Proceedings of the ASME 2015 International Design Engineer

ing Technical Conferences &

Computers and Information in Engineering Conference

IDETC/CIE 2015
August 2-5, 2015, Boston, USA

DETC2015-47266

SELF-EXCITED LATERAL VIBRATIONS OF ROLLING TIRES

Dénes Tak acs
MTA-BME Research Group on Dynamics
of Machines and Vehicles
Budapest, Hungary
Email: takacs@mm.bme.hu

ABSTRACT

In this study, a low degree-of-freedom mechanical model of

a rolling tire is constructed, in which the lateral defornat of
the contact patch and tire carcass is considered. The sledal

delayed contact patch model is implemented and combinéd wit
a simple tire carcass model. The interaction between the con

tact patch and the carcass together with the lateral modéef t
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T, Time delay outside the contact patch.

INTRODUCTION

The shimmy of motorcycles [1, 2], steered wheels of cars
and the airplane gears [3-5] is a well known phenomenon in ve-

attached suspension system is modeled by means of minimurﬁ1iCIe dynamics. Although this phenomenon dates back togthe a

number of relevant parameters in a simplified way in order t
construct analytical results. Critical parameter rangekself-
excited vibrations are determined against the longitutispeed
of the tire. The intricate shapes of the corresponding teéod
mations are presented by means of numerical simulations.

NOMENCLATURE

a Half length of the contact patch.

Mass of the wheel.

Specific stiffness of the tire.

Lateral stiffness of the suspension.

Lateral deformation of the tire in the contact patch.
Radius of the undeformed tire.

Time.

Longitudinal speed of the center point of the wheel.
Lateral deformation outside the contact patch.

Yc Lateral displacement of the center point of the wheel.
w; Natural angular frequency of a tire brush element.
PA Distributed mass of the tire.

71 Time delay in the contact patch.
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o Pearance of the first vehicles [6], it requires special #itbarof

engineers in the design stage even nowadays. The safetydhaza
of shimmy induced many publications about the lateral tibra

of towed wheels. Moreover, the investigation of shimmy ket
improved and detailed models of tires and tire/road intévas.

It was recognized very early that the tire/ground contact
patch is responsible for a kind of memory effect [7], but the
available mathematical theories and methods did not allow e
gineers at that time to analyze delay differential equatiovhile
an engineering approximation of the tire lateral defororaiin
the contact patch helped to explore some properties of the sh
mying tire [8, 9]. Later, the accurate modeling of the contac
patch lateral deformation and the analysis of the corredipgn
delay differential equations provided new explanationsstame
quasi-periodic vibrations [10] and also uncovered newpatar
domains where so-called micro-shimmy exists [11]. The iappl
cation of this time delayed contact patch description irsihgle
track car model [12] and in the single track car-trailer mdi@]
also identified parameter ranges where small amplitudeslatie
brations may appear. These vibrations can be neglecte@wn vi
of the lateral stability of the vehicles but they are relévam-
ponents in the noise generation.
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Noise generation of tires has become an important aspect
of tire design in recent decades. There are several studies
(see, for example, [14-17]) in this field, which include deth
tire/ground contact patch and tire carcass models but doamst
sider the dynamics of the attached vehicle system. Thisagalu
the fact that the major part of the noise of tires is origidate
the so-called horn effect, which does not have any relatidhe
tire attached suspension system.

Here, we present a simple mechanical model of a brush tire
model that is supported by a laterally elastic suspensidmis T
mechanical mode is a special case of classical shimmy models
in case of infinite caster length, that is, the wheel canntaiteo
about the vertical axis. Namely, a lateral mode of the attelch
suspension-wheel system is considered, in which the dalaye
contact patch model is combined with a tire carcass modét. Cr
ical parameter ranges of self-excited vibrations are d@terd
versus the longitudinal speed of the tire with special éberto
the frequencies of these vibrations. Some numerical simuala
are presented to illustrate the traveling deformation waleng Yo oqxn
the tire circumference both in the contact patch and outide
contact patch.

L
MECHANICAL MODEL W)
The mechanical model in question is shown in Fig. 1. The 0 An-a) X
wheel of elastic tire is rolling in the ground-fixgX,Y,Z) co-
ordinate System; its Iongitudinal Speeds kept constant. The FIGURE 1. THE MECHANICAL MODEL.

rotational axis of the wheel of tire is supported in lateraéd-
tion by the spring of stiffnesis. The lateral position of the wheel
center point is described b (t) as a function of the time The
mass of the wheel is denoted by The(x,y,z) coordinate sys-
tem is fixed to the wheel center point, its axes are parallig¢o
axes of theX,Y, Z) coordinate system.

