corresponding variable xe) is
previously fixed to 1, we delete all arcs e′ from Ḡ such that there is no s − t
path consisting of both e and e′. Finally, for all nodes u we calculate the length
of the shortest s − u and of the shortest u − t path in Ḡ according to the cost
function c. We denote these values σ̄csu and σ̄cut, respectively. If for an arc e
σ̄cs,tail(e) + c(e) + σ̄chead(e),t > U holds – where U is the best upper bound on the

optimum found so far – we fix the arc e (i.e., the corresponding variable xe) to
0.

5. Computational results

In this section we summarize our computational experiments. The main
goals of the experiments were

• to show that some of the new cutting planes can significantly improve the
performance of a Branch-and-Cut type algorithm for solving RCSPP,

• to assess the effectiveness of the new preprocessing and heuristic algo-
rithms, and to

19

• to find the best combination of the various techniques for solving hard
instances.

In the following sections we will address the above points in turn, but before we
sketch our computational framework.

5.1. Test environment and implementation

All the computational experiments were performed on a workstation with
4GB RAM, and XEON X5650 CPU of 2.67 GHz, and under Linux operating
system. All experiments were run using a single thread only.

Our Branch-and-Cut solver has been implemented in C++ programming
language. To handle graphs and to perform some graph algorithms we used the
LEMON C++ library (version 1.3.1) [14]. We also used the well-known FICO
XPRESS [7] (version 7.4) callable library as a Branch-and-Cut framework.

In all experiments we applied the preprocessing scheme of Dumitrescu and
Boland, and the preprocessing scheme of Aneja et al. on graph G([i]) for each
node i. Moreover, once the Dumitrescu and Boland preprocessing returned an
upper bound on the optimum, we used that as an upper bound in the Branch-
and-Cut method.

5.2. Instances

Our RCSPP instances were randomly generated. To construct their underly-
ing directed graph we used a method similar to that in [3]. Let n be the number
of desired nodes, and denote V = {1, 2, . . . , n} the set of nodes with s = 1 and
t = n. For all i = 1, . . . , n − 1 and for all j = i + 1, . . . ,min{n, i + bn/4c} we
randomly include arc (i, j) with a probability such that the expected value of
the number of arcs is 10n. Since for all arcs (i, j), j − i ≤ n/4, every s− t path
consisted of at least 4 arcs. Clearly, the generated graphs are directed, acyclic,
and do not contain parallel arcs.

In each of our instances all arc weights and all arc costs are integers. The
weights were uniformly and independently generated from [0, 5], and arc costs
were uniformly and independently generated from [−5, 0]. To create resource
limits we used two different methods. The first one is similar to that in [3], that
is, we searched a minimal cost s− t path and computed its resource consump-
tions. The resource limits were derived from these values, reduced by a given
percentage p (see Beasley and Christofides [3]. In the second method we chose
a fixed uniform limit W for all resources, like in Garcia [8].

We generated 20 graphs for each n ∈ {500, 1000, 1500} with 10 resource
functions and corresponding resource limits in every instance. For each graph we
determined a resource function, and then we derived four instances by the four
ways of setting the resource limits. That is, we used the Beasley-Christofides
method with p = 20%. The other 3 instances had uniform resource limits with
W = 20, 30, and 40, respectively. Since every s − t path consists of at least
4 arcs, and the maximum arc weight is 5, each RCSPP instance with uniform
resource limits has a feasible solution.

20

Table 1: Summary of the problem instances.
Class n m Method
G1 500 10 Beasley-Christofides (p = 20 %)
G2 500 10 Uniform (W = 20)
G3 500 10 Uniform (W = 30)
G4 500 10 Uniform (W = 40)
G5 1000 10 Beasley-Christofides (p = 20 %)
G6 1000 10 Uniform (W = 20)
G7 1000 10 Uniform (W = 30)
G8 1000 10 Uniform (W = 40)
G9 1500 10 Beasley-Christofides (p = 20 %)
G10 1500 10 Uniform (W = 20)
G11 1500 10 Uniform (W = 30)
G12 1500 10 Uniform (W = 40)

In summary, we have created 240 = 20× 3× 4 RCSPP instances which can
be grouped into 12 classes according to their sizes, and the method used to
generate their resource limits. Table 1 contains the parameters of the instances
in the different classes, namely the number of nodes (n), the number of resource
functions (m), and the resource limit generating method (Method). Tables A1,
A2 and A3 of the Supplementary Material contain more informations about the
instances.

