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ABSTRACT
In this study, a low degree-of-freedom mechanical model of

a rolling tire is constructed, in which the lateral deformation of
the contact patch and tire carcass is considered. The so-called
delayed contact patch model is implemented and combined with
a simple tire carcass model. The interaction between the con-
tact patch and the carcass together with the lateral mode of the
attached suspension system is modeled by means of minimum
number of relevant parameters in a simplified way in order to
construct analytical results. Critical parameter ranges of self-
excited vibrations are determined against the longitudinal speed
of the tire. The intricate shapes of the corresponding tire defor-
mations are presented by means of numerical simulations.

NOMENCLATURE
a Half length of the contact patch.
m Mass of the wheel.
k Specific stiffness of the tire.
ks Lateral stiffness of the suspension.
q Lateral deformation of the tire in the contact patch.
R Radius of the undeformed tire.
t Time.
v Longitudinal speed of the center point of the wheel.
w Lateral deformation outside the contact patch.
YC Lateral displacement of the center point of the wheel.
ωc Natural angular frequency of a tire brush element.
ρA Distributed mass of the tire.
τ1 Time delay in the contact patch.

τ2 Time delay outside the contact patch.

INTRODUCTION
The shimmy of motorcycles [1, 2], steered wheels of cars

and the airplane gears [3–5] is a well known phenomenon in ve-
hicle dynamics. Although this phenomenon dates back to the ap-
pearance of the first vehicles [6], it requires special attention of
engineers in the design stage even nowadays. The safety hazard
of shimmy induced many publications about the lateral vibration
of towed wheels. Moreover, the investigation of shimmy leads to
improved and detailed models of tires and tire/road interactions.

It was recognized very early that the tire/ground contact
patch is responsible for a kind of memory effect [7], but the
available mathematical theories and methods did not allow en-
gineers at that time to analyze delay differential equations, while
an engineering approximation of the tire lateral deformation in
the contact patch helped to explore some properties of the shim-
mying tire [8, 9]. Later, the accurate modeling of the contact
patch lateral deformation and the analysis of the corresponding
delay differential equations provided new explanations for some
quasi-periodic vibrations [10] and also uncovered new parameter
domains where so-called micro-shimmy exists [11]. The appli-
cation of this time delayed contact patch description in thesingle
track car model [12] and in the single track car-trailer model [13]
also identified parameter ranges where small amplitude lateral vi-
brations may appear. These vibrations can be neglected in view
of the lateral stability of the vehicles but they are relevant com-
ponents in the noise generation.
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Noise generation of tires has become an important aspect
of tire design in recent decades. There are several studies
(see, for example, [14–17]) in this field, which include detailed
tire/ground contact patch and tire carcass models but do notcon-
sider the dynamics of the attached vehicle system. This is due to
the fact that the major part of the noise of tires is originated in
the so-called horn effect, which does not have any relation to the
tire attached suspension system.

Here, we present a simple mechanical model of a brush tire
model that is supported by a laterally elastic suspension. This
mechanical mode is a special case of classical shimmy models
in case of infinite caster length, that is, the wheel cannot rotate
about the vertical axis. Namely, a lateral mode of the attached
suspension-wheel system is considered, in which the delayed
contact patch model is combined with a tire carcass model. Crit-
ical parameter ranges of self-excited vibrations are determined
versus the longitudinal speed of the tire with special attention to
the frequencies of these vibrations. Some numerical simulation
are presented to illustrate the traveling deformation waves along
the tire circumference both in the contact patch and outsidethe
contact patch.

MECHANICAL MODEL

The mechanical model in question is shown in Fig. 1. The
wheel of elastic tire is rolling in the ground-fixed(X,Y,Z) co-
ordinate system; its longitudinal speedv is kept constant. The
rotational axis of the wheel of tire is supported in lateral direc-
tion by the spring of stiffnessks. The lateral position of the wheel
center point is described byYC(t) as a function of the timet. The
mass of the wheel is denoted bym. The(x,y,z) coordinate sys-
tem is fixed to the wheel center point, its axes are parallel tothe
axes of the(X,Y,Z) coordinate system.

The radius of the undeformed tire isR. The tire is in con-
tact with the ground along the contact patch of length 2a. The
deformation in the longitudinal dimension of the tire is neglected
in this study, while the lateral tire deformation is described by
q(x, t) in the contact patch and byw(χ , t) outside the contact
patch. As it is shown in Fig. 1, the angleχ ∈ [0,β ] (where
β = 2(π −α) andα = arcsin(a/R)) sweeps along the circum-
ference of the tire starting from the trailing edge R end ending at
the leading edge L of the contact patch.

