1. Bevezetés, célkitűzés

Jelen pályázat fő célkitűzése fémion-adszorbeált duzzadó agyagásványok ásványtani jellemzése nedvesítési–kiszárítási ciklusok során. Végső célfeladat az ezek következtében fellépő változások nyomon követése és lehetséges prognosztizálása.

A laboratóriumi nedvesítési–kiszárítási ciklusokkal jól modellezhetőek a hazánk éghajlatából adódó évszakosan – illetve rövidebb periódusú változásokkal – ismétlődő nedves és száraz talajállapotok és ezek következményei. A nedvesedés és kiszáradás jelentősége mesterséges földtani közegek minősítésénél is fontos, mivel száraz állapotban a nagy duzzadó agyagásvány-tartalmú anyag megrepedezik, permeabilitása nő.

2. A téma irodalmi összefoglalása

2.1. A nedvesítés–kiszárítás hatása szmektitek szerkezetére

Az agyagásványtan mintegy fél évszázada – a modern diffraktométerek térhódítása óta – kurrens témaként kezeli a kálium szmektitekben való megkötődésének kutatását (WEAVER, 1958). Földtani és talajtani folyamatokban betöltött szerepének köszönhető a reakció fontosságának korai és széleskörű felismerése. Finomszemcsés üledékek kőzetté válása során a szmektit illitté alakul. Ez a folyamat a kálium stabil megkötődésével és a kezdetben duzzadó szmektitek nem duzzadó rétegekké történő átalakulásával jár. Ez az ásványátalakulás az üledékes medencék diagenezisének legalapvetőbb folyamata, mellyel analóg reakció hidrotermás rendszerekben is végbemegy.

Az előbbiekkel egyidejűleg korán felismerték a folyamat meglétét és fontosságát talajokban is (PAGE et al., 1967). Évekig tartó műtrágyázás a szmektittartalmú talaj illitesedéséhez vezet, melynek következtében csökken a kálium növények általi felvehetősége, valamint a talaj duzzadóképessége, továbbá romlik adszorpciós kapacitása. Hazánkban Stefanovits Pál nevéhez fűződik talajok káliumtartalma és agyagásványos karaktere közti összefüggések vizsgálata. Nemzetközi jelentőségűek az előzőekhez köthető talajsavasodásra vonatkozó eredményei (STEFANOVITS, 1989).

A későbbiekben egyértelművé vált, hogy a kálium megkötődése és annak következménye a szmektiteken kívül a vermikulitokra is jellemző (PAGE et al., 1967). Így elmondható, hogy a kristály-szerkezet stabilizálódása kálium hatására – tulajdonképpen illitesedés – a duzzadó agyagásványok leglényegesebb átalakulási folyamata, mely az ásvány tulajdonságainak komoly megváltozását vonja maga után.

A fenti természetes útvonalaknak megfelelően laboratóriumban káliumfixáció kétféleképpen vihető végbe:

- 1) szmektitek káliumtartalmú oldatban történő hidrotermás kezelése révén;
- 2) káliumszmektitek ciklikus nedvesítésével és kiszárításával (*wetting-drying cycles*, *röviden WD*).

Mivel a tervezett kutatás nem hidrotermás rendszerekben, hanem felszíni-felszínközeli, közönséges környezetekben tervezi vizsgálni a kationfixációt, a továbbiakban csak ezzel a kísérlettel foglalkozunk.

Az egyszeri káliumtelítés után a rétegközi kálium szerkezetkollapszust ugyan okoz, de még kicserélhető állapotban marad. Az ezt követő ismétlődő nedvesítési–kiszárítási ciklusok a kálium stabil szerkezeti megkötődéséhez, fokozatos illitesedéshez vezetnek. Általában 40–60 nedvesítési–kiszárítási ciklus után már elhanyagolható a kálium hatására összeomlott rétegek számának növekedése és kialakul a végleges szerkezet, mely egy kevert szerkezetű illit/szmektit fázisnak tekinthető (EBERL et al., 1986). A nedvesítési–kiszárítási ciklusok utáni végleges agyagásvány szerkezetben a létrejött illit rétegek aránya egyenes arányban

növekszik a kiinduló duzzadó agyag-ásvány rétegtöltésével (HORVÁTH ÉS NOVÁK, 1975; ŠUCHA ÉS ŠIRÁNOVÁ, 1991). A rétegtöltés nagysága – mint legmeghatározóbb alaptényező – mellett a végtermék ásványtani összetételét befolyásolják további olyan paraméterek is, mint a rétegtöltés eredete, szerkezeti- és kationrendezettség, szemcseméret és alak (CUADROS, 2002).

Újabban az analitikai módszerek fejlődésével fény derült arra, hogy NH4⁺ (ŠUCHA ÉS ŠIRÁNOVÁ, 1991) és Cs⁺ ionok a káliumhoz hasonlóan viselkednek (CUADROS, 2002). A cézium adszorpciójának vizsgálata nedvesítési–kiszárítási ciklusokban a radioaktív szennyező-források számának megnövekedésének tulajdonítható. A radiocézium fixációját elősegíti a nedvesítési–kiszárítási ciklusoknak kitett káliumbentonit s ezáltal akadályba ütközik az, hogy a szennyezőanyag a növényekbe kerüljön (DEGRYSE et al., 2004; VANDENHOVE et al. 2005). A céziumos nedvesítési–kiszárítási kísérletek végterméke is egy illitszerű anyag. A kiindulási anyagban háromdimenziós szerkezeti rendeződés megy végbe. Ez jó lehetőségnek tekinthető a szmektitek reális kristályszerkezetének tanulmányozásában, mely egyébiránt rendezetlenségük miatt nagyon nehéz feladat és a mai napig számos nyitott kérdést tartalmaz (CUADROS, 2002).

Kísérletek bizonyítják, hogy talajokban az évszakos illetve sűrűbb periodicitású nedvesedésikiszáradási ciklusok különböző fémes nyomelemek átrendeződését okozzák a talajkomponensek között (HAN et al., 2001).

Az előzőektől eltérő jellegű, azonban a duzzadó agyagásványokhoz továbbra is szorosan kötődő, igen terjedelmes kutatási téma a talajok és a legkülönbözőbb földtani képződmények fizikai változásainak vizsgálata (pl. tágulás–zsugorodás). A nedvesítési–kiszárítási ciklusok során megváltoznak a talaj fizikai paraméterei, többek között előrehalad az aggregátum-képződés (RAJARAM ÉS ERBACH, 1998).

2.2. A nedvesítési-kiszáradási ciklusok hatása talajokban

A nedvesítés–szárításnak jól megfigyelhető, jellegzetes hatása van különböző agyagok mikroszerkezetére (Tessier et al., 1990). A nedvesítés a különböző duzzadásfajtákon (mechanikai, ozmotikus, kristályrácson belüli), a levegő befogódásán, valamint az elektromos kettős-réteg kiterjedésén keresztül okoz talajszerkezeti változásokat. Száradás során diszpergált anyag ülepedik ki a talajszuszpenzióból és a szemcsék vagy aggregátumok újrarendeződnek. A nedvesítéssel járó változások nem teljesen visszafordíthatóak, így a nedvesítési–kiszárítási ciklusok előrehaladtával fokozatosan fejlődik a talajszerkezet. A nedvesítés hatása függ a nedvesítés típusától (pl. bő elárasztás, lassú vagy gyors kapilláris nedvesítés, esőcseppszerű nedvesítés) valamint az oldat kémiai összetételétől. A változások egyrészt makroszerkezeti léptékben nyilvánulnak meg, mely elsősorban az aggregátumok méretének és alakjának megváltozásában, az egyedi aggregátumok stabilitásában, és az ezt jellemző szakítószilárdságban jelennek meg (Hussein és Adey, 1995).