Tire deformation in the contact patch

In the contact patch, we consider pure rolling, namely, the
tire particles attached to the ground have zero velocitiEse
position vector of a tire particl®, can be given in théX,Y,Z)

. . o coordinate system as
The radius of the undeformed tire & The tire is in con-

tact with the ground along the contact patch of length Zhe

deformation in the longitudinal dimension of the tire is leetied Ro — v IVH_X i 1
in this study, while the lateral tire deformation is desedtby P = | Ye( )JBQ(Xv )| (1)

g(x,t) in the contact patch and bwy(x,t) outside the contact

patch. As it is shown in Fig. 1, the angpe € [0,3] (where

B = 2(m—a) anda = arcsir(a/R)) sweeps along the circum-  for x € [—a,a]. The velocity is
ference of the tire starting from the trailing edge R end egdit

the leading edge L of the contact patch. q V4 X
In this study, we use the so-called brush tire model, which g e = | Ye®) +ax ) +q (XX . 2
considers separated tire particles along the circumferehthe 0
tire. These tire particles are viewed like the thread elamen
of the tire, namely, their lateral deformations are indejgan. Here, dot and prime refer to the partial derivatives witlpeses to

The distributed mass of the tire particles is characterizgd time and space coordinates, respectively. As it was megdion
pA[kg/m|, and the specific lateral stiffneg$N/m?] relates to the kinematic constraint of rolling means tl’%Rpl = 0. Substi-
the distributed elastic support of the tire particles. tuting the first row of this equation into the second one, waiob
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the partial differential equation (PDE):

G0xt) = —Ye(t) + o (x.t)v ®)

forx € [—a,a].

Tire deformation outside the contact patch

The equations of motion of the tire particles outside the con
tact patch were derived with the combination of both Newgon’
Laws and Hamilton’s Principle. The standard form of Hamil-
ton’s Principle is only partially applicable for moving dotua
because of the material transfer at the boundaries, whioh ca
increase and dissipate the energy of the system. Accoydingl
Hamilton’s Principle has to be extended by a term (see [18]),
which describes the variation of the material flow at the labun
aries. In case of prismatic continua this term vanishes imeso
special cases, for example, when fixed supports are loctted a
boundaries (see [19]). In our case, the deformations aeedre
the points R and L although the absolute velocities of tteetar-
ticles are zeros at these points since we consider rollingg D
the fact that the lateral deformations of the separatechbeles
ments are independent, the standard form of Hamilton'ixig
can be used. The Lagrangian can be given as the differenie of t
kinetic energy and the potential function of the spring &sxc

B
L= %/0 (PAVE,(X,t) — kw?(x,t)) Ry, Q)

wherevp, (X,t) refers to the velocity of the tire particle at the
position:

. V(1—coga+x))
Ve, (X:t) = | Yo (t) +W(X,t) + gW (X,1)
vsin(a + x)

. (5)

The translational rate of change of the tire particles isimesl
to be equal to the longitudinal speedf the wheel center point.
According to Hamilton’s Principle, the functional

.tO
|:/ Lt
ty

is extremal at the real motion of the tire particles, i.8l =

0. This condition can be formulated by means of the Euler—
Lagrange equation, which formulates the variational probas
differential equations. Considering Eqn. (5) in Eqn. (4nE(6)
can be composed in the form of

(6)

t1 B )
I:/IO/OF(W,W,V\/,%t)dxdt. @)

Thus, the Euler-Lagrange equation leads to

JdoJF 0 OF

dw  at dw axawfzo'

8
Thus, the tire deformation is characterized by the parifal d
ferential equation:

2v . 2 .
W(x,t)+ﬁvw<x,t)+%w’(x,t)+w§vv(x,t)+vc<t>:0, 9)
for x € [0,B]. In the equation

Kk

oA (10)

%:

refers to the natural angular frequency of the lateral vibns of
the tire brush element.

Equation of motion

The equation of motion of the wheel, which is attached to the
laterally elastic suspension, can easily be derived wighhiblp
of Newton’s Law. Here we present the equation without dedhil
explanations:

. a p
MV (t) + keYo(t) = k[aq(x7t)dx+ k/o w(x,Rdy. (11)

This equation is coupled to Eqn. (3) and Eqn. (9). The boundar
conditions (BCs) of the PDEs are:

a(at) =w(B,t),
w(0,t) =q(—a,t), (12)
W (0,t) = —Rd(—at).