In this study, we use the so-called brush tire model, which
considers separated tire particles along the circumference of the
tire. These tire particles are viewed like the thread elements
of the tire, namely, their lateral deformations are independent.
The distributed mass of the tire particles is characterizedby
ρA[kg/m], and the specific lateral stiffnessk[N/m2] relates to
the distributed elastic support of the tire particles.
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FIGURE 1. THE MECHANICAL MODEL.

Tire deformation in the contact patch
In the contact patch, we consider pure rolling, namely, the

tire particles attached to the ground have zero velocities.The
position vector of a tire particleP1 can be given in the(X,Y,Z)
coordinate system as

RP1 =





vt+x
YC(t)+q(x, t)

0



 , (1)

for x∈ [−a,a]. The velocity is

d
dt

RP1 =





v+ ẋ
ẎC(t)+ q̇(x, t)+q′(x, t)ẋ

0



 . (2)

Here, dot and prime refer to the partial derivatives with respect to
time and space coordinates, respectively. As it was mentioned,
the kinematic constraint of rolling means thatd

dt RP1 = 0. Substi-
tuting the first row of this equation into the second one, we obtain
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the partial differential equation (PDE):

q̇(x, t) =−ẎC(t)+q′(x, t)v (3)

for x∈ [−a,a].

Tire deformation outside the contact patch
The equations of motion of the tire particles outside the con-

tact patch were derived with the combination of both Newton’s
Laws and Hamilton’s Principle. The standard form of Hamil-
ton’s Principle is only partially applicable for moving continua
because of the material transfer at the boundaries, which can
increase and dissipate the energy of the system. Accordingly,
Hamilton’s Principle has to be extended by a term (see [18]),
which describes the variation of the material flow at the bound-
aries. In case of prismatic continua this term vanishes in some
special cases, for example, when fixed supports are located at the
boundaries (see [19]). In our case, the deformations are free at
the points R and L although the absolute velocities of the tire par-
ticles are zeros at these points since we consider rolling. Due to
the fact that the lateral deformations of the separated brush ele-
ments are independent, the standard form of Hamilton’s Principle
can be used. The Lagrangian can be given as the difference of the
kinetic energy and the potential function of the spring forces:

L =
1
2

∫ β

0

(

ρAv2
P2
(χ , t)−kw2(χ , t)

)

Rdχ , (4)

wherevP2(χ , t) refers to the velocity of the tire particle at the
positionχ :

vP2(χ , t) =





v(1−cos(α + χ))
ẎC(t)+ ẇ(χ , t)+ v

Rw′(χ , t)
vsin(α + χ)



 . (5)

The translational rate of change of the tire particles is assumed
to be equal to the longitudinal speedv of the wheel center point.

According to Hamilton’s Principle, the functional

I =
∫ t0

t1
Ldt (6)

is extremal at the real motion of the tire particles, i.e.δ I =
0. This condition can be formulated by means of the Euler–
Lagrange equation, which formulates the variational problem as
differential equations. Considering Eqn. (5) in Eqn. (4), Eqn. (6)
can be composed in the form of

I =
∫ t1

t0

∫ β

0
F(w, ẇ,w′,χ , t)dχdt . (7)

Thus, the Euler-Lagrange equation leads to

dF
dw

−
∂
∂ t

∂F
∂ ẇ

−
∂

∂ χ
∂F
∂w′

= 0. (8)

Thus, the tire deformation is characterized by the partial dif-
ferential equation:

ẅ(χ , t)+
2v
R

ẇ′(χ , t)+
v2

R2 w′′(χ , t)+ω2
c w(χ , t)+ŸC(t) = 0, (9)

for χ ∈ [0,β ]. In the equation

ωc =

√

k
ρA

(10)

refers to the natural angular frequency of the lateral vibrations of
the tire brush element.

Equation of motion
The equation of motion of the wheel, which is attached to the

laterally elastic suspension, can easily be derived with the help
of Newton’s Law. Here we present the equation without detailed
explanations:

mŸC(t)+ksYC(t) = k
∫ a

−a
q(x, t)dx+k

∫ β

0
w(χ , t)Rdχ . (11)

This equation is coupled to Eqn. (3) and Eqn. (9). The boundary
conditions (BCs) of the PDEs are:

q(a, t) = w(β , t) ,
w(0, t) = q(−a, t) ,

w′(0, t) =−Rq′(−a, t) .

(12)

The first two BCs correspond to the continuity of the lateral de-
formation at the leading edge L and at the trailing edge R, re-
spectively. The third one (no kink at R) is based ond

dt w(0, t) =
d
dt q(−a, t), which describes the initial lateral speed of the defor-
mation waves that propagate along the circumference of the tire
outside the contact patch.