3. Anyag és módszer

3.1. A felhasznált anyagok jellemzése

A kísérletekben a következő agyagásványokat, nagy agyagtartalmú mintákat használtam:

SWy-2 – Wyoming bentonit (Egyesült Államok), kis rétegtöltésű montmorillonit IMB – Istenmezei bentonit (Magyarország), kis-közepes rétegtöltésű montmorillonit, cristobalittal **VCB** – Valea Choarului bentonit (Románia), nagy rétegtöltésű montmorillonit, cristobalittal és kőzetüveggel

MU-I – Muzdaj (Románia) beidellites szmektit sok cristobalittal

91B1 – Karancs hegység, agyagbemosódásos barna erdőtalaj szelvény E szintje,

klorit/vermikulit kevert szerkezet, pedogén vermikulit, hidroxi-közberétegzett vermikulit

RV – Ransbach (Ausztria) makroszkópos vermikulit

1314 - Cserhát, nagy szmektittartalmú agyagbemosódásos barna erdőtalaj

3.2. Adszorpció, kationtelítés

A fémion adszorpciós kísérletekben az oldatok készítéséhez analitikai tisztaságú CuSO₄ \odot 5H₂O, Zn(NO₃)₂ \odot 6H₂O, Pb(NO₃)₂, Cd(NO₃)₂ \odot 4H₂O, Co(NO₃)₂ \odot 6H₂O 6H₂O Reanal vegyületeket használtam. Az adszorbeálás a megfelelő fémoldat 1000 mg/l koncentrációjú oldatával készült, a kísérlet két napig tartott.

A felülúszó oldatban maradt fémionok koncentrációit mérték a Geokémiai Kutatólaboratórium PerkinElmer 5000 atomabszorpciós spektrofotométerén, lángtechnikájú módszer alkalmazásával. A kiindulási és az egyensúlyi koncentrációk különbsége adja az agyagok által megkötött fémionok mennyiségét.

3.3. Nedvesítési-száradási kísérlet

A kutatás legidőigényesebb része maga a nedvesítési–kiszáradási kísérlet volt. Az adszorbeált mintákat mérőhengerbe töltöttem, majd annyi desztillált vizet adtam hozzá, hogy teljesen átnedvesedjen a minta és a tetején még maradjon kevés szabad víz. Ezután az edényeket vízfűrdőn szárítottam, tehát a víz a szobahőmérsékletnél melegebb volt.

3.4. Analitikai módszerek

Röntgendiffrakciós vizsgálatok

A centrifugálással leválasztott szilárd fázisokat desztillált vízzel háromszor átmostam, majd szobahőmérsékleten száradni hagytam és óvatosan porítottam. A röntgendiffrakciós vizsgálatokhoz minden mintának azonos anyagmennyiségéből (3,3 mg/cm²) desztillált vízzel üveglemezre ülepített szuperorientált preparátumokat készítettem. A preparátumokat közvetlenül a mérés megkezdéséig exszikkátorban állandó, kis, mindvégig ellenőrzött relatív páratartalomban (25-30 %) tartottam, hogy kiküszöböljem a duzzadó szmektitek eltérő vízadszorpciójától eredő hibákat a szerkezet-vizsgálatok során. Az agyagminták etilénglikolos és glicerines telítése a megfelelő szolvatáló anyag gőzében, zárt térben történt, 60 illetve 95°C-on 16 órán keresztül. A vizsgált mintákkal együtt mindig helyeztem a gőzölő edénybe egy ismert duzzadási tulajdonságú szmektit preparátumot is, hogy ellenőrizzem gasználhatóak-e a szerves reagensek. A Mg-, K- és Li-telítéshez a mintákat a megfelelő kloridok 1 N oldatával kevertem össze és rázattam egy éjszakán át. Centrifugálás után ezt még egyszer megismételtem, majd desztillált vízzel háromszor kimostam.

A röntgendiffrakciós vizsgálatokat a Geokémiai Kutatólaboratórium PHILIPS PW 1730 készülékén végeztem Cu K_{α} sugárzással, grafit monokromátor alkalmazásával 45 kV gyorsítófeszültség és 35 mA csőáram mellett. Az alkalmazott divergencia- és detektorrés 1°- os volt. A felvételek 2–25° 2 Θ tartományban készültek, 0,02° -os 2 Θ lépésközönként 2 mp-es beütési idő mellett.

Transzmissziós és analitikai transzmissziós elektronmikroszkópos vizsgálatok (TEM, ATEM)

A TEM vizsgálatokhozmintákat alkohol alatti gyengéd porítással szuszpendáltuk, majd ezt követően a híg szuszpenziót amorf szén lyukhártyával bevont réz hordozó rostélyra csöppentettem. A műszeres vizsgálatok a Bay Zoltán Nanotechnológiai Kutatóintézet (Miskolc) 200 kV-os, EDAX energiadiszperzív röntgenspektrométerrel felszerelt FEI Tecnai G2 transzmissziós elektronmikroszkópjával történtek. A méréseket Pekker Péter végezte. Készültek.

Fourier transzform infravörös spektroszkópiai vizsgálatok (FTIR)

A FTIR vizsgálatokat a Szent István Egyetem Talajtani Tanszékének (Gödöllő) Bio-Rad FTS spektrométerén magam végeztem. 10 mg mintát 400 mg of KBr-al összekeverve készítettem a korongokat. A méréshez 64 szkennelés történt a 4000–400 cm⁻¹ spektrumtartományban 8 cm⁻¹ -es felbontással.

4. Eredmények

Az OTKA kutatás keretében 15 nedvesítési–kiszáradási kísérletet fejeztem be, melyek 80, 100, 120 vagy 140 ciklusig tartottak. A befejezett ciklusok számát két tényező határozta meg. Egyfelől az, hogy milyen gyorsan száradt ki egy minta, mely összefügg a minta vízadszorbeáló képességével. Másfelől pedig a kiindulási minta mennyisége, ami azt jelenti, hogy akkor lett vége egy kísérletnek, amikor az anyag elfogyott.

A kísérletek során átlagban 7-8 mintát vettem, ezekről összesen 338 röntgendiffrakciós és 38 infravörös spektroszkópos felvételt készítettem. Tizénkét minta került TEM vizsgálatra, melyből eddig nyolcnak a vizsgálata készült el, összesen 159 TEM képpel, 111 elektrondiffrakciós felvétellel és 123 egyedi agyagszemcse kémiai elemzésével. Ezeket a vizsgálatokat még néhány ESR méréssel egészítettem ki a réz-adszorbeált mintáknál.

Az eredményeket témakörök, anyagcsoportok ill. a vizsgálati módszerek szerint szétválasztva kívánom bemutatni. Olyan formában, hogy minden egyes fejezet egy tudományos publikációnak felel meg, melyek nagyrészt még nem jelentek meg, de a közeljövőben mindenképpen fontosnak tartanám és tervezem őket közzé tenni.

