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Dénes Takács1, Gábor Stépán2
1MTA-BME Research Group on Dynamics of Machines and Vehicles

2Department of Applied Mechanics, Budapest University of Technology and Economics
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In this study, the self-excited vibrations of the caster-wheel system are analysed. A low
degree-of-freedom mechanical model is considered, in which the lateral deformation of the
tyre is described both in the contact patch and outside it. The simple brush tyre model is
implemented in order to obtain analytical results by means of minimum number of relevant
parameters. The frequencies of the detected self-excited vibrations are presented against the
towing speed. Some intricate shapes of the corresponding tyre deformations are presented
based on numerical simulations.

1 INTRODUCTION
The shimmy of towed wheels (e.g. the front wheels of motorcycles [1, 2], the nose-gears of air-planes
[3, 4, 5]) is a fascinating phenomenon in vehicle dynamics. The safety hazard of shimmy induced many
publications in the field, but the elimination of shimmy requires special attention from engineers even
nowadays. On the one hand, towed wheels are often parts of complex vehicle systems, which require the
analyses of multi-body systems like the fuselage of air-planes [4]. On the other hand, the investigation
of shimmy demands improved and detailed models of tyres and tyre/road interactions.

The memory effect of the tyre/ground contact patch was already recognized in [6]. However, the
available mathematical methods did not provide opportunity for engineers at that time to analyse delay
differential equations. An engineering approximation of the tyre lateral deformation in the contact patch
helped to describe some behaviour of the caster-wheel system [7, 8]. Later, the accurate modelling of
the contact patch lateral deformation and the analysis of the corresponding delay differential equations
provided new explanations for some quasi-periodic vibrations [9].

The noise generation of tyres has become an important research field in tyre dynamics, which makes
the developments of different theoretical models of tyre/road interaction to be a relevant topic again (see,
for example, [10, 11, 12, 13]). The mechanical models usually consider the radial and/or the longitudinal
deformation of the tyre thread elements. However, the lateral vibration of vehicles can also lead to such
periodic tyre deformations that can generate noise and wear (see [14]). The application of the time
delayed tyre model in the single track car model [15] also identified parameter domains where small
amplitude lateral vibrations may appear leading to enhanced noise and heat generation.

In this study, a simple mechanical model of a shimmying wheel is constructed, in which the lateral
deformations are described both inside and outside the contact patch. The delayed contact patch model
is combined with a simple tyre carcass model. Critical parameter ranges of self-excited vibrations are
determined versus the longitudinal speed of the towed tyre with special attention to the vibration fre-
quencies. Tyre deformations are illustrated by means of numerical simulations at certain towing speeds.

2 MECHANICAL MODEL
The mechanical model is shown in Figure 1. The wheel of elastic tyre is attached to the rigid caster of
length l. The caster is pulled at the king pin A with the constant towing speed v, R refers to the outer
radius of the tyre, and it contacts to the ground at a contact patch of length 2a. One of the state variables
is the caster angle denoted by ψ(t). The lateral deformations of the tyre are described with the help of
the lateral deformation q(x, t) of the centre line of the contact patch. This will serve as another state
variable that is a distributed one along the coordinate x attached to the caster. For the sake of simplicity,
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Figure 1: The mechanical model

pure rolling of the tyre is considered. Outside the contact patch, along the circumference of the tyre, the
vibrations of the thread elements are described by the lateral deformation function w(χ, t), which is an
extended distributed state variable. The angle χ ∈ [0, β] (where β = 2(π − α) and α = arcsin(a/R))
sweeps along the circumference of the tyre starting from the trailing edge R and ending at the leading
edge L of the contact patch.

In this study, we use the so-called brush tyre model, which considers separated tyre particles along
the circumference of the tyre. Here, the threads are modelled by means of continuously distributed
masses supported by springs. These inertial and elastic properties are characterized by ρA [kg/m] and
k [N/m2], respectively.

