

 1

Smart Timetable Service Based on Crowdsensed Data

Károly Farkas
Budapest University of Technology and Economics
Magyar tudósok krt. 2, H-1117 Budapest, Hungary
e-mail: farkask@hit.bme.hu

Abstract: The rapid technological development and the introduction of smart services make it
possible for modern cities to offer an enhanced perception of city life for their inhabitants. For
instance, a smart timetable service of the city’s public transportation lines updated in real-time
can decrease unnecessary waiting times at stops and increase the efficiency of travel planning.
However, the implementation of such a service in a traditional way requires the deployment and
maintenance of some costly sensing and tracking infrastructure. Fortunately, mobile
crowdsensing, when the crowd of passengers and their mobile devices are used to gather data, can
be a viable and almost free of charge alternative for implementing sensing based smart city
services.

In this chapter, we put the emphasis on the introduction of a crowdsensing based smart timetable
service, which has been developed as a prototype smart city application. The front-end interface of
this service is called TrafficInfo. It is a simple and easy-to-use Android application which
visualizes public transport information of the given city on Google Maps in real-time. The live
updates of transport schedule information rely on the automatic stop event detection of public
transport vehicles. TrafficInfo is built upon an Extensible Messaging and Presence Protocol
(XMPP) based communication framework which was designed to facilitate the development of
crowd assisted smart city applications. The chapter introduces this generic framework shortly,
then describes the prototype smart timetable service.

Keywords: Smart cities, Crowdsensing, Public transportation, XMPP, GTFS

1 Introduction

More and more modern cities offer smart services to ease the everyday life of their
inhabitants. Unfortunately, the traditional way of introducing a new service usually
implies a huge investment to deploy and maintain the necessary background
infrastructure. One of the most popular city services is public transportation. Maintaining
and continuously improving such a service are imperative in modern cities. However,
the implementation of even a simple feature that extends the basic service functions can
be expensive. For instance, let’s consider the replacement of static timetables with a live
public transport information service updated in real-time. It requires the deployment of a
vehicle-tracking infrastructure consisting of among others GPS sensors, communication
infrastructure, back-end system and front-end user interfaces, which can be a cost
intensive investment.

 2

An alternative approach to collect real-time tracking data is exploiting the power of the
crowd via participatory sensing or often called mobile crowdsensing, which does not call
for such an investment. In this scenario (see Figure 1), the passengers’ mobile devices
and their built-in sensors, or the passengers themselves via reporting incidents, are used
to generate the monitoring data for vehicle tracking and send instant route information to
the service provider in real-time. The service provider then aggregates, cleans, analyzes
the data gathered, and derives and disseminates the real-time updates. The sensing task is
carried out by the built-in and ubiquitous sensors of the smartphones either in
participatory or opportunistic way depending on whether the user is involved or not in
data collection. Every traveler can contribute to this data-harvesting task. Thus,
passengers waiting for a ride at the stop can report the line number with a timestamp of
every arriving public transport vehicle during the waiting period. On the other hand,
onboard passengers can be used to gather and report actual position information of the
moving vehicle and detect halt events at the stops.

Figure 1: Live public transport information service based on mobile crowdsensing

In this chapter, we focus on the introduction of a crowdsensing based smart timetable
service, which has been developed as a prototype smart city application. The front-end
interface of this service, called TrafficInfo, is a simple and easy-to-use Android
application which visualizes live public transport information of the given city on
Google Maps. It is built upon an Extensible Messaging and Presence Protocol (XMPP)
(Saint-Andre 2011) based communication framework (Szabo & Farkas 2013) what was
designed to facilitate the development of crowd assisted smart city applications (this
framework will also be introduced shortly in Section 2). Following the publish/subscribe

 3

(pub/sub) communication model the passengers subscribe in TrafficInfo, according to
their interest, to traffic information channels dedicated to different public transport lines
or stops. Hence, they are informed about the live public transport situation, such as the
actual vehicle positions, deviation from the static timetable, crowdedness information,
travel conditions, etc.