The first two BCs correspond to the continuity of the late! d
formation at the leading edge L and at the trailing edge R, re-
spectively. The third one (no kink at R) is based%w(o,t) =
%q(fa,t), which describes the initial lateral speed of the defor-
mation waves that propagate along the circumference ofréne t
outside the contact patch.

TIME DELAYED TIRE MODEL
The contact patch memory

The memory effect of the tire/ground contact patch is known
since von Schlippe already identified this property of tireg].
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In case of rolling the tire particles stick to the ground ameex
their positions during the contact. Consequently, thegitmns

at the the time instanitwere determined when they reached the
ground at the leading edge &t 11(x). The time delayr;(x)
characterizes the time interval, which was needed for gtre
ticle to travel backwards in the contact patch from the legdi
edge L to its actual positior (see Fig. 1). Thus, the traveling
wave solution of the PDE in Egn. (3) can be determined in the
form:

q(x.t) = =Yc(t) +Yc(t — (X)) +a(@t—1(x))  (13)

for x € [—a,a]. The time delay has a physically obvious form:

(14)

Traveling wave solution outside the contact patch
Since the tire particles travels with constant translation
speed along the circumference of the tire, a traveling walie s

tion can also be composed for Egn. (9). Based on the Duhamel’s

integral formula:

w(x;t) =w(0,t — Ta(X)) cos(wxT2(X))
1d

n aaW(o,t — Ta(x)) sin(axT2(X))

-2 [ Nett a0+ 9) im0~ 9))09.
(15)
where the time delay:
(0 = X (16)

Closed loop of traveling waves

Using the second and the third BCs of Egn. (12), the trav-
eling wave solution Eqn. (15) can be composed as a function of
the trailing edge deformation of the contact patch:

w(x,t) =q(—at—T12(x)) cog m:T2(X))
+iﬂq(_a,t—rz(x))sin(wcrz(x))
_ 7/ Yot — 2(x) + 9) sin(wx(T2(x) — 9))dd
17)

Using the traveling wave solution Eqgn. (13), the trailingged
deformation can be given as

a(—at—T12(x)) = —Yc(t — 12(X)) + Yc(t — 12(X) — T1)

Faat- () -, 4o
where
T1 = rl(fa) = Zva (19)

refers to the time interval that is needed for a tire particheavel
along the contact patch.

After the substitution of Eqn. (18) into Eqn. (17), the first
BC of Eqn. (12) leads to:

qat) =(-Yc(t—T2)+Yc(t—Ti — T2)) cog ax T2)
+q(at—Ti—To)codwTo) — %Y'C(t —To)sin(wTy)

1 (T2 .. .
_E/o Ye(t— T2+ 9)sin(ax(T2 —9))d9
(20)

where

2R(n—a)
v

T2 =T12(B)

RB
v (21)

is the time interval, which is needed for a tire particle el
along the circumference of the tire from the trailing edge ke
leading edge L.

Using Egns. (13) and (17) with Eqgn. (18) in Egn. (11), one
can eliminate the deformation functiongéx,t) andw(x,t) and
the corresponding PDEs given in Egns. (3) and (9). Thus, the
governing equations of the system reduce to:

mYc(t) +keYe(t) = —kv/ Ye(t) = Ye(t—11) —q(at — 1) dry

— kv/oT2 (Ye(t—12) = Yc(t— 12— Th)) cog e T2)dT2

T

+ kv/ ’ g(a,t — 12— T1) coq ax:T2)dT>
0

kv

G Jo

kv (T2 (T2 . :
——/ / Ye(t— 12+ 3)sin(ax (12— 9))dddr,
W Jo Jo

*Ye(t — 72) sin(ax T2)dTa

(22)
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which is coupled to Eqgn. (20). It can be seen that the substitu
tion of g(a,t) leads to a neutral type distributed delay differential
equation.