TIME DELAYED TIRE MODEL
The contact patch memory

The memory effect of the tire/ground contact patch is known
since von Schlippe already identified this property of tiresin [7].
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In case of rolling the tire particles stick to the ground and keep
their positions during the contact. Consequently, their positions
at the the time instantt were determined when they reached the
ground at the leading edge att − τ1(x). The time delayτ1(x)
characterizes the time interval, which was needed for a tirepar-
ticle to travel backwards in the contact patch from the leading
edge L to its actual positionx (see Fig. 1). Thus, the traveling
wave solution of the PDE in Eqn. (3) can be determined in the
form:

q(x, t) =−YC(t)+YC(t − τ1(x))+q(a, t − τ1(x)) (13)

for x∈ [−a,a]. The time delay has a physically obvious form:

τ1(x) =
a−x

v
. (14)

Traveling wave solution outside the contact patch
Since the tire particles travels with constant translational

speed along the circumference of the tire, a traveling wave solu-
tion can also be composed for Eqn. (9). Based on the Duhamel’s
integral formula:

w(χ , t) = w(0, t − τ2(χ))cos(ωcτ2(χ))

+
1

ωc

d
dt

w(0, t − τ2(χ))sin(ωcτ2(χ))

−
1

ωc

∫ τ2(χ)

0
ŸC(t − τ2(χ)+ϑ)sin(ωc(τ2(χ)−ϑ))dϑ ,

(15)

where the time delay:

τ2(χ) =
Rχ
v

. (16)

Closed loop of traveling waves
Using the second and the third BCs of Eqn. (12), the trav-

eling wave solution Eqn. (15) can be composed as a function of
the trailing edge deformation of the contact patch:

w(χ , t) = q(−a, t − τ2(χ))cos(ωcτ2(χ))

+
1

ωc

d
dt

q(−a, t − τ2(χ))sin(ωcτ2(χ))

−
1

ωc

∫ τ2(χ)

0
ŸC(t − τ2(χ)+ϑ)sin(ωc(τ2(χ)−ϑ))dϑ .

(17)

Using the traveling wave solution Eqn. (13), the trailing edge
deformation can be given as

q(−a, t − τ2(χ)) =−YC(t − τ2(χ))+YC(t − τ2(χ)−T1)

+q(a, t − τ2(χ)−T1) ,
(18)

where

T1 = τ1(−a)≡
2a
v

(19)

refers to the time interval that is needed for a tire particleto travel
along the contact patch.

After the substitution of Eqn. (18) into Eqn. (17), the first
BC of Eqn. (12) leads to:

q(a, t) = (−YC(t −T2)+YC(t −T1−T2))cos(ωcT2)

+q(a, t −T1−T2)cos(ωcT2)−
1

ωc
ẎC(t −T2)sin(ωcT2)

−
1

ωc

∫ T2

0
ŸC(t −T2+ϑ)sin(ωc(T2−ϑ))dϑ ,

(20)

where

T2 = τ2(β )≡
Rβ
v

≡
2R(π −α)

v
(21)

is the time interval, which is needed for a tire particle to travel
along the circumference of the tire from the trailing edge R to the
leading edge L.

Using Eqns. (13) and (17) with Eqn. (18) in Eqn. (11), one
can eliminate the deformation functionsq(x, t) andw(χ , t) and
the corresponding PDEs given in Eqns. (3) and (9). Thus, the
governing equations of the system reduce to:

mŸC(t)+ksYC(t) =−kv
∫ T1

0
YC(t)−YC(t − τ1)−q(a, t − τ1)dτ1

−kv
∫ T2

0
(YC(t − τ2)−YC(t − τ2−T1))cos(ωcτ2)dτ2

+kv
∫ T2

0
q(a, t − τ2−T1)cos(ωcτ2)dτ2

−
kv
ωc

∫ T2

0
ẎC(t − τ2)sin(ωcτ2)dτ2

−
kv
ωc

∫ T2

0

∫ τ2

0
ŸC(t − τ2+ϑ)sin(ωc(τ2−ϑ))dϑdτ2 ,

(22)
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which is coupled to Eqn. (20). It can be seen that the substitu-
tion of q(a, t) leads to a neutral type distributed delay differential
equation.

STABILITY ANALYSIS
Tire with rigid suspension

In order to illustrate the interaction of the deformations of
the contact patch and the non-contacting part of the tire, a further
simplification of our mechanical model is used in this section.
Consider a perfectly rigid suspension system in the mechanical
model, i.e. ks → ∞, which means that lateral displacement of
the wheel center point is blocked. In this caseYC(t)≡ 0 and the
equation of motion Eqn. (11) can be omitted. Moreover, the trav-
eling wave solutions Eqns. (13) and (15) simplify, consequently,
Eqn. (20) reduces to

q(a, t) = cos(ωcT2)q(a, t −T1−T2) . (23)

This scalar difference equation governs the system in case of
the rigid suspension. The stability of the system depends on
the coefficient cos(ωcT2). If |cos(ωcT2)| < 1 then the system is
asymptotically stable and the vibrations of the tire particles de-
cay in time. The limit of stability corresponds to|cos(ωcT2)|= 1,
which gives the critical longitudinal speeds

vcr, j =
2Rωc(1−α/π)

j
j = 0,1,2, . . . . (24)

For these speeds, the lateral vibrations of the tire particles do
not decay in time. On the contrary, the fastest decay relatesto
cos(ωcT2) = 0, which leads to

vfav, j =
2Rωc(1−α/π)

j +1/2
j = 0,1,2, . . . . (25)

In case ofv = vfav, j , the vibration of the tire particles are fully
dissipated by the contact patch within one rotation of the wheel.