To motivate user participation in data collection an initial service is offered to the
passengers, which is a static public transportation timetable. It is built on the General
Transit Feed Specification (GTFS) (Google Inc. 2006) based transit schedule data and
provided by public transport operators. GTFS is the best practice for providing such
information, and is available in 350 cities attracting more than 6.5 million users.
According to the GTFS developer page, currently GTFS data is available for 879 transit
agencies worldwide. TrafficInfo basically presents this static timetable information to
the users which is updated in real-time, if appropriate crowdsensed data is available. To
this end, the application collects position data; the timestamped halt events, detected
automatically, of the public transport vehicles at the stops; and/or simple annotation data
entered by the user, such as reports on crowdedness and travel conditions. After
analyzing the data gathered live updates are generated and TrafficInfo refreshes the static
information with these updates.

The rest of this chapter is structured as follows. Our generic framework to facilitate the
development of crowdsensing based services is introduced shortly in Section 2. Then,
Section 3 describes the prototype smart timetable service. Next, a quick overview of
similar services is provided in Section 4. Finally, Section 5 gives a short summary.

2 Generic Framework for Crowdsensing Based Smart
City Applications

In this section, our generic framework (Szabo & Farkas 2013) to aid the development of
crowdsensing based smart city applications is described shortly. This framework is
based on the XMPP publish/subscribe architecture. TrafficInfo is implemented on top of
this framework.

2.1 Communication Model

XMPP (Saint-Andre 2011) is an open technology for real-time communication using
Extensible Markup Language (XML) message format. XMPP allows sending of small
information pieces from one entity to another in quasi real-time. It has several
extensions, like multi-party messaging or the notification service. The latter realizes a
publish/subscribe (pub/sub) communication model, where publications sent to a node are
automatically multicast to the subscribers of that node. This pub/sub communication
scheme fits well with most of the mobile crowdsensing based applications. In these
applications, the users’ mobile devices are used to collect data about the environment

 4

(publish) and the users consume the services updated on the basis of the collected data
(subscribe).

Hence, we use XMPP and its publish/subscribe communication model in our generic
framework to implement interactions. In this model, we defined three roles, like
Producer, Consumer and Service Provider (see Figure 2). These entities interact with
each other via the core service, which consists of event based pub/sub nodes.

Figure 2: Crowdsensing model based on publish/subscribe communication

Producer: The Producer acts as the original information source in the model producing
raw data streams and plays a central role in data collection. He is the user who
contributes his mobile’s sensor data.

Consumer: The Consumer is the beneficiary of the provided service(s). He enjoys the
value of the collected, cleaned, analyzed, extended and disseminated information. The
user is called as Prosumer, when he acts in the service as both Consumer and Producer
at the same time.

Service Provider: The Service Provider introduces added value to the raw data collected
by the crowd. Thus, he intercepts and extends the information flow between Producers
and Consumers. A Service Provider can play several roles at the same time, as he
collects (Consumer role), stores and analyzes Producers’ data to offer (Service Provider
role) value added service.

In the model, depicted in Figure 2, Producers are the source of original data by sensing
and monitoring their environment. They publish (marked by arrows with empty arrow-
head) the collected information to event nodes (raw information nodes are marked by
blue dots). On the other hand, Service Providers intercept the collected data by
subscribing (marked by arrows with black arrowhead) to raw event nodes and receiving
information in an asynchronous manner. They extend the crowdsensed data with their
own information or extract cleaned-up information from the raw data to introduce added
value to Consumers. Moreover, they publish their service to different content nodes.

 5

Consumers who are interested in the reception of the added value/service just subscribe
to the appropriate content node(s) and collect the published information also in an
asynchronous manner.

2.2 Framework Architecture

This model can be directly mapped to the XMPP publish/subscribe model as follows
(see Figure 3):

Figure 3: Mobile crowdsensing – the publish/subscribe value chain using XMPP

Service Providers establish raw pub/sub data nodes, which gather Producers’ data, for
the services they offer.

• Consumers can freely publish their collected data to the corresponding nodes with
appropriate node access rights, too. However, only the owner or other affiliated
Consumers can retrieve this information.

• Producers can publish the collected data or their annotations to the raw data nodes at
the XMPP server only if they have appropriate access rights.

• Service Providers collect the published data and introduce such a service structure
for their added value via the pub/sub subscription service, which makes appropriate
content filtering possible for their Consumers.

• Prosumers publish their sensor readings or annotations into and retrieve events from
XMPP pub/sub nodes.

 6

• Service Providers subscribed to raw pub/sub nodes collect, store, clean-up and
analyze data and extract/derive new information introducing added value. This new
information is published into pub/sub nodes on the other side following a suitable
structure.