4.1. Réz- és ólomadszorbeált kis- és nagy rétegtöltésű montmorillonitok viselkedése és más kationokkal történő lecserélhetősége nedvesítési-kiszáradási ciklusokban

Ez a dolgozat az esszenciális-toxikus rézre és a toxikus ólom esetleges, a nedvesítéskiszáradás során történő fixációját vizsgálja. A dolgozat anyagát az adszorpciós eredményekkel, a kísérletek leírásával és a röntgendiffrakciós eredményekkel már konferencián bemutattam, egy hosszabb lélegzetű kivonat, ábrákkal meg is jelent belőle: Németh T. (2008): Lead and copper adsorbed montmorillonites in wetting and drying cycles. In: Resumen de Comunicaciones. XXVIII Reunión de la Sociedad Espanola de Mineralogia (16-19 September 2008, Zaragoza, Spain), Macla 9: 173-174.

Bővebben, ábrák bemutatásával csak az azóta készült vizsgálatok eredményeit mutatom be, a már közölt eredményeket csak egy-egy mondatban összegzem.

A kísérletkehez az SWy-2 (kis rétegtöltésű) és a VCB (nagy rétegtöltésű montmorillonit) mintákat használtam. Mindkét montmorillonitra mindkét fémion esetében a félérték-szélesség növekedése volt megfigyelhető a nedvesítési–kiszáradási ciklusok számának növekedésével. A nehézfémekkel adszorbeált és a nedvesítési–kiszáradási ciklusoknak alávetett mintákat különféle kationokkal telítettem (Li⁺, Mg²⁺, K⁺). A röntgendiffrakciós vizsgálatok alapján a kálium tűnt olyannak mely nem cserélte le teljesen az ólmot, illetve egyre kevesebbet cserélt le, ahogy növekedett a nedvesítési–kiszáradási ciklusok száma. Ez főként a nagy rétegtöltésű VCB montmorillonit esetében volt szembetűnő (1. ábra). A 20. ciklustól kezdve a K-telített

mintára jellemző 11,8 Å-ös reflexió egyre kisebb szögek felé tolódott, a 60. ciklus után már egy jelentősen kiszélesedett reflexió jelent meg 13,2 Å-nél. A kálium tehát az ólom fokozódó fixációja miatt nem tudta lecserélni azt.

Az egyedi montmorillonit szemcsék analitikai TEM kémiai elemzése alátámasztotta az ólom fixációját, K-által nem lecserélhető formáját (1. és 2. táblázat). Bár a telítés után nagy mennyiségben tartalmaznak a szemcsék káliumot, a mért ólom mennyisége még több is, mint a káliummal nem telített minta esetében. Ez persze nem feltétlenül azt jelenti, hogy nőtt volna a montmorillonit ólomtartalma, hanem abból fakad, hogy annyira heterogén lehet a szemcsék közti eloszlása és természetesen a két mérés során nem ugyanazokat a szemcséket elemezzük. Mindenesetre az tény, hogy jócskán maradt ólom a mintákban a K-telítés után. Hasonló mérési eredményeket kaptam a kis rétegtöltésű SWy-2 montmorillonit esetében is. Az ólom erősebb megkötődésére utal az is, hogy a nedvesítési–kiszáradási ciklus előrehaladtával egyre diffúzabb az etilén-glikollal szolvatált montmorillonit 001 csúcsa. Bár a TEM vizsgálatok nagy költsége miatt réz-adszorbeált mintákról nem történt ATEM kémiai elemzés, a röntgendiffrakciós vizsgálatok arra utalnak, hogy a réz a kálium által lecserélhető formában van jelen a montorillonitokban.

1. ábra: Ólom-adszorbeált majd kálium-telített VCB montmorillonit röntgendiffraktogramjai különböző számú nedvesítési–kiszáradási ciklus után.

szemcse	0	Si	Al	Mg	Fe	Pb
m01	70.14	20.17	7.56	1.86	0.21	0.02
m02	65.69	23.34	7.45	2.78	0.61	0.09
m03	66.94	21.35	9.1	2.07	0.38	0.13
m04edx01	65.39	23.05	8.3	2.25	0.81	0.17
m04edx02	67.68	22.23	7.68	1.73	0.59	0.06
m05	61.81	27.45	8.56	1.68	0.42	0.06
m06	64.43	23.33	7.65	2.43	0.42	0.34
m07	63.25	24.04	9.96	2.59	0.14	0
m08	68.2	20.72	7.93	2.38	0.36	0.38
m09	71.07	25.4	2.96	0.42	0.09	0.04
m10	68.11	20.87	8.13	2.19	0.48	0.2
m11	69.24	26.22	3.36	1.12	0	0.03
m12	71.67	19.7	6.72	1.68	0.2	0
x5	66	29.62	3.43	0.7	0	0.23
átlag	67.12	23.39	7.06	1.85	0.34	0.125

1. táblázat: Egyedi szemcsék kémiai összetétele (ATEM) az ólom-adszorbeált VCB montmorillonit mintában 60 nedvesítési–kiszáradási ciklus után

	0	Si	Al	Mg	Fe	K	Pb
m01	68.46	20.76	8.13	1.93	0.33	0.34	0.01
m02	60.89	26.39	8.78	2.09	0.54	1.16	0.12
m03	63.71	25.65	7.64	2.02	0.43	0.42	0.08
m04	39.94	46.01	10.47	2.22	0.77	0.29	0.25
m05	57.17	28.98	9.98	2.1	0.6	1.03	0.11
m06edxa	61.53	30.89	5.52	1.13	0.21	0.44	0.23
m06edxb	64.56	24.5	8.02	1.75	0.34	0.62	0.17
m07	55.47	34.1	6.89	1.58	0.46	1.31	0.17
m08	66.72	23.48	6.85	1.55	0.41	0.73	0.23
m09edxa	66.44	26.18	5.05	1.1	0.4	0.7	0.1
m09edxb	69.09	21.69	6.47	1.5	0.44	0.7	0.07
m10	70.82	22.97	4.46	1.02	0.23	0.44	0.02
m11	65.46	26.63	5.47	1.44	0.31	0.62	0.04
m12	62.21	25.29	7.01	1.63	1.73	1.5	0.6
átlag	62.32	27.39	7.20	1.65	0.51	0.74	0.16

2. táblázat: Egyedi szemcsék kémiai összetétele (ATEM) az ólom-adszorbeált majd káliummal telített VCB montmorillonit mintában 60 nedvesítési–kiszáradási ciklus után

Az eredményeknek komoly környezet-geokémiai jelentőségük van. Az ólom, mint toxikus nehézfém mobilitását, felvehetőségét montmorillonitos közegben jelentősen befolyásolja annak nedves–száraz periodusoknak való kitettsége.

4.2. Ólom-adszorbeált vermikulit és talajvermikulit nedvesítési-kiszáradási ciklusokban