5.3. Heuristic and variable fixing experiments

In this section we present the results of the experiments of heuristic and
variable fixing methods described in Section 4. Our purpose was to investigate
how these methods can improve a simple Branch-and-Bound procedure. For the
sake of a fair comparison, in these experiments we turned off every XPRESS
presolving and heuristic method (i.e., XPRS HEURSTRATEGY, XPRS PRESOLVE and
XPRS MIPPRESOLVE were set to 0) and we did not add any cutting plane to the
problem (i.e., XPRS CUTSTRATEGY was set to 0). We call these the DEFAULT
settings.

As described in Section 4 we used the variable fixing method (VARFIX) in
every Branch-and-Bound node before solving the LP relaxation. The heuristic
solution search method (HEURSOL) were used in every search-tree node, how-
ever, the variable fixing method of Garcia (ARCFIX) were used only in the root
node. Both of them were applied after an optimal solution for the LP relaxation
had been found. On each instance every method was tested separately (the cor-
responding rows of the following tables are DEFAULT, ARCFIX, VARFIX, and
HEURSOL), and all together, which is the ALL method.

The summary of the experiments can be found in Tables 2, 3 and 4, re-
spectively; whereas the detailed computations are provided in Table A4 of the
Supplementary Material. In Tables 2, 3 and 4 we only indicate the average
number of the investigated Branch-and-Bound nodes (#BnBn) and the average
running time (ttotal) of the entire Branch-and-Bound procedure in seconds.

We can observe that for all problem sizes, and all types of resource limits,
we obtained the best results by the ALL method, that is, when we combined all

21

Table 2: Summary of fixing and heuristic experiments for 500 nodes instances.
Class Settings #BnBn ttotal
G1 DEFAULT 1438.5 60.1

ARCFIX 1220.8 53.4
VARFIX 1517.2 48.4
HEURSOL 1259.7 51.0
ALL 1142.6 38.8

G2 DEFAULT 1883.6 87.8
ARCFIX 1982.6 90.8
VARFIX 2057.7 75.6
HEURSOL 1769.3 79.4
ALL 1760.1 64.5

G3 DEFAULT 4275.3 180.9
ARCFIX 4275.3 181.5
VARFIX 3977.0 121.3
HEURSOL 3302.3 132.0
ALL 3212.3 96.3

G4 DEFAULT 3699.0 139.6
ARCFIX 3699.0 139.9
VARFIX 3553.3 97.0
HEURSOL 2740.8 99.4
ALL 2818.8 77.3

our variable fixing, arc fixing, and heuristic search method. It is also important
to note that VARFIX is the second best in almost all cases.

5.4. Experiments with cutting planes based on s− t cuts

In this section we summarize the experiments with inequalities described in
Section 2.2 and Section 3.1. Our purpose was to compare the performance of
the s− t cut precedence inequalities and that of our generalized inequalities. In
these experiments we turned off every XPRESS presolving and heuristic method
(i.e., XPRS HEURSTRATEGY, XPRS PRESOLVE and XPRS MIPPRESOLVE were set to
0) and we forbade XPRESS to add any cutting plane of his own to the problem
(i.e., XPRS CUTSTRATEGY was set to 0). Moreover, in these experiments we gave
the optimal solution value to the solver (i.e., XPRS MIPABSCUTOFF was set to the
optimal value).