2.1 Lateral deformation in the contact patch

Due to the fact that we consider pure rolling, the tyre particles attached to the ground have zero velocities.
The position vector of a tyre particle P1 can be written in the (X,Y, Z) ground-fixed coordinate system
as

RP1
=

⎡
⎣vt− (l − x) cosψ(t)− q(x, t) sinψ(t)

−(l − x) sinψ(t) + q(x, t) cosψ(t)
0

⎤
⎦ , (1)

for x ∈ [−a, a]. The kinematic constraint of rolling means that d
dtRP1

= 0, which leads to partial
differential equation (PDE) characterizing the lateral deformations in the contact patch (see details [16]).
Here we present its linearised form only:

q̇(x, t) = vψ(t) + (l − x)ψ̇(t) + q′(x, t)v , (2)

for x ∈ [−a, a]. In our study, dot and prime refer to the partial derivatives with respect to time t and the
space coordinates, respectively.

2.2 Lateral deformation outside the contact patch

The equations of motion of the tyre particles outside the contact patch are determined with Hamilton’s
Principle. The Lagrangian can be written as the difference of the kinetic energy and the potential function
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of the spring forces:

L =
1

2

∫ β

0

(
ρAv2

P2
(χ, t)− kw2(χ, t)

)
Rdχ , (3)

where vP2
(χ, t) refers to the velocity of the tyre particle at the position χ:

vP2
(χ, t) =

⎡
⎣ v cosψ(t)− w(χ, t)ψ̇(t)− v cos(α+ χ)

−v sinψ(t)− (l +R sin(α+ χ))ψ̇(t) + ẇ(χ, t) + v
R
w′(χ, t)

v sin(α+ χ)

⎤
⎦ . (4)

Here we assumed that the translational rate of change of the tyre particles are equal to the towing speed
v. This approximation is acceptable in case of small amplitude vibrations of the towed wheel.

According to Hamilton’s Principle, the action functional I =
∫
L dt is extremal for the realized

motion of the system, i.e. δI = 0. This weak form of the equation of motion can be transformed into
the form of differential equations by means of the Euler–Lagrange equation. Considering (4) in (3), the
action reads

I =

∫ t1

t0

∫ β

0
F (w, ẇ, w′, χ, t) dχdt , (5)

and the Euler-Lagrange equation leads to

dF

dw
−
∂

∂t

∂F

∂ẇ
−

∂

∂χ

∂F

∂w′
= 0 . (6)

Considering small amplitude vibrations, the tyre deformation is characterized by the linearised par-
tial differential equation:

ẅ(χ, t)+
2v

R
ẇ′(χ, t)+

v2

R2
w′′(χ, t)+ω2

cw(χ, t) = (l +R sin(α+ χ)) ψ̈(t)+2v ψ̇(t) cos(α+χ), (7)

for χ ∈ [0, β]. The natural angular frequency ωc =
√
k/ρA represents the free lateral vibrations of the

tyre brush elements.

2.3 Equation of motion of the caster-wheel system

The equation of motion of the caster-wheel rigid-body system can be derived with the help of Newton’s
Law:

JAψ̈(t) = −k

a∫
−a

(l − x)q(x, t) dx− k

β∫
0

(l +R cos(α+ χ))w(χ, t)Rdχ , (8)

where JA is the mass moment of inertia of the caster-wheel system with respect to the z axis at the king
pin A.

The equation of motion (8) is coupled to (2) and (7). The boundary conditions (BCs) of the PDEs
are:

q(a, t) = w(β, t) ,

w(0, t) = q(−a, t) ,

w′(0, t) = −Rq′(−a, t) .

(9)

The first two BCs ensure the continuity of the lateral deformation at the leading edge L and at the trailing
edge R, respectively. The third one (no kink at R) refers to d

dtw(0, t) =
d
dtq(−a, t), which describes the

initial lateral speed of the deformation waves that propagate along the circumference of the tyre outside
the contact patch.
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3 TIME DELAYED TYRE MODEL
3.1 Travelling wave in the contact patch

The memory effect of the tyre/ground contact patch is known since von Schlippe already identified this
property of tyres in [6]. In case of rolling, the tyre particles stick to the ground and keep their positions
during the contact. Consequently, their positions at the time instant twere determined when they reached
the ground at the leading edge at the earlier time instant t − τ1(x). The time delay τ1(x) characterizes
the time needed for a tyre particle to travel backwards in the contact patch from the leading edge L to its
actual position x (see Figure 1). Thus, the travelling wave solution of the PDE (2) can be determined in
the form:

q(x, t) = (l − a+ vτ1(x))ψ(t)− (l − a)ψ(t− τ1(x)) + q(a, t− τ1(x)) (10)

for x ∈ [−a, a]. In this linear approximation, the time delay has a physically obvious form:

τ1(x) =
a− x

v
. (11)

3.2 Travelling wave solution outside the contact patch

Since the translational speed of tyre particles along the circumference of tyre is approximately constant
when the vibrations are small, a traveling wave solution can also be composed for (7). The application
of Duhamel’s integral formula leads to

w(χ, t) = w(0, t− τ2(χ)) cos(ωcτ2(χ))

+
1

ωc

d

dt
w(0, t− τ2(χ)) sin(ωcτ2(χ))

+
1

ωc

∫ τ2(χ)

0

(
l +R sin

(
α+

v

R
ϑ
))

ψ̈(t− τ2(χ) + ϑ) sin(ωc(τ2(χ)− ϑ))dϑ

+
1

ωc

∫ τ2(χ)

0
2v ψ̇(t− τ2(χ) + ϑ) cos

(
α+

v

R
ϑ
)
sin(ωc(τ2(χ)− ϑ))dϑ ,

(12)

where the time delay is

τ2(χ) =
Rχ

v
. (13)

3.3 Overall description of the lateral deformations

Using the second and the third BCs of (9), the travelling wave solution (12) can be composed as a
function of the trailing edge deformation of the contact patch:

w(χ, t) = q(−a, t− τ2(χ)) cos(ωcτ2(χ))

+
1

ωc

d

dt
q(−a, t− τ2(χ)) sin(ωcτ2(χ))

+
1

ωc

∫ τ2(χ)

0

(
l +R sin

(
α+

v

R
ϑ
))

ψ̈(t− τ2(χ) + ϑ) sin(ωc(τ2(χ)− ϑ))dϑ

+
1

ωc

∫ τ2(χ)

0
2v ψ̇(t− τ2(χ) + ϑ) cos

(
α+

v

R
ϑ
)
sin(ωc(τ2(χ)− ϑ))dϑ .

(14)

Using the travelling wave solution (10), the trailing edge deformation can be described:

q(−a, t− τ2(χ)) = (l + a)ψ(t− τ2(χ))− (l − a)ψ(t− τ2(χ)− T1)

+ q(a, t− τ2(χ)− T1) ,
(15)

where

T1 = τ1(−a) ≡
2a

v
(16)
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is the time interval that is needed for a tyre particle to travel in the contact patch from the leading edge
L to the trailing edge R. The material time derivative at the leading edge can be calculated via (2):

d

dt
q(−a, t− τ2(χ)) = vψ(t− τ2(χ)) + (l + a)ψ̇(t− τ2(χ)) (17)

After the substitution of (15) and (17) into (14), the first BC of (9) leads to

q(a, t) = ((l + a)ψ(t− T2)− (l − a)ψ(t− T1 − T2)) cos(ωcT2)

+ q(a, t− T1 − T2) cos(ωcT2) +
1

ωc

(
vψ(t− T2) + (l + a)ψ̇(t− T2)

)
sin(ωcT2)

+
1

ωc

∫ T2

0

(
l +R sin

(
α+

v

R
ϑ
))

ψ̈(t− T2 + ϑ) sin(ωc(T2 − ϑ))dϑ

+
1

ωc

∫ T2

0
2v ψ̇(t− T2 + ϑ) cos

(
α+

v

R
ϑ
)
sin(ωc(T2 − ϑ))dϑ ,

(18)

where

T2 = τ2(β) ≡
Rβ

v
≡

2R(π − α)

v
(19)

refers to the time needed for a tyre particle to travel along the circumference of the tyre from the trailing
edge R to the leading edge L.

Using (10) and (14) with (15) in (8), one can eliminate the deformation functions q(x, t) andw(χ, t).
As a consequence, the corresponding PDEs (2) and (7) can be omitted, and the governing equations of
the system reduce to:

JAψ̈(t) + 2ak

(
l2 +

a2

3

)
ψ(t) = kv

∫
T1

0

(l − a+ vτ1) ((l − a)ψ(t− τ1)− q(a, t− τ1)) dτ1

− kv

∫
T2

0

(
l +R cos

(
α+

v

R
τ2

))
((l + a)ψ(t− τ2)− (l − a)ψ(t− T1 − τ2)) cos(ωcτ2) dτ2

− kv

∫
T2

0

(
l +R cos

(
α+

v

R
τ2

))
q(a, t− T1 − τ2) cos(ωcτ2) dτ2

−
kv

ωc

∫
T2

0

(
l +R cos

(
α+

v

R
τ2

))(
vψ(t− τ2) + (l + a)ψ̇(t− τ2)