A vermikulitok nagy rétegtöltésű duzzadó agyagásványok, melyek nagyon elterjedtek mérsékelt övi talajokban – így hazánkban is – ahol klorit vagy csillámok átalakulása útján képződnek. Nagy rétegtöltésüknek és duzzadóképességüknek köszönhetően a legnagyobb kationcserélő- és adszorpciós kapacitással rendelkező szervetlen talajkomponensek. A talajfolyamatok során bekövetkező átalakulásuk s ezáltal fenti paramétereik megváltozása tehát jelentősen befolyásolja az adott talaj fiziko-kémiai tulajdonságait. Az OTKA kutatás keretein belül két különböző vermikulitot vizsgáltunk. A ransbachi vermikulit (RV) kontaktmetamorf eredetű makroszkópos vermikulit, az ezen ásványcsoportra jellemző röntgendiffrakciós jellemvonásokkal: korlátozott duzzadás etilén-glikolra 16 Å-re, a Mgtelített minta nem duzzad glicerinre, kálium-fixáció ill. hevítés hatására és a szerkezet összeesése 14,4-ről 10 Å-re. A 91B1 jelű minta a Karancsból származik egy agyagbemosódásos barna erdőtalaj kilúgzási E szintjéből. A részletes agyagásványtani vizsgálatok alapján (NÉMETH és SIPOS, 2005) tipikusan pedogén eredetű. Egyrészt kevert szerkezetű klorit/vermikulitból áll, mely a mállás, talajképződés során képződött a slír alapkőzet kloritjának fokozatos vermikulitosodásával. A további talajfejlődés során neoform, tipikusan pedogén eredetű dioktaéderes Al-vermikulit képződött, mely részben Al-hidroxi közberétegzést is tartalmaz. A hidroxiközberétegzés miatt etilén-glikolra csak 15,5 Å-re duzzad, valamint szerkezete csak részben omlik össze 10 Å-re hevítés vagy K-telítés hatására. A káliumfixáció jelensége és jelentősége már régóta ismert vermikulitok esetében (PAGE et al., 1967). Nedvesítési-kiszáradási ciklusok hatására a kálium erősen megkötődik a vermikulit szerkezetében és végül egy illit-szerű 10 Å-ös, nem duzzadó, K-tartalmú agyagásávány jön létre. Ennek a talajok tápanyagforgalmában van óriási jelentősége, ugyanis az ily módon fixálódott káliumot már nem képesek a növények felvenni. Korábbi vizsgálataink azt sugallták, hogy a kálium és az ólom hasonlóan viselkedik vermikulitban, azonos adszorpciós

helyen kötődnek meg és ez hasonló következményekkel jár: a szerkezet részleges összeesésével és a duzzadóképesség csökkenésével (SIPOS et al., 2005).

A fenti felismerés ösztönzött arra, hogy megvizsgáljam vajon az ólom hasonlóan viselkedik-e nedvesítési–kiszáradási ciklusokban mint a kálium, összehasonlítva egy sztenderdként szolgáló makrsozkópos vermikulitot egy hazánkban gyakori talajvermikulittal.

Mindkét vermikulitos agyag rendkívül nagy mennyiségben adszorbeálta az ólmot 5,3-5,5 körüli pH-n az 1000 mg/l koncentrációjú Pb-nitrát oldatból. A 91B1 jelű talajvermikulit 43000 mg ólmot adszorbeált kilogrammonként, míg az RV minta kétszer annyit, 86000 mgot. Ez a mennyiség óriási, melyből a mosások után csak pár % deszorbeálódott.

Az 1. ábrán látható, hogy az ólomadszorbeált RV makroszkópos vermikulit 100 nedvesítési– kiszáradási cikluson keresztül gyakorlatilag nem változik, bázisreflexiója 14,4 Å-ös, amely arra utal, hogy a Pb²⁺ két vízrétegű formában van jelen a rétegközi térben. A 100. ciklusig a vermikulit bázisreflexiójának félérték-szélessége 0,25 °2θ körül szór, tendenciózusan nem változik. Szembetűnő változás figyelhető azonban meg a 120. ciklus után. A bazális rácssíktávolság némiképp nőtt 14,6 Å-re, a félérték-szélesség pedig 0,37 °2θ-ra, azaz másfélszeresére növekedett. Ez jelentheti a egyrészt a vermikulit-krisztallitok vastagságának hirtelen csökkenését, vagyis, hogy kevesebb elemi 2:1 rétegszilikát egység van jelen egy-egy önállóan diffraktáló szemcsében. Ezenkívül jelentheti azt is, hogy a vermikulit szerkezete rendezetlenebbé vált, az egymásra rakodó rétegek közti szabályosság romlott.

1. ábra: Ólom-adszorbeált RV makroszkópos vermikulit röntgendiffraktogramjai különböző számú nedvesítési–kiszáradási ciklus után

Még inkább szembetűnő változás figyelhető meg az etilén-glikolos felvételeken (2. ábra). A kiindulási Pb-vermikulitnak csak egy kis hányada mozdul el 15,5 Å felé, nagy része nem duzzad. Már az 5. nedvesítési–kiszáradási ciklus után azonban egy jóval szélesebb, diffúzabb csúcs jelenik meg, mely egy 14,7 és egy 16 Å körül jelentkező maximum miatt jön létre. A ciklusok előrehaladtával a 40. ciklustól kezdve, fokozatosan 16 Å felé tolódik el ez a csúcs. Kezdetben tehát egy rétegű elrendezésben van az etilén-glikol a vermikulit rétegközi terében, majd a ciklusok számának növekedésével egyre több azon rétegek száma, melyben két réteg etilén-glikol interkalálódott.

2. ábra: Etilén-glikollal szolvatált, ólom-adszorbeált RV makroszkópos vermikulit röntgendiffraktogramjai különböző számú nedvesítési–kiszáradási ciklus után

A félérték-szélesség és a duzzadás növekedése ellentétes folyamatra utal, mint amit kálium hatására tapasztalnunk kellene, azaz a szerkezet stabilizálódását, rendeződését, a duzzadóképesség elvesztését, azaz illitesedést. Amivel a Pb-vermikulit esetében számolnunk kell a nedvesítés–kiszáradás hatására az inkább egyfajta szmektitesedés, a krisztallitok szétesése, méretének csökkenése, a szerkezet rendezetlenebbé válása és a duzzadóképesség növekedése. A vermikulit rétegközi tere tehát a víz szakaszonkénti, nagyszámú hozzáadásával egyre inkább hidratálódik, a kezdetben zártabb szerkezet felnyílik.

A 3. ábrán a Pb-talajvermikulitról készült röntgendiffrakciós felvételek láthatóak a nedvesítési–kiszáradási ciklusok után. Sajnos az anyag elfogyott a 100. ciklus után, de így is jól látható, hogy a kiindulási Pb-vermikulit csúcs 13,7 Å-ről a ciklusok számának növekedésével 14,2 Å-re tolódott, ami hasonló hidratálódást sejtet, mint amit a makroszkópos vermikulitnál tapasztalhattunk. A 14 Å körüli csúcs intenzitásának csökkenése a a 10 Å-öshöz képest, valamint a szélesedése szintén a kristályszerkezet rendezetlenebbé válására utal.

3. ábra: Ólom-adszorbeált 91B1 talajvermikulit röntgendiffraktogramjai különböző számú nedvesítési-kiszáradási ciklus után

Ezt az etilén-glikolos felvételek is alátámasztják, bár már a kiindulási minta is mutat duzzadást, de az erre utaló 15 Á-ös reflexió egyre egyértelműbbnek látszik a ciklusok számának növekedésével (4. ábra).

4. ábra: Etilén-glikollal szolvatált, ólom-adszorbeált 91B1 talajvermikulit röntgendiffraktogramjai különböző számú nedvesítési-kiszáradási ciklus után

A vizsgálatok egyik célja az volt, hogy a kálium és ólom hatását összehasonlítsam a vermikulit szerkezetére. Ehhez a Pb-adszorbeált nedvesítési–kiszáradási ciklusokon átesett vermikulitot káliummal telítettem. A diffraktogramok alapján arra következtethetünk, hogy a kálium lecseréli az ólmot, erre utal a megnövekedett 10 Å-ös csúcs, ami a sima káliumtelített mintára jellemző. Mindazonáltal a 10 és 13,7 Å körüli csúcsok egymáshoz viszonyított aránya csökken a nedvesítési–kiszáradási ciklusok számával, ami utalhat arra, hogy az ólom egy része már a kálium által lecserélhetetlen formába került. Sajnos a további ciklusok vizsgálatára eddig még nem került sor, ami bizonyítaná ezt a tendenciát, de a közeljövőben még el fogom végezni ezt a kísérletet a 100. vagy 80. ciklus után. Az 5. ábrán a pontozott görbe a megfelelő minta etilén-glikollal szolvatált felvételét mutatja. A 13,7 Å-ös fázis – korlátozott mértékben ugyan – de teljes egészében duzzad, míg a 10 Å-re összeesett (K-telített közberétegzést nem tartalmazó tiszta vermikulit csak részben duzzad).