The summary of the experiments can be found in Table 5, 6 and 7, re-
spectively; whereas the detailed computations are provided in Table A5 of the
Supplementary Material. In Tables 5, 6 and 7 we only indicated the average
number of the investigated Branch-and-Bound nodes (#BnBn), the average to-
tal running time (ttotal) of the Branch-and-Cut procedure in seconds, and the
average number of generated cuts (#stcp, #aca, #aac and #caa)

The STCP setting refers to the use of the strengthened s− t cut precedence
inequalities (10) and (11). We generated these inequalities for an arc e only if
the solution value on the arc was positive (i.e., x∗e > 0). The CAA, ACA and
AAC settings refer to the use of our cut based inequalities (17), (18) and (19),
respectively. We generated these inequalities for a pair of arcs (e1, e2) such that
x∗e1 > 0, x∗e2 > 0 and the pair (e1, e2) is compatible for all resources. The ALL
setting refers to the simultaneous use of all the previous inequalities in the same

22

Table 3: Summary of fixing and heuristic experiments for 1000 nodes instances.
Class Settings #BnBn ttotal
G5 DEFAULT 1499.2 225.9

ARCFIX 1328.2 204.9
VARFIX 1502.3 174.0
HEURSOL 1224.0 169.4
ALL 1155.6 133.5

G6 DEFAULT 2621.3 379.5
ARCFIX 2464.7 366.6
VARFIX 2649.5 302.0
HEURSOL 2309.4 325.7
ALL 2140.4 234.0

G7 DEFAULT 4877.5 709.4
ARCFIX 4877.5 709.7
VARFIX 4924.7 546.9
HEURSOL 4411.2 608.3
ALL 3961.2 419.6

G8 DEFAULT 4222.5 571.9
ARCFIX 4222.5 570.4
VARFIX 4512.2 448.0
HEURSOL 3656.1 457.8
ALL 3833.7 362.9

Table 4: Summary of fixing and heuristic experiments for 1500 nodes instances.
Class Settings #BnBn ttotal
G9 DEFAULT 2165.9 634.6

ARCFIX 1884.0 547.9
VARFIX 2091.6 450.4
HEURSOL 1841.0 493.8
ALL 1870.4 379.8

G10 DEFAULT 2308.4 693.3
ARCFIX 1932.0 631.7
VARFIX 2437.3 564.0
HEURSOL 2091.9 589.7
ALL 1545.9 358.6

G11 DEFAULT 5333.7 1654.7
ARCFIX 5333.7 1656.1
VARFIX 5917.3 1351.7
HEURSOL 4637.1 1334.1
ALL 4481.0 1000.0

G12 DEFAULT 6044.6 1671.8
ARCFIX 6044.6 1675.8
VARFIX 6091.1 1223.2
HEURSOL 5087.6 1283.5
ALL 4893.4 938.2

23

Table 5: Results with s− t cut based cutting planes on 500 nodes instances.
Class Settings #stcp #aca #aac #caa #BnBn ttotal
G1 STCP 121.4 0.0 0.0 0.0 1193.8 46.3

ACA 0.0 241.6 0.0 0.0 1089.2 44.3
STCP + ACA 130.4 218.5 0.0 0.0 1194.1 48.8
ACA + CAA + AAC 0.0 234.8 132.1 148.2 1080.2 44.7
ALL 128.0 194.4 122.6 108.4 1134.4 49.0

G2 STCP 65.2 0.0 0.0 0.0 1548.4 67.6
ACA 0.0 365.5 0.0 0.0 1511.1 66.4
STCP + ACA 69.1 396.4 0.0 0.0 1503.3 67.1
ACA + CAA + AAC 0.0 310.1 196.0 187.6 1429.4 65.2
ALL 57.6 297.7 178.1 172.6 1484.5 66.2

G3 STCP 0.3 0.0 0.0 0.0 2812.4 107.7
ACA 0.0 89.3 0.0 0.0 2815.0 113.1
STCP + ACA 0.7 89.0 0.0 0.0 2818.8 113.4
ACA + CAA + AAC 0.0 80.3 37.8 53.2 2809.1 119.0
ALL 0.4 80.4 37.3 53.0 2809.4 119.3

G4 STCP 0.0 0.0 0.0 0.0 2403.2 86.9
ACA 0.0 2.2 0.0 0.0 2416.4 95.9
STCP + ACA 0.0 2.2 0.0 0.0 2416.4 96.2
ACA + CAA + AAC 0.0 2.1 0.6 1.1 2405.2 109.1
ALL 0.0 2.1 0.6 1.1 2405.2 109.6

experiments. Cuts were generated in each node with depth at most 8 in one
round, except the root node where we separate inequalities in 20 rounds.