The pub/sub service node structure can benefit from the aggregation feature of XMPP
via using collection nodes, where a collection node will see all the information received
by its child nodes. Note, however, that the aggregation mechanism of an XMPP
collection node is not appropriate to filter events. Hence, the Service Provider role has to
be applied to implement scalable content aggregation. Figure 3 shows XMPP
aggregations as dark circles at the container node while empty circles with dashed lines
represent only logical containment where intelligent aggregation is implemented through
the service logic.

3 Smart Timetable Service

In this section, the architecture of the prototype smart timetable service is delineated
first, then TrafficInfo, its front-end Android interface together with the developed
automatic stop event detector is described.

3.1 Service Architecture

The prototype smart timetable service architecture has two main building blocks, such as
the generic crowdsensing framework described in Section 2 and the front-end
application called TrafficInfo (see Figure 4). The framework can be divided into two
parts, a standard XMPP server and a GTFS Emulator with an Analytics module.

 7

Figure 4: Smart timetable service architecture

3.1.1 XMPP Server

The XMPP server maps the public transport lines, stored in GTFS (Google Inc. 2006)
format, to a hierarchical pub/sub channel structure. Thus, the GTFS database is turned
into an XMPP pub/sub node hierarchy. This node structure facilitates searching and
selecting transit feeds according to user interest. The pub/sub node model for content
filtering in a transport information feed is depicted in Figure 5.

Figure 5: Publish/subscribe model for GTFS feeds

 8

Transit information and real-time event updates are handled in the Trip nodes at the leaf
level. The inner nodes in the node hierarchy contain only persistent data and references
relevant to the trips. The users can access the transit data via two ways, based on Routes
or Stops. When the user wants to see a given trip (vehicle) related traffic information the
route based filtering is applied. On the other hand, when the forthcoming arrivals at a
given stop (location) are of interest the stop based filtering is the appropriate access way.

For instance, the leaf node with trip ID “BKK-Routes-3040-In-A87757824” (cf. the
bracketed labels in the nodes of Figure 5) handles the transit feed and its real-time
updates related to Trip 2 in the inbound direction belonging to Route A of Agency BKK
(operator at Budapest, Hungary). On the other hand, node “BKK-Routes-3040” stores
persistent transit information with regard to Route A (e.g., route name, short name,
stops, head- signs), since references to all the currently active inbound trips are found in
node “BKK- Routes-3040-In”. Similarly, node “BKK-Stops-F01086” stores persistent
data with regard to the given stop (e.g., stop name, GPS coordinates) and lists the routes
this stop is part of. Furthermore, the trip ID of every active trip is listed in the route
node.

3.1.2 GTFS Emulator, Analytics Module

The GTFS Emulator provides the static timetable information, if it is available, as the
initial service. It basically uses the officially distributed GTFS database of the public
transport operator of the given city. However, it also relies on another data source, which
is OpenStreetMap (OSM) (Haklay & Weber 2008), a crowdsourcing based mapping
service. In OSM maps, users have the possibility to define terminals, public
transportation stops or even public transportation routes. Thus, the OSM based
information is used to extend and clean the information coming from the GTFS source.
The resulted data set reflects more accurately the actual situation in the given territory
because the OSM data is updated more frequently than the GTFS data set.

The Analytics module is in charge of the business logic offered by the service, e.g.,
deriving crowdedness information or estimating the time of arrivals at the stops from the
data collected by the crowd.

3.1.3 Front-end Application

The front-end application, called TrafficInfo, handles the subscription to the pub/sub
channels, collects sensor readings, publishes events to and receives updates from the
XMPP server, and visualizes the received information.

3.2 TrafficInfo

TrafficInfo has four main functions, such as visualization, information sharing, sensing
and stop event detection. These functions are discussed below.

 9

3.2.1 Visualization

Most of the users benefit from the visualization capability of TrafficInfo that visualizes
public transport vehicle movements on a city map. An example of this primary function
can be seen on Figure 6a displaying trams of line 1, 4, 6 and buses of line 7 and 86 on
the Budapest map in Hungary. The depicted vehicles can be filtered to given routes. The
icon of a vehicle reflects various attributes, such as the number, progress or crowdedness
of the specific vehicle. Clicking on a vehicle’s icon a popup shows all known
information about that specific vehicle.