3. ábra: Ólom-adszorbeált majd kálium-telített 91B1 talajvermikulit röntgendiffraktogramjai különböző számú nedvesítési–kiszáradási ciklus után. Pontozott görbék: etilén-glikollal szolvatált minta.

Összefoglalásként elmondható, hogy a két különböző vermikulit kimagasló mennyiségben köti meg az ólmot. Nedvesítési–kiszáradási ciklusok hatására ezek a Pb-vermikulitok ellenkezően viselkednek, mint az irodalomból ismert K-vermikulitok: szerkezetük

degradálódik, rendezetlenebbé válik, duzzadóképességük növekszik. A sokszori hidratációnak köszönhetően tehát inkább szmektitesedésre emlékeztető átalakulás játszódik le.

4.3. A nedvesítés-kiszárítás hatása réz-adszorbeált Istenmezei montmorillonit ásványtani jellemzőire

Ez a munka kézirat formájában elkészült és elküldés előtt áll a Journal of Central European Geology című folyóiratba. Címe: *Németh Tibor: Effect of wetting-and-drying on the mineral characteristics of Cu-adsorbed bentonite from Istenmezeje*. A kézirat röviden a következőket tárgyalja.

A 12,5 Å körüli bázistávolság alapján a réz egy vízrétegű formában van jelen a montmorillonit rétegközi terében. Ez a nedvesítési–kiszáradási ciklusokkal nem változik (1. ábra). A Cu-montmorillonit a nedvesítési–kiszáradási ciklusok után is teljes mértékben duzzad 17 Å-re etilén-glikol gőzében (2. ábra). Ezzel szemben a glicerin-szolvatáció már nem eredményez tökéletes duzzadást (3. ábra). Minél több nedvesítési–kiszáradási cikluson esett át a minta annál korlátozottabban duzzad.

1. ábra: Réz-adszorbeált Istenmezei montmorillonit röntgendiffraktogramjai különböző számú nedvesítési-kiszáradási ciklus után

2. ábra: Réz-adszorbeált etilén-glikollal szolvatált Istenmezei montmorillonit röntgendiffraktogramjai különböző számú nedvesítési-kiszáradási ciklus után

3. ábra: Réz-adszorbeált etilén-glikollal szolvatált Istenmezei montmorillonit röntgendiffraktogramjai különböző számú nedvesítési–kiszáradási ciklus után

A nedvesítési–kiszáradási ciklusok számának növekedésével kismértékben, de fokozatosan csökken a 001 reflexió intenzitása. Ezzel egyidejűleg pedig fokozatosan, egyértelműen növekszik a 001 csúcs félérték-szélessége (4. ábra). Ez arra utal, hogy a Cu-montmorillonit doménmérete fokozatosan csökken a nedvesítési–kiszáradási ciklusok előrehaladtával. Hasonló jelenség figyelhető meg az etilén-glikollal szolvatált minta felvételén is.

4. ábra: Réz-adszorbeált Istenmezei montmorillonit XRD paraméterei különböző számú nedvesítési–kiszáradási ciklus után. (fekete = félértékszélesség, piros = csúcs alatti terület)

5. ábra: Réz-adszorbeált Istenmezei montmorillonit FTIR felvételei különböző számú nedvesítési-kiszáradási ciklus után

A nedvesítési–kiszáradási ciklusok számának növekedésével megjelenik egy csúcs 1435 cm⁻¹ -nél a FTIR felvételeken, melynek fokozatosan nő az intenzitása (5. ábra). Az irodalomban nem találtam adatot arra, hogy ez a csúcs minek felel meg. Ennek feltárása még további kutatás igényel. Mindazonáltal arra enged következtetni, hogy a montmorillonit felbomlik a kísérlet során és létrejön egy új kötésekkel, új atomi környezettel jellemezhető fázis. Ennek kialakulása összefüggésben van a nedvesítési–kiszáradási ciklusokkal, de függetlennek látszik a rétegközi térben adszorbeálódott fémion minőségétől.

4.4. Pb-adszorbeált Istenmezei montmorillonit szemcse- és krisztallitméret-csökkenése nedvesítés-kiszáradás hatására: XRD és TEM vizsgálatok

Ez a munka hozta a legizgalmasabb eredményeket. Hazánk legismertebb bentonitjában, az Istenmezei bentonitban szoros montmorillonit–kova (cristobalit) társulás van jelen. A montmorillonit maga kis rétegtöltésű, tökéletesen duzzadó.

Az ólom-adszorbeált IMB montmorillonit bázistávolsága 12,8 Å, ami az ólom egy vízrétegű formájára utal a rétegközi térben (1. ábra). A 12,8 Å körüli bázistávolság a nedvesítés–kiszáradás során nem változik. A csúcs azonban az előbbiekben (pl. a réznél) már megismert módon egyre szélesedik a nedvesítési–kiszáradási ciklusok előrehaladtával, miközben az intenzitása csökken (2. ábra).

1. ábra: Ólom-adszorbeált Istenmezei montmorillonit röntgendiffraktogramjai különböző számú nedvesítési-kiszáradási ciklus után

2. ábra: Ólom-adszorbeált Istenmezei montmorillonit XRD paraméterei különböző számú nedvesítési–kiszáradási ciklus után. (fekete = félértékszélesség, piros = csúcs alatti terület)

Az átalakulás azonban ebben a mintában a leggyökeresebb. A 120. ciklus után már annyira lecsökkent a koherensen szóró doménméret, hogy szinte bázisreflexió nélküli a montmorillonit, azaz elemi rétegeire esett szét. Mindeközben egy kisebb diffúz csúcs jelent meg 4,5 Å-nél. Lényeges, hogy ugyanakkor a 4,05 Å körüli cristobalit reflexió intenzitása változatlan maradt.

Az ólom-adszorbeált Istenmezei montmorillonit a szmektitekre jellemzően 17 Å-re duzzad etilén-glikol gőzben (3. ábra). A montorillonit a nedvesítési–kiszáradási ciklusok után végig megőrzi duzzadóképességét. A doménméret csökkenése az etilén-glikollal szolvatált montmorillonit 001 csúcsa félérték-szélességében is tükröződik, amennyiben fokozatosan növekszik 0,59 °20-ról 0,79 °20-ra. Ugyanakkor, a bázisreflexió nélküli montmorillonit 001 csúcsa is határozottan megjelenik etilén-glikol hatására, ami arra utal, hogy a poláros, pozitív etilén-glikol újra egymáshoz képes kapcsolni az önmagukban negatív töltésű elemi szilikát rétegeket.

3. ábra: Etilén-glikollal szolvatált, ólom-adszorbeált Istenmezei montmorillonit röntgendiffraktogramjai különböző számú nedvesítési–kiszáradási ciklus után

4. ábra: Jellegzetes TEM képek a 120. (A) és az 5. (B) nedvesítési–kiszáradási ciklus után. A piros nyilak 1–2 rétegre szétesett montmorillonit krisztallitokat mutatnak.