We can observe that the efficiency of the procedure depends on the types of
the instances rather than their sizes. That is, for all problem sizes, for resource
limit types Beasley-and-Christofides(80) and Uniform(20) we obtained the best
results either by the ACA or by the ACA + CAA + AAC method; furthermore,
for resource limit types Uniform(30) and Uniform(40) the STCP method gave
the best results in almost all cases. One of the reasons for this is that RCSPP
instances with resource limit types Uniform(30) and Uniform(40) contain a few
incompatible arc-pairs. Thus very few inequalities can be generated, however,
the generation of inequalities (17), (18) and (19) is more expensive in total than
the generation of the s− t cut precedence inequalities.

5.5. Experiments with cutting planes based on infeasible subpaths

In this section we summarize the experiments with cutting planes based on
infeasible subpaths as described in Section 2.3 and Section 3.2. Our purpose
was to compare the performance of the subpath precedence inequalities and
our generalized inequalities. In these experiments we turned off every XPRESS
presolving and heuristic method (i.e., XPRS HEURSTRATEGY, XPRS PRESOLVE and
XPRS MIPPRESOLVE were set to 0) and we forbade XPRESS to add any cutting
plane of his own to the problem (i.e., XPRS CUTSTRATEGY was set to 0). Moreover,
in these experiments we gave the optimal solution value to the solver (i.e.,
XPRS MIPABSCUTOFF was set to the optimal value).

The summary of the experiments can be found in Table 8, 9 and 10, re-
spectively; whereas the detailed computations are provided in Table A6 of the

24

Table 6: Results with s− t cut based cutting planes on 1000 nodes instances.
Class Settings #stcp #aca #aac #caa #BnBn ttotal
G5 STCP 163.2 0.0 0.0 0.0 1068.4 140.5

ACA 0.0 449.2 0.0 0.0 1011.9 132.7
STCP + ACA 178.8 454.3 0.0 0.0 976.0 134.3
ACA + CAA + AAC 0.0 398.4 178.1 291.5 993.1 132.0
ALL 162.7 410.5 190.4 288.9 1000.4 133.1

G6 STCP 172.4 0.0 0.0 0.0 2104.8 284.6
ACA 0.0 472.3 0.0 0.0 1995.1 269.9
STCP + ACA 169.2 380.3 0.0 0.0 2081.0 281.6
ACA + CAA + AAC 0.0 459.6 278.0 265.4 1958.8 266.8
ALL 186.9 369.8 184.6 253.7 2011.5 269.5

G7 STCP 5.2 0.0 0.0 0.0 3513.1 465.3
ACA 0.0 341.6 0.0 0.0 3591.4 486.7
STCP + ACA 4.9 336.8 0.0 0.0 3576.4 487.6
ACA + CAA + AAC 0.0 336.1 158.2 223.0 3539.1 489.7
ALL 5.1 345.0 168.5 229.0 3553.8 493.8

G8 STCP 0.1 0.0 0.0 0.0 3299.8 392.3
ACA 0.0 16.7 0.0 0.0 3352.1 417.6
STCP + ACA 0.1 16.7 0.0 0.0 3347.1 418.6
ACA + CAA + AAC 0.0 15.2 4.7 10.7 3333.1 440.8
ALL 0.1 14.9 4.5 10.7 3330.5 441.3