(a) Vehicle visualization (b) User feedback form

Figure 6: TrafficInfo screenshots

3.2.2 Information Sharing

The second function serves for information sharing. Passengers can share their
observations regarding the vehicles they are currently riding. Figure 6b shows the
feedback screen that is used to submit reports. The feedback information is spread out
using the framework and displayed on the devices of other passengers, who might be
interested in it. It is up to the user what information and when he wants to submit.

 10

3.2.3 Sensing

The third function is collecting smartphone sensor readings without user interaction,
which is almost invisible for the user (it is done automatically in the background, the
only thing the user has to do is to start TrafficInfo). User positions are reported
periodically and are used to determine the vehicle’s position the passenger is actually
traveling on. In order to create the link between the passenger and the vehicle, the
movement of the user is identified through his activities. To this end various sensors are
used, e.g., accelerometer, and the timestamped stop events of the vehicles are deducted.
The duration between the detected stops coupled with GPS coordinates identifies the
route segment, which the user actually rides. With regard to the energy consumption of
the sensor readings we carried out some measurements. Our results showed that in case
of a normal daily scenario the readings and local processing consume 1.48 Wh energy on
average which is equivalent roughly to 20% of the capacity of an average smartphone
battery (2000 mAh, 3.7 V).

Besides the GPS coordinates Google also provides location information in those areas,
where there is no GPS signal available. Usually this position is highly inaccurate, but the
estimated accuracy is also provided. Moreover, the activity sensor, which guesses the
actual activity of the user, is also used by TrafficInfo. Currently, the supported activities
are: in vehicle, on bicycle, on foot, running, still, tilting, walking and unknown. The
sensor monitoring part of TrafficInfo is active only if the activity recognition reports in
vehicle status. Otherwise, sensor monitoring is suspended.

The collected sensor readings, on one hand, are uploaded to the XMPP server, where the
Analytics module processes and shares them among participants who are subscribers of
the relevant information; on the other hand, are used locally. For instance, based on the
timestamps of the detected stop events the server side analytics estimate the upcoming
arrival times of the given vehicle and disseminate live timetable updates to the
subscribers.

3.2.4 Stop Event Detection

The fourth, most challenging function of TrafficInfo is to detect stop events of public
transport vehicles without user interaction. TrafficInfo implements such a detector
locally on the mobile device. When stop events are detected a summary of information,
such as the location and timestamp of the event and the time elapsed since the last stop
event, is transmitted to the XMPP server. The final decision is made by the server based
on the periodic reports from the passengers. It is a majority decision, so if the majority of
the reports indicate a stop event within a given time window the detection is made
otherwise not.

The stop event detection mechanism is based on features. Hence, several features were
generated from the experimental usage logs collected during the measurements. In this
work, we investigated our detection mechanism only on trams and left buses/trains as
part of future work. The approximately 1GB measurement data were collected by 10
volunteers during the 1 month measurement period using Samsung Galaxy S3 and
Nexus4 smartphones. The gathered context data included among others GPS, Wi-Fi,

 11

cellular network and acceleration sensor readings. For classification the J48 decision tree
implementation of the Weka data-mining tool (Hall et al. 2009) was used. With the
combination of the defined features and models the detector can detect stop events
automatically with relatively high accuracy (with 0.86 AUC – Area Under the Curve)
within 13 seconds after the arrival at the station. The place of the stop event is decided
by investigating the GPS position and/or the Wi-Fi/cellular network fingerprint of the
environment, so stops at stations can be distinguished from other stops with high
probability.

4 Similar Services

This section gives an overview of similar crowd assisted transit-tracking systems and
approaches.

Moovit (Moovit Developers 2014) is a similar application to TrafficInfo, which is meant
to be a live transit app on the market providing real-time information about public
transportation. Moovit has been successful only in those cities where it has already a
mass of users, just like in Paris, and not successful in cities where its user base is low,
e.g., in Budapest. In order to create a sufficiently large user base Moovit provides,
besides live data, schedule based public transportation information as an initial service,
too. The source of this information is the company who operates the public
transportation network. Moovit partially relies on GTFS.

Several other mobile crowdsensing based transit-tracking ideas have been published
recently. For instance, Zhou, Zheng and Li (2012) propose a bus arrival time prediction
system based on bus passengers’ participatory sensing. The proposed system uses
movement statuses, audio recordings and mobile celltower signals to identify the vehicle
and its actual position. Thiagarajan et al. (2010) propose a method for transit tracking
using the collected data of the accelerometer and the GPS sensor on the users’
smartphone. Bedogni, Di Felice and Bononi (2012) use smartphone sensors data and
machine learning techniques to detect motion type, e.g., traveling by train or by car.
EasyTracker (Biagioni et al. 2011) provides a low cost solution for automatic real-time
transit tracking and mapping based on GPS sensor data gathered from mobile phones,
which are placed in transit vehicles. It offers arrival time prediction, as well.