A röntgendiffraktogramok alapján várható jelentős eltérésekre derítettek fényt a transzmissziós elektronmikroszkópos vizsgálatok. A 4. ábra egy-egy jellegzetes képet mutat a montorillonit megjelenéséről 5 ill. 120 nedvesítési–kiszáradási ciklus után. Az 5. ciklus után a montmorillonit néhány 100 nanométeres lemezeket mutat, néhány nanométeres kerekded kovaszemcsékkel társulva. A krisztallitok gyakran 10-20 réteg vastagok, bár ritkábban ennél vékonyabb krisztallitok is találhatók. Ezzel szemben a 120 nedvesítési–kiszáradási cikluson átesett mintában már nem látható 100 nm laterális kiterjedésű montmorillonit lemez. Sokkal gyakrabban csak 10-15 nanométeres szemcsék találhatóak, melyek már nehezen elkülöníthetőek a közel hasonló méretű kovaszemcséktől. Nemcsak laterálisan, hanem a ctengely irányában is jelentős vékonyodás figyelhető meg. Nem ritkák az 1-2 rétegűre szétesett krisztallitok, melyeket a képen piros nyilak mutatnak. Ilyeneket az 5. ciklus mintájában nem találtam.

szemcse	0	Si	Al	Mg	Fe	Ca	Pb	Si/Pb
m01	61.47	25.08	9.77	2.52	0.71	0.07	0.35	72
m02	66.98	21.68	8.58	1.99	0.58		0.16	136
m03	67.57	29.38	2.1	0.59	0.11	0.08	0.13	226
m04a	69.32	27.86	2.35	0.45			0	
m05aEDX1	69.66	20.43	6.33	2.43	0.55		0.57	36
m05aEDX2	70.02	21.43	5.94	1.64	0.34		0.61	35
m05b	70.1	22.12	5.39	1.5	0.27	0.1	0.48	46
m06	66.07	23.24	7.33	1.89	0.5		0.93	25
m07	65.88	22.97	8.21	2.05	0.29		0.56	41
m08	67.86	21.01	8.05	1.72	0.61		0.73	29
m09	66.77	22.57	8	1.77	0.33		0.53	43
m10a	65.87	23.02	7.59	2.19	0.58	0.07	0.65	35
m10b	68.08	29.17	1.99	0.34	0.15	0.07	0.17	172
átlag	67.36	23.84	6.28	1.62	0.42	0.08	0.45	75

1. táblázat: Egyedi szemcsék kémiai összetétele (ATEM) az ólom-adszorbeált Istenmezei montmorillonit mintában 5 nedvesítési–kiszáradási ciklus után

szemcse	0	Si	Al	Mg	Fe	Ca	Pb	Si/Pb
m01	66.4	25.81	5.04	1.56	0.45	0.14	0.57	45
m02	65.13	23.21	7.64	2.44	0.86	0.09	0.61	38
m03	69.09	23.28	5.35	1.74	0.31		0.2	116
m03HREDX	61.98	26.51	7.82	1.96	0.81	0.42	0.46	58
m04	65.38	24.73	7.41	1.65	0.41		0.39	63
m05aEDX1	59.95	27.74	8.84	2.12	0.5	0.17	0.64	43
m05aEDX2	61.21	25.63	8.89	1.97	0.74	0.13	0.76	34
m06a	70.1	21.61	5.85	1.44	0.41	0.11	0.44	49
m07	41.17	43.99	10	2.69	0.9	0.26	0.94	47
m08EDX01	54.26	36.51	5.39	1.84	0.62	0.26	1.08	34
m08EDX02	48.34	35.76	10.63	2.77	0.81	0.27	1.39	26
átlag	60.27	28.62	7.53	2.02	0.62	0.21	0.68	50

2. táblázat: Egyedi szemcsék kémiai é	összetétele (ATEM)) az ólom-adszorbeált	Istenmezei
montmorillonit mintában	120 nedvesítési-ki	száradási ciklus után	

Az átalakulás nem csak a méretekben, hanem a kémiai összetételben is megmutatkozik. A 120. ciklus mintájában nagyobb a montmorillonit Si-tartalma, ahogy nagyobb a Ca- és a Pb-tartalma is, mely akár az 1 at%-ot is meghaladhatja (kb. 10 súly% !).

A 120. ciklus után új csúcsok jelentek meg 3026, 2930, 2856, 1434 és 699 cm⁻¹-nél a FTIR felvételeken. A 699 lehet a kvarc Si–O–Si rezgése (kicsi kvarc csúcs látható ugyanezen minta röntgendiffraktogramján is), a többi csúcsot viszont eddig nem sikerült azonosítanom, az irodalomban nem találtam semmilyen elfogadható megoldást rájuk. Mindenesetre az erősen gyanítható, hogy megjelenésük összefüggésben van nedvesítés–kiszáradással, ugyanis – elsősorban az 1430 körüli csúcs – rendre megjelennek az összes montmorillonit mintában a nedvesítési–kiszáradási ciklusok előrehaladtával.

5. ábra: Ólom-adszorbeált Istenmezei montmorillonit FTIR felvételei különböző számú nedvesítési-kiszáradási ciklus után

Ahogy azt a különböző műszeres vizsgálatok alátámasztották a Pb-montmorillonit jelentősen átalakul 120 nedvesítési–kiszáradási ciklus után. Valószínűleg az történik, hogy a sokszori vízhozzáadás hatására a montmorillonit fizikailag és kémiailag egyaránt felbomlik, és egy új, sokkal kisebb szemcseméretű, Si-ban dúsabb montmorillonit jön létre, melynek felépítésében jelentős szerep jut az ólomnak is. Nem kizárt, hogy e fázis szerkezetében tridimit és/vagy cristobalit domének is jelen vannak. Erre utalhat a 4,5 Á-nél megjelenő reflexió (1. ábra),

mely lehetne a tridimit 110 reflexiója. A hasonló értékű montmorillonit 020 reflexiónak az általam készített szuperorientál felvételeken nem volna szabad megjelennie, ill. ha az volna, akkor a többi mintában is meg kellene jelennie.

5.5. Zn-, Co- és Cd-adszorbeált nagy rétegtöltésű montmorillonit változásai nedvesítésikiszáradási ciklusokban

A vizsgálatok célja a különböző fémionokkal adszorbeált nagy rétegtöltésű VCB montmorillonit jellemzése volt nedvesítési–kiszáradási ciklusok után. Azért választottam ezt a mintát a további fémekkel végzett kísérletek alapanyagául, mert az eddigi vizsgálatok alapján a nagy rétegtöltésű montmorillonit markánsabb effektusokat hozott.

A nedvesítés–kiszáradás végső hatása hasonló a már megismert réz- és ólom-adszorbeált agyagásványok esetében megismert hatásokhoz. Megfelelő számú nedvesítési–kiszáradási ciklus után a montmorillonit degradálódik, krisztallit mérete csökken, esetleg elemi rétegeire esik szét. Szembetűnő különbség azonban, hogy ez nem fokozatosan alakul ki, hanem amikor a kísérlet elért egy bizonyos számú ciklust. A krisztallitok széteséséhez kadmium esetében 140, cink és kobalt esetében 120 nedvesítési–kiszáradási ciklusra van szükség (1., 2., 3. ábra). A vizsgált montmorillonit mindhárom fémion esetében megőrzi duzzadóképességét nedvesítés–kiszáradás után.

1. ábra: Kadmium-adszorbeált VCB montmorillonit röntgendiffraktogramjai különböző számú nedvesítési-kiszáradási ciklus után.