Table 7: Results with s− t cut based cutting planes on 1500 nodes instances.
Class Settings #stcp #aca #aac #caa #BnBn ttotal
G9 STCP 192.6 0.0 0.0 0.0 1541.0 385.4

ACA 0.0 676.1 0.0 0.0 1421.4 373.7
STCP + ACA 201.0 468.8 0.0 0.0 1474.5 377.8
ACA + CAA + AAC 0.0 509.4 272.9 299.8 1381.7 369.6
ALL 163.3 346.1 171.3 229.5 1445.3 374.9

G10 STCP 318.0 0.0 0.0 0.0 2007.5 520.8
ACA 0.0 408.5 0.0 0.0 1845.7 487.4
STCP + ACA 297.0 394.5 0.0 0.0 1971.7 515.6
ACA + CAA + AAC 0.0 342.9 175.8 228.7 1824.0 483.3
ALL 290.1 319.5 178.5 199.5 1930.4 509.5

G11 STCP 14.7 0.0 0.0 0.0 3972.9 1078.2
ACA 0.0 623.6 0.0 0.0 3739.9 1060.8
STCP + ACA 15.5 644.6 0.0 0.0 3753.4 1056.4
ACA + CAA + AAC 0.0 537.7 232.6 389.6 3810.8 1076.5
ALL 16.1 559.9 206.1 434.2 3886.8 1077.3

G12 STCP 0.3 0.0 0.0 0.0 4326.4 1037.3
ACA 0.0 46.2 0.0 0.0 4341.6 1093.0
STCP + ACA 0.3 46.2 0.0 0.0 4341.6 1089.7
ACA + CAA + AAC 0.0 44.9 14.9 35.5 4350.6 1117.8
ALL 0.4 44.9 14.8 35.6 4349.0 1121.5

25

Table 8: Results with infeasible subpath based cutting planes on 500 nodes instances.
Class Settings #spp #sr #BnBn ttotal
G1 SPP 591.9 0.0 1249.2 46.7

SR 0.0 1031.8 1094.2 39.2
SPP + SR 561.4 819.6 1261.4 47.1

G2 SPP 697.1 0.0 1537.2 65.2
SR 0.0 1140.3 1480.3 62.9
SPP + SR 712.5 979.1 1539.9 61.5

G3 SPP 970.7 0.0 2845.1 111.3
SR 0.0 3212.3 2917.2 107.8
SPP + SR 908.6 2704.1 2809.3 102.7

G4 SPP 951.6 0.0 2650.2 95.3
SR 0.0 3828.5 2428.4 87.7
SPP + SR 809.5 3607.9 2694.3 96.7

Table 9: Results with infeasible subpath based cutting planes on 1000 nodes instances.
Class Settings #spp #sr #BnBn ttotal
G5 SPP 759.8 0.0 1040.2 128.4

SR 0.0 1545.0 1001.3 125.1
SPP + SR 715.0 1113.6 1024.5 122.3

G6 SPP 725.8 0.0 2261.6 288.7
SR 0.0 1134.2 2019.2 272.5
SPP + SR 697.0 729.9 2188.0 283.0

G7 SPP 1032.2 0.0 3568.1 481.8
SR 0.0 3968.5 3320.7 444.0
SPP + SR 983.3 2808.7 3483.2 459.7

G8 SPP 1146.3 0.0 3248.2 399.9
SR 0.0 5138.4 3123.7 378.9
SPP + SR 1058.7 4513.1 3237.6 390.9

Supplementary Material. In Tables 8, 9 and 10 we only indicated the num-
ber of the investigated Branch-and-Bound nodes (#BnBn), the total running
time (ttotal) of the Branch-and-Cut procedure in seconds, and the number of
generated cuts (#spp and #sr).

The SPP setting refers to the use of the strengthened subpath precedence
inequalities (12) and (13). We generated these inequalities for an arc e only if
the solution value on the arc was positive (i.e., x∗e > 0). The SR setting refers
to the use of the infeasible subpath based inequalities (20) and (21). The SPP
+ SR setting refer to the simultaneous use of all the inequalities in the same
experiment. Cuts were generated in each node with depth at most 8 in one
round, except the root node where we separate inequalities in 20 rounds.