)
sin(ωcτ2) dτ2

−
kv

ωc

∫
T2

0

(
l +R cos

(
α+

v

R
τ2

))∫
τ2

0

(
l +R sin

(
α+

v

R
ϑ
))

ψ̈(t− τ2 + ϑ) sin(ωc(τ2 − ϑ))dϑ dτ2

−
kv

ωc

∫
T2

0

(
l +R cos

(
α+

v

R
τ2

))∫
τ2

0

2v ψ̇(t− τ2 + ϑ) cos
(
α+

v

R
ϑ
)
sin(ωc(τ2 − ϑ))dϑ dτ2 ,

(20)

which is coupled to (18). It can be seen that the substitution of the leading edge lateral deformation
q(a, t) leads to a neutral type distributed delay differential equation.

4 STABILITY ANALYSIS

One can substitute the exponential trial solutions ψ(t) = P eλt and q(a, t) = Qeλt into the linear
governing equations (18) and (20) and can calculate the characteristic function D(λ) of the system. Due
to its complexity, we do not present the formula of the characteristic function here.

Self-excited vibrations of the caster-wheel system can be identified where the rectilinear motion
becomes unstable. According to the D-subdivision method, the stability boundaries can be determined
if we substitute λ = iω into the characteristic function with the real positive angular frequency ω and
we separate its real and imaginary parts to be zeros. Unfortunately, the boundaries cannot be calculated
in closed form but by means of numerical methods, one can construct stability charts. For example,
using the multi-dimensional bisection method [17], stability boundaries can be determined in the multi-
dimensional parameter space of the model.

Figure 2 shows some of these boundaries in the v − l plane for the parameters a = 0.04m, R =
0.2m, k = 60 kN/m2, ρA = 0.4 kg/m and JA = 0.16 kg/m2, which are based on the laboratory
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Figure 3: The variation of the characteristic roots versus the towing speed

experiments in [14]. The boundaries characterize the domains, where different kinds of self-excited
vibrations occur with different frequencies. As it can be observed, lot of boundaries appear in the
investigated parameter domain.

Let us consider the caster length l = 0.5m, and let us show some properties of the emerging self-
excited vibrations against the longitudinal speed v. The characteristic roots having positive real parts are
shown in Figure 3 for the speed range 10 . . . 20m/s. As it can be observed, the self-excited vibrations
emerge in the whole speed range. The different projections of this chart are plotted in Figure 4. Both
very low (1 Hz) and higher (80 Hz) vibration frequencies can be identified in the figure. Of course,
our model does not consider the damping, which can strongly influence these result. The full stability
analysis in the presence of damping will be the task of future research.

5 TYRE DEFORMATIONS
To check the theoretical results and to obtain information about the tyre deformations, numerical sim-
ulation was carried out. The original IDE-PDEs system (8), (2) and (7) were discretized by means of
simple finite difference method. The number of spatial mesh points in the contact patch was chosen to
20 while outside the contact patch it was 300. The initial conditions for the numerical simulations were
set to zero initial caster angle and zero lateral deformations, but non-zero initial angular speed of the
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caster was considered.
Figure 5 shows the representative tyre deformation at different towing speeds, which speeds are

also marked in Figure 4. Obviously, as the wheel speed increases the number of the waves decreases
outside the contact patch, compare the deformations at the speeds 11.0 and 17.0 m/s. It is also worth to
observe that small variation in the towing speed can strongly influence the vibration frequencies and the
corresponding tyre deformations, see the cases that relate to the towing speeds 18.0 and 18.4 m/s.

6 CONCLUSION
A mechanical model was constructed to investigate the self-excited vibration of towed tyres. The delayed
tyre/ground contact model was implemented. Moreover, the lateral tyre deformation was also considered
outside the contact patch by means of the so-called brush model that also takes into account the mass of
the tyre particles.

The governing equations of the system were determined as an IDE-PDE system and were trans-
formed into the form of delay differential equations of the neutral type. It was shown that the interaction
of the contact patch and the non-contacting tyre particles lead to tyre vibrations with various frequencies
in a wide towing speed range. Although, damping was not considered in our study, some of the detected
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vibrations can be the origin of noise and heat generation in practice even in the presence of damping.
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