2. ábra: Cink-adszorbeált VCB montmorillonit röntgendiffraktogramjai különböző számú nedvesítési-kiszáradási ciklus után.

3. ábra: Kobalt-adszorbeált VCB montmorillonit röntgendiffraktogramjai különböző számú nedvesítési-kiszáradási ciklus után.

5.7. Ólom-adszorbeált beidellit nedvesítési–kiszáradási ciklusokban

A vizsgálat azzal a céllal készült, hogy megnézzem, a nedvesítési–kiszáradási ciklusok hatását befolyásolja-e a szmektit rétegtöltésének eredete. Eddig ugyanis uralkodóan oktaéderes töltésű szmektiteket (montmorilloit) vizsgáltam.

Az 1. ábrán látható, hogy az ólom egy vízrétegű formában van jelen a beidellit rétegközi terében. A bázisreflexió félérték-szélessége növekszik a nedvesítési–kiszáradási ciklusok számával. Ugyanez tapasztalható az etilén-glikollal szolvatált minta esetében is.

A beidellit, tehát ugyanolyan változásokat szenved, mint a montmorillonit: a szmektit krisztallitok szétesnek, méretük csökken.

1. ábra: Ólom-adszorbeált MU-I beidellit röntgendiffraktogramjai különböző számú nedvesítési-kiszáradási ciklus után

2. ábra: Etilén-glikollal szolvatált, ólom-adszorbeált MU-I beidellit röntgen-diffraktogramjai különböző számú nedvesítési–kiszáradási ciklus után

5.6. Montmorillonitos talaj fizikai, kémiai és ásványtani változásai nedvesítés-kiszáradási ciklusokban: kezeletlen, K-telített és Pb-adszorbeált talaj

Az előbbi munkáktól eltérően ebben az esetben nem agyagfrakciót, hanem teljes talaj anyagot használtam a nedvesítési-kiszáradási kísérletekben. Azt vizsgáltam miként hat a nedvesítés-kiszáradás egy szmektites talaj fiziko-kémiai tulajdonságaira és ásványtani jellemzőire kezeletlen állapotban, ha káliummal, illetve ha ólommal van telítve. Néhány talajfizikai

paraméter (higroszkóposság, Arany-féle kötési szám) vizsgálata most van folyamatban. A későbbiekben pedig sor kerül adszorpciós kapacitások meghatározására különböző számú nedvesítési-kiszáradási ciklus után. A kutatás majd csak azok beépítésével lesz kerek.

A vizsgált talajminta a Cserhátból származik egy agyagbemosódásos barna erdőtalaj B szintjéből. Uralkodó ásványa a kb. 50%-nyi kvarc és a közel 40%-ot kitevő szmektit. Alárendelt mennyiségben csillám, illit és földpát vannak jelen. A szmektit egy jól duzzadó, kis rétegtöltésű, kizárólag oktaéderes helyettesítésű, nagyobb vastartalmú montmorillonit, 10% körüli illit közberétegződéssel. Tehát egy tipikus, hazánkban gyakori talajszmektitről van szó.

A röntgendiffrakciós vizsgálatok alapján a nedvesítés-kiszáradás csak az agyagásványokra (montmorillonit, csillám, illit) hat, egyéb ásványok (kvarc, földpát) nem változnak. Ez a megfigyelés igaz a kezeletlen, kiindulási mintára, a K-telített és a Pb-adszorbeált talajmintákra egyaránt. A kiindulási talajban a montmorillonit bázisreflexiója 15 Å, mely kétértékű kation, elsősorban Ca²⁺ jelenlétére utal a rétegközi térben. A nedvesítés-kiszáradási ciklusok során a bazális rácssíktávolság nem változik, a bázisreflexió azonban a 40. ciklus után difúzzá válik, intenzitása csökken, félérték-szélessége növekszik (1-2. ábra). Ez azonban nem erősödik a további nedvesítés-kiszáradási ciklusokkal, a 40. és a 100. ciklus után hasonló profilú a röntgendiffraktogram. Ez a változás a montmorillonit krisztallitok szétesésére, szemcseméretük csökkenésére utal. További figyelemre méltó változás, hogy a 40. ciklustól kezdve jelentősen lecsökken a 10 Å-ös csillám-illit csúcs intenzitása. Véleményem szerint ez azzal magyarázható, hogy a csillám-illit a sokszori vízzel telítés hatására hidratálódott, a rétegközi tér az élek felől felnyílt, vagyis az illit elkezdett szmektitesedni.

1. ábra: A kiindulási talaj röntgendiffraktogramjai különböző számú nedvesítési-kiszáradási ciklus után

A kálium-telített nagy szmektittartalmú talaj az irodalomból ismert módon reagál a nedvesítés–kiszáradásra (2. ábra). A megnövekedett 10 Å-ös reflexió már a szimpla K-telítés hatására a szmektit szerkezeti kollapszusát jelzi. A 12,3 Å-nél meglévő diffúz csúcs azonban még szerkezeti kollapszust nem szenvedett kis rétegtöltésű montmorillonittól származik. Ez a csúcs azonban a nedvesítési–kiszáradási ciklusok számának előrehaladtával fokozatosan eltűnik és már a 20. ciklusnál csak a 10 Å-ös csúcs van jelen, mely aztán a ciklusok számának további emelkedésével már jelentősen nem is változik. A 12,3 Å-ösből 10 Å-ösbe átalakuló szerkezet a kálium megkötődését és az ezzel járó szerkezeti kollapszust jelenti a szmektitben. Irodalmi adatok alapján a K-fixáció a 40-50. ciklus táján már megtörténik a szmektitben, ettől kezdve már számolni kell a duzzadóképesség, valamint a kationcserélő és adszorpciós kapacitás csökkenésével.

Az ólom-adszorbeált mintában a montmorillonit bázisreflexiója 13 Å körül van a kezeletlenre jellemző 15 Å helyett (3. ábra). Ez egyértelműen jelzi, hogy az ólom döntő részben a montmorillonit rétegközi terében adszorbeálódott, méghozzá kationcsere útján. A nedvesítési–kiszáradási ciklusok során a 13 Å-ös bázistávolság végig fennmarad, azonban a 001 csúcs profilja jelentős változást mutat: egyre szélesebb, diffúzabb és laposabb lesz, ahogy növekszik a nedvesítési–kiszáradási ciklusok száma, egészen a 80. ciklusig, ahogy ez jól látható a 4. ábra lassított röntgenfelvételén. Mindez a montmorillonit degradálódására, szemcseméret csökkenésére, pár 2:1 szilikátrétegre történő szétesésére utal. A 80. ciklus után ez a degradálódási folyamat stabilizálódik, a további nedvesítési–kiszáradási ciklusok már nem befolyásolják a montmorillonit kristályméretét. A montmorillonit nem-bázisreflexiói (020; 060) nem változnak a nedvesítési–kiszáradási ciklusok során. Nem olyan szembetűnően, mint a montmorillonit, de úgy tűnik, hogy a csillámot, illitet is érinti a nedvesítés–kiszáradás, amire a 10 Å-ös csúcs enyhe csökkenése és szélesedése utal a ciklusok számának emelkedésével. Lehetséges, hogy hasonló szmektitesedés játszódik le, mint a kiindulási minta esetében.