STABILITY ANALYSIS
Tire with rigid suspension

In order to illustrate the interaction of the deformatioris o
the contact patch and the non-contacting part of the tirerthdr
simplification of our mechanical model is used in this sattio
Consider a perfectly rigid suspension system in the mechani
model, i.e. ks — o, which means that lateral displacement of
the wheel center point is blocked. In this c&s¢t) = 0 and the
equation of motion Egn. (11) can be omitted. Moreover, the-tr
eling wave solutions Eqgns. (13) and (15) simplify, consexdjye
Eqn. (20) reduces to

g(a,t) =codwT2)q(at—Ti—Ta). (23)

This scalar difference equation governs the system in chse o
the rigid suspension. The stability of the system depends on
the coefficient cogaTo). If |cogwcT2)| < 1 then the system is
asymptotically stable and the vibrations of the tire péetale-

cay intime. The limit of stability corresponds|tocog w:T2)| =1,
which gives the critical longitudinal speeds

2Rw:(1— o /m)

i=0,1,2,....
j

(24)

Ver,j =

For these speeds, the lateral vibrations of the tire pegiclo
not decay in time. On the contrary, the fastest decay retates
coqwx:T2) = 0, which leads to

2Rw:(1— o /m)

Y i=01,2,....

Viav,j = (25)

In case ofv = iy j, the vibration of the tire particles are fully
dissipated by the contact patch within one rotation of theath

Tire with elastic suspension

Let consider our original system, which is governed by
Egns. (20) and (22). One can substitute the exponentidl tria
solutionsYc(t) = Yer andq(a,t) = Qe into these equations
and can calculate the characteristic functid ) of the system.
Here we do not present the formula of the characteristictfonc

One can determine that lim,pD(A) = 0 is satisfied for the
critical speeds of Egn. (24). This suggests that some ptieper
of this model are inhered by the properties of the simplgidri

5

TABLE 1. THE PARAMETERS OF THE CASE STUDY.
Parameter Value
a 0.04m
R 0.2m
K 60 kN/m?
pPA 0.4 kg/m
ks 1 kN/m
m 2kg

suspension model. But in case of elastic suspension, thensys
presents a much richer dynamics, of course.

According to the D-subdivision method, the stability bound
aries can be determined if we substitdte- iw into the charac-
teristic function with the real positive angular frequerwyand
we separate its real and imaginary parts to be zeros. Unfortu
nately, the boundaries can not be calculated in closed fatriyb
means of numerical methods one can construct stabilitytshar

Here, we show a case study only, namely, using the parame-
ters of Tab. 1, we analyze the stability of the system. Tharmar
eters are based on the laboratory experiments that weliedarr
out in [11]. In order to investigate the stability, we cakted the
rightmost characteristic root of the characteristic fimtagains
the longitudinal speed The results were also checked by means
of the semi-discretization method [20].

The real part and the angular frequency characterizing the
rightmost eigenvalue are shown in Fig. 2 for the speed range
10...20m/s. Panel (a) presents an overview about the location
of the rightmost eigenvalue. The vibration frequency idestay
wo = \/ks/m= 22.36rad's, which refers to the natural angular
frequency of the wheel-suspension system without havimg co
tact with the ground and without taking into account the nudss
tire particles. As it can be observed in panel (b), the vibrefre-
guency is close toy. In panel (c), the real part of the eigenvalue
is plotted versus the speed. Clearly, these vibrationsrriaaay
in time since R& > 0 in the investigated speed range. Of course,
our model does not consider the damping, which can strongly i
fluence these result. This will be the task of future research

TIRE DEFORMATIONS

To check the theoretical results and to obtain information
about the tire deformations, numerical simulation wasiedrr
out. The original IDE-PDEs system Eqns. (11), (3) and (9)ewer
discretized by means of simple finite difference method. The
number of spatial mesh points in the contact patch was chtosen
20 while outside the contact patch it was 300. The initialdion
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FIGURE 3. SIMULATED TIRE DEFORMATIONS AT DIFFER-
ENT SPEEDS.

1.5

delayed tire/ground contact model was implemented. Magov
the lateral tire deformation was also considered outsidetmn-
tact patch by means of the so-called brush model that alss tak
into account the mass of the tire particles.

The governing equations of the system were determined and
were transformed into the form of neutral delay differelrggua-
tions. The linear stability analysis of the stationaryirglwas
analyzed in a case study. It was shown that the interactitimeof
contact patch and the non-contacting tire particles cahttetre
vibrations in a wide speed range. Although, our model doés no

wlw,

0.5 I I I I
10

10

Rel consider any source of damping, some of the detected \iloisati
[1/s] | can be suspected as the origin of noise and heat generation in
practice even in the presence of damping.
0 1
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