Tire with elastic suspension
Let consider our original system, which is governed by

Eqns. (20) and (22). One can substitute the exponential trial
solutionsYC(t) = Yeλ t andq(a, t) = Qeλ t into these equations
and can calculate the characteristic functionD(λ ) of the system.
Here we do not present the formula of the characteristic function.

One can determine that limλ→0D(λ ) = 0 is satisfied for the
critical speeds of Eqn. (24). This suggests that some properties
of this model are inhered by the properties of the simpler, rigid

TABLE 1 . THE PARAMETERS OF THE CASE STUDY.

Parameter Value

a 0.04 m

R 0.2 m

k 60 kN/m2

ρA 0.4 kg/m

ks 1 kN/m

m 2 kg

suspension model. But in case of elastic suspension, the system
presents a much richer dynamics, of course.

According to the D-subdivision method, the stability bound-
aries can be determined if we substituteλ = iω into the charac-
teristic function with the real positive angular frequencyω and
we separate its real and imaginary parts to be zeros. Unfortu-
nately, the boundaries can not be calculated in closed form but by
means of numerical methods one can construct stability charts.

Here, we show a case study only, namely, using the parame-
ters of Tab. 1, we analyze the stability of the system. The param-
eters are based on the laboratory experiments that were carried
out in [11]. In order to investigate the stability, we calculated the
rightmost characteristic root of the characteristic function agains
the longitudinal speedv. The results were also checked by means
of the semi-discretization method [20].

The real part and the angular frequency characterizing the
rightmost eigenvalue are shown in Fig. 2 for the speed range
10. . .20m/s. Panel (a) presents an overview about the location
of the rightmost eigenvalue. The vibration frequency is scaled by
ω0 =

√

ks/m= 22.36rad/s, which refers to the natural angular
frequency of the wheel-suspension system without having con-
tact with the ground and without taking into account the massof
tire particles. As it can be observed in panel (b), the vibration fre-
quency is close toω0. In panel (c), the real part of the eigenvalue
is plotted versus the speed. Clearly, these vibrations never decay
in time since Reλ ≥ 0 in the investigated speed range. Of course,
our model does not consider the damping, which can strongly in-
fluence these result. This will be the task of future research.

TIRE DEFORMATIONS
To check the theoretical results and to obtain information

about the tire deformations, numerical simulation was carried
out. The original IDE-PDEs system Eqns. (11), (3) and (9) were
discretized by means of simple finite difference method. The
number of spatial mesh points in the contact patch was chosento
20 while outside the contact patch it was 300. The initial condi-
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FIGURE 2. THE REAL PART OF THE RIGHTMOST EIGEN-
VALUE AND THE CORRESPONDIG VIBRATION FREQUENCY
OF THE SYSTEM VERSUS THE SPEED.

tions for the numerical simulations were set to zero initialdefor-
mation and zero lateral deformation, but non-zero initial lateral
speed was applied.

Figure 3 shows the representative tire deformation at two
different wheel speeds, which speeds are also marked in Fig.2c
by dashed lines. Obviously, as the wheel speed increases the
number of the waves decreases outside the contact patch.

CONCLUSION
A mechanical model was constructed to investigate the

rolling tire attached to a laterally elastic suspension system. The

x

z

x

z

v =11 m/s v =19 m/s

FIGURE 3. SIMULATED TIRE DEFORMATIONS AT DIFFER-
ENT SPEEDS.

delayed tire/ground contact model was implemented. Moreover,
the lateral tire deformation was also considered outside the con-
tact patch by means of the so-called brush model that also takes
into account the mass of the tire particles.

The governing equations of the system were determined and
were transformed into the form of neutral delay differential equa-
tions. The linear stability analysis of the stationary rolling was
analyzed in a case study. It was shown that the interaction ofthe
contact patch and the non-contacting tire particles can lead to tire
vibrations in a wide speed range. Although, our model does not
consider any source of damping, some of the detected vibrations
can be suspected as the origin of noise and heat generation in
practice even in the presence of damping.
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[11] Takács, D., and Stéṕan, G., 2012. “Micro-shimmy of towed
structures in experimentally uncharted unstable parameter
domain”. Vehicle System Dynamics,50(11), pp. 1613–
1630.
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