3. ábra: Az ólom-adszorbeált talaj röntgendiffraktogramjai különböző számú nedvesítésikiszáradási ciklus után

4. ábra: Az ólom-adszorbeált talaj lassított röntgendiffraktogramjai az agyagásványok szögtartományában különböző számú nedvesítési–kiszáradási ciklus után

A különböző kationokkal telített talajokra egészen máshogy hat a nedvesítés–kiszáradás, ahogy ezt az 5. ábra mutatja a 80. ciklus esetében. Ellentétben azzal, amit a korábbi tapasztalataimra – elsősorban adszorpciós jellemzőkre és röntgendiffrakciós jegyekre (pl. duzzadásvesztés) alapoztam, egyértelművé vált, hogy a kálium- és az ólom-telített formák közel sem egyformán viselkednek a nedvesítési–kiszáradási kísérletekben. Szemben a káliummal, az ólom nem, vagy csak kis mértékben okoz 10 Å-ös szerkezeti kollapszust.

Bár mind a kiindulási (gyakorlatilag Ca-montmorillonit), mind az ólom-adszorbeált minta esetében megfigyelhető a montmorillonit kristályméretének csökkenése, a krisztallitok szétesése, ez sokkal szembetűnőbb, intenzívebb a Pb-montmorillonit esetében.

A montmorillonit tulajdonságait tehát egy talajban a nedvesítési–kiszáradási ciklusok száma mellett alapjaiban befolyásolja a rétegközi térben található kation minősége.

5. ábra: A montmorillonitos talaj kiindulási, kálium-telített és ólom-adszorbeált mintáiról készült röntgendiffraktogramok a 80. nedvesítési–kiszáradási ciklus után

5. Új eredmények, következtetések

1. A fémionokkal adszorbeált montmorillonitok a nedvesítési-kiszárítási ciklusok során megváltoznak: doménméretük, krisztallitvastagságuk csökken, bizonyos esetekben elemi rétegekre esnek szét.

- 2. A montmorillonit krisztallitok szétesését a nedvesítés-kiszáradás okozza, azonban jelentősen befolyásolja az adszorbeálódott fémion minősége is. Legjobban az ólom-montmorillonitok alakulnak át.
- 3. Szemben a K-montmorillonitokon megfigyeltekkel, a különböző nedvesítésikiszárítási ciklusokon átesett fémion-adszorbeált montmorillonitok nem vesztik el duzzadóképességüket, szerkezetük nem rendeződik, nem illitesednek.
- 4. Az ólom fixálódik a montmorillonitok szerkezetében a nedvesítési-kiszárítási ciklusok hatására. Ez azt eredményezi, hogy az ólom nem cserélhető le teljesen a káliummal. Ennek mértékét befolyásolja a montmorillonit rétegtöltése: nagy rétegtöltésűben erősebben fixálódik az ólom.
- 5. Kellően nagyszámú nedvesítési-kiszárítási ciklus után (általában 120 ciklus) már lehetséges új fázisok jelenhetnek meg. Ezek nagy mennyiségben tartalmazzák az adott fémiont, nagyobb Si-tartalmúak, szerkezetükben tridimit-cristobalit domének lehetnek és csupán néhány tíz nanométeresek.
- 6. A vermikulitok és az illitek rácsa felnyílik, hidratálódnak, szemktitesedáéshez hasonló folyamaton esnek át a nedvesítés-kiszárítás során, mely növeli duzzadóképességüket.

A kísérletek tulajdonképpen magyarázatot adtak arra miért olyan kicsi az agyagásványok, elsősorban a szmektitek szemcsemérete és vastagsága, különösen olyan felszíni közegben, ahol állandóan változik a víztartalom, például talajokban.

6. Felhasznált irodalom

CUADROS, J. (2002): Structural insights from the study of Cs-exchanged smectites submitted to wetting-and-drying cycles. Clay Minerals, **37**, 473–486.

DEGRYSE, F., SMOLDERS, E., CREMERS, A. (2004): Enhanced sorption and fixation of radiocaesium in soils amended with K-bentonites, submitted to wetting-drying cycles. European Journal of Soil Science, **55**, 513–522.

EBERL, D. D., ŚRODOŃ, J., NORTHROP, H. R. (1986): Potassium fixation in smectites by wetting and drying: in *Geochemical processes at mineral surfaces*, J. A. Davies and K. F. Hayes, eds. American Chemical Society Symposium Series, **323**, 296–326.

HAN, F. X., BANIN, A., TRIPLETT, G. B. (2001): Redistribution of heavy metals in arid-zone soils under a wetting-drying cycle soil moisture regime. Soil Science, **166**, 18–28.

HUSSEIN, J., ADEY, M.A. (1995): Structural changes in a Vertisol due to wet-dry cycles in the

liquid and vapour phases. European Journal of Soil Science 46, 357-368.

HUSSEIN, J., ADEY, M.A. (1998): Changes in microstructure, voids and b-fabric of surface samples of a Vertisol caused by wet/dry cycles. Geoderma **85**, 63–82.

HORVÁTH, I., NOVÁK, I. (1975): Potassium fixation and the charge of the montmorillonite layer. Proceedings of the International Clay Conference 1975, Illinois, 185–189.

NÉMETH T. (2003): Montmorilonitok fémion-adszorpciójának kristályszerkezeti, kristálykémiai és ásványtani vonatkozásai. Doktori értekezés. Eötvös Loránd Tudományegyetem Természettudományi Kar, Budapest.

NÉMETH T., SIPOS P., DÓDONY I., MOHAI I., TÓTH M. (2003): Heavy metal – soil vermiculite interactions in a Luvisol profile. EUROCLAY 2003, 10th Conference of the European Clay Groups Association, 22-26 June 2003, Modena, Italy. Abstracts 205–206.

NÉMETH T. ÉS SIPOS P. (2006): Characterization of clay minerals in brown forest soil profiles (Luvisols) of the Cserhát Mountains (North Hungary). Agrokémia és Talajtan (Agrochemistry and Soil Science) **55** (1), 39–48.

PAGE, A. L., BURGE, W. D., GANJE, T. J., GARBER, M. J. (1967): Potassium and ammonium fixation by vermiculitic soils. Soil Science Society of America Proceedings, **31**, 337–341.

RAJARAM, D., ERBACH, D. C. (1999): Effect of wetting and drying on soil physical properties. Journal of Terramechanics, **36**, 39–49.

SIPOS, P., NÉMETH, T., MOHAI, I., DÓDONY, I. (2005). Effect of soil composition on adsorption of lead as reflected by a study of natural forest soil profile. Geoderma, **124**, 363–374.

STEFANOVITS P. (1989): Az agyagásvány-összetétel szerepe a talajok savasodásában. Agrokémia és Talajtan, MAE Talajtani Társaság Vándorgyűlésének különszáma, 145–154.

ŠUCHA, V., ŠIRÁNOVÁ, V. (1991): Ammonium and potassium fixation in smectite by wetting and drying. Clays and Clay Minerals, **39**, 556–559.

TESSIER, D., BEAUMONT, A., PEDRO, G. (1990): Influence of clay mineralogy and rewetting rate on clay microstructure. In: Douglas, L.A. Szerk. Soil Micromorphology: A Basic and Applied Science. Developments in Soil Science 19, Elsevier, Amsterdam, pp. 115–121.

VANDENHOVE, H., CREMERS, A., SMOLDERS, E., VAN HEES, M. (2005): Effect of K and bentonite additions on Cs-transfer to ryegrass. Journal of Environmental Radioactivity **81**, 233–253.

WEAVER, C. E. (1958): The effects and geological significance of potassium fixation by expandable clay minerals derived from muscovite, biotite, chlorite and volcanic material. American Mineralogist, **43**, 839–