We can observe that in almost all cases SR or SPP+SR proved the most
effective method, except on the instances in class G12, where SPP was the
winner both in computation time and number of search-tree nodes explored. The
reason for this is that the SR cuts could be generated in a much greater number
than the SPP cuts. Notice also that when both types of cuts are generated,
then the total number of SR and SPP cuts is about the number of SR cuts in
the pure SR case.

26

Table 10: Results with infeasible subpath based cutting planes on 1500 nodes instances.
Class Settings #spp #sr #BnBn ttotal
G9 SPP 711.7 0.0 1458.2 374.8

SR 0.0 1839.8 1420.2 374.1
SPP + SR 702.4 1197.1 1474.9 370.4

G10 SPP 759.6 0.0 1977.7 506.4
SR 0.0 977.8 1815.8 487.0
SPP + SR 705.6 658.2 1940.8 497.5

G11 SPP 1084.5 0.0 3907.9 1046.4
SR 0.0 4436.8 3673.2 1000.0
SPP + SR 1104.5 3024.8 3848.7 1040.7

G12 SPP 1379.1 0.0 4392.6 1055.8
SR 0.0 5964.9 4403.2 1076.3
SPP + SR 1263.6 5715.6 4439.7 1071.6

5.6. Combined experiments

In the experiments presented below we combined the various components to
find the best way of using them together for solving hard instances. We report
only on the most successful combinations.

The detailed results of the experiments can be found in Table A7 of the
Supplementary Material, and are summarized in Table 11, Table 12 and Table
13, respectively. Tables 11, 12 and 13 contain the average results of our tests
corresponding to the instance classes. In these tables we only indicated the
number of the investigated Branch-and-Bound nodes (#BnBn) and the total
running time (ttotal) of the Branch-and-Cut procedure in seconds. The XPRS
setting refers to the pure use of XPRESS with settings XPRS CUTSTRATEGY =
-1, XPRS HEURSTRATEGY = -1, XPRS PRESOLVE = 0, XPRS MIPPRESOLVE = 0. The
OUR refers to our Branch-and-Cut method with inequalities STCP, AAC, ACA,
CAA, SR, and without the cutting planes of XPRESS (XPRS CUTSTRATEGY = 0),
no XPRESS heuristics (XPRS HEURSTRATEGY = 0), and presolve (XPRS PRESOLVE

= 0, XPRS MIPPRESOLVE = 0). The OUR + XPRS refers to our Branch-and-
Cut method with the same inequalities as in OUR, along with XPRESS cutting
planes (XPRS CUTSTRATEGY = -1), heuristics (XPRS HEURSTRATEGY = -1), and no
presolve (XPRS PRESOLVE = 0, XPRS MIPPRESOLVE = 0).

We can observe that for all problem sizes, and all types of resource limits,
we obtained the best results by the OUR method, and for all cases the OUR +
XPRS method yielded the second best results.

6. Conclusions

In this paper we have extended previous work by Garcia [8] for solving
RCSPP by Branch-and-Cut. We have introduced new cutting planes, new
separation-, and variable fixing procedures, as well as a primal heuristic. We
have thoroughly tested each of the components in separate, as well as in com-
bined experiments. The experiments show that the new techniques can improve,
sometimes significantly, the performance of a Branch-and-Cut type method.

27

Table 11: Summary of combined experiments for 500 nodes instances
Class Settings #BnBn ttotal
G1 XPRS 1842.4 81.2

OUR 983.0 38.0
OUR + XPRS 1322.0 57.3

G2 XPRS 2241.1 104.0
OUR 1648.5 62.7
OUR + XPRS 2159.0 83.2

G3 XPRS 4578.3 175.7
OUR 3424.6 114.8
OUR + XPRS 4749.5 146.0

G4 XPRS 4341.8 166.4
OUR 2943.2 110.2
OUR + XPRS 4163.1 150.1

Table 12: Summary of combined experiments for 1000 nodes instances
Class Settings #BnBn ttotal
G5 XPRS 1450.4 223.2

OUR 1053.8 128.8
OUR + XPRS 1206.1 161.1

G6 XPRS 2720.8 439.3
OUR 2056.1 240.8
OUR + XPRS 2384.5 266.7

G7 XPRS 4961.6 755.3
OUR 3641.4 415.8
OUR + XPRS 4849.7 592.1

G8 XPRS 5021.0 657.0
OUR 3814.8 410.8
OUR + XPRS 4669.6 516.3

Table 13: Summary of combined experiments for 1500 nodes instances
Class Settings #BnBn ttotal
G9 XPRS 2215.9 637.5

OUR 1503.5 323.1
OUR + XPRS 1601.8 412.0

G10 XPRS 2664.7 812.7
OUR 1208.6 334.0
OUR + XPRS 1222.7 356.3

G11 XPRS 5508.8 1701.6
OUR 4513.8 1011.9
OUR + XPRS 4973.1 1160.8

G12 XPRS 5777.3 1655.3
OUR 4976.2 1035.2
OUR + XPRS 5640.3 1291.2

28

7. Acknowledgments

This work has been supported by the OTKA grant K112881, and by the
NFÜ grant ED 13-2-2013-0002. The research of Tamás Kis has been supported
by the János Bólyai research grant BO/00412/12/3 of the Hungarian Academy
of Sciences.

References

[1] Aneja, Y. P., Aggarwal, V. and Nair, K. P. K., Shortest chain subject to
side constraints. Networks, 13 (1983) 295–302.

[2] Avella, P., Boccia, M., and Sforza, A., Resource constrained shortest path
problems in path planning for fleet management, Journal of Mathematical
Modeling and Algorithms, 3 (2004) 1–17.

[3] Beasley, J. and Christofides, N., An algorithm for the resource constrained
shortest path problem, Networks, 19 (1989) 379–394.

[4] Desrochers, M. and Soumis, F., A generalized permanent labeling algorithm
for the shortest path problem with time windows, INFOR, 26 (1988) 191–
212.

[5] Dror, M., Note on the complexity of the shortest path models for column
generation in VRPTW. Operations Research, 42 (1994) 977–978.

[6] Dumitrescu, I. and Boland, N., Improved preprocessing, labeling and scal-
ing algorithms for the weight-constrained shortest path problem, Networks,
42 (2003) 135–153.

[7] FICO Xpress Optimization Suite, http://www.fico.com/en/products/fico-
xpress-optimization-suite/, 2014

[8] Garcia, R., Resource Constrained Shortest Paths and Extensions, PhD
thesis, Georgia Institute of Technology, 2009.

[9] Garey, M.R., Johnson, D.S., Computers and Intractability: A Guide to
the Theory of NP-Completeness, New York: W.H. Freeman and Company,
1979.

[10] Handler, G. Y. and Zang, I., A dual algorithm for the constrained shortest
path problem, Networks, 10 (1980) 293–309.

[11] Irnich, S. and Desaulniers, G., Shortest path problems with resource con-
straints, In: Desaulniers, G., Desrosiers, J., Solomon, M.M., Column Gen-
eration, Springer US, 2005.

[12] Jepsen, M., Petersen, B., Spoorendonk, S., A Branch-and-Cut Algorithm
for the Elementary Shortest Path Problem with a Capacity Constraint,
Technical report, DIKU, 2008.

29

[13] Joksch, H.C., The Shortest Route Problem with Constraints. Journal of
Mathematical Analysis and Application, 14 (1966) 191–197.

[14] LEMON — Library for Efficient Modeling and Optimization in Networks,
http://lemon.cs.elte.hu/, 2014.

[15] Mehlhorn, K. and Ziegelmann, M., Resource constrained shortest paths, in
7th Annual European Symposium on Algorithms (ESA2000), LNCS 1879,
pp. 326–337, 2000.

30