These approaches focus on the data to offer enriched services to the users. The focus of
our work, in turn, is on how to introduce such enriched services incrementally. Namely,
how one can create an architecture and service model, which allows incremental
introduction of live updates from participatory users over static services that are
available in competing approaches. Hence, our work, in essence, complements the above
ones.

 12

5 Summary

In this chapter, first a generic, XMPP based communication framework was introduced
which was designed to facilitate the development of crowd assisted smart city
applications. Then a prototype crowdsensing based smart timetable service, implemented
on top of this generic framework, and its front-end Android application, called
TrafficInfo, together with an automatic stop event detector were presented. This service
updates static public transport timetables and delivers the updated information to its
subscribers in real-time.

Acknowledgement

This work was partially supported by the TÁMOP-4.2.2.C-11/1/KONV-2012-0001 and
the EITKIC 12-1-2012-0001 projects. The author would like to acknowledge the support
and help of the participants of these projects, especially the contribution of Timon
Tomás, Ádám Zsolt Nagy, Róbert Szabó, Imre Lendák, Bernát Wiandt, András Benczúr,
Csaba Sidló and Gábor Fehér. Károly Farkas has been partially supported by the
Hungarian Academy of Sciences through the Bolyai János Research Fellowship.

References

Bedogni, L and Di Felice, M and Bononi, L 2012 By Train or by Car? Detecting the
User’s Motion Type Through Smartphone Sensors Data. In Proceedings of IFIP
Wireless Days Conference (WD 2012), Dublin, Ireland on 21-23 November 2012, pp. 1–
6.

Biagioni, J and Gerlich, T and Merrifield, T and Eriksson, J 2011 EasyTracker:
Automatic Transit Tracking, Mapping, and Arrival Time Prediction Using Smartphones.
In Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems
(SenSys 2011), Seattle, WA, USA on 1-4 November 2011, pp. 1–14.

Google Inc. 2006 General Transit Feed Specification Reference, 25 September 2006.
Available at https://developers.google.com/transit/gtfs/reference/ [Last accessed 25 June
2015].

Haklay, M M and Weber, P 2008 OpenStreetMap: User-Generated Street Maps. IEEE
Pervasive Computing, 7(4): 12–18. DOI: http://dx.doi.org/10.1109/MPRV.2008.80

Hall, M and Frank, E and Holmes, G and Pfahringer, B and Reutemann, P and
Witten, H. I 2009 The WEKA Data Mining Software: An Update. SIGKDD
Explorations, 11(1): 10-18. Available at http://www.kdd.org/sites/default/files/issues/11-
1-2009-07/p2V11n1.pdf

 13

Moovit Developers 2014 Moovit. Available at http://www.moovitapp.com/ [Last
accessed 25 June 2015].

Saint-Andre, P 2011 Extensible Messaging and Presence Protocol (XMPP): Core, RFC
6120 (Proposed Standard), Internet Engineering Task Force, March 2011. Available at
http://www.ietf.org/rfc/rfc6120.txt [Last accessed 25 June 2015].

Szabo, R L and Farkas, K 2013 A Publish-Subscribe Scheme Based Open Architecture
for Crowd-sourcing. In Proceedings of 19th EUNICE Workshop on Advances in
Communication Networking (EUNICE 2013), Chemnitz, Germany on 28-30 August
2013, pp. 1–5.

Thiagarajan, A and Biagioni, J and Gerlich, T and Eriksson, J 2010 Cooperative
Transit Tracking Using Smart-phones. In Proceedings of the 8th ACM Conference on
Embedded Networked Sensor Systems (SenSys 2010), Zurich, Switzerland on 3-5
November 2010, pp. 85–98.

Zhou, P and Zheng, Y and Li, M 2012 How Long to Wait?: Predicting Bus Arrival
Time with Mobile Phone based Participatory Sensing. In Proceedings of the 10th
International Conference on Mobile Systems, Applications, and Services (MobiSys
2012), Low Wood Bay, Lake District, UK on 25-29 June 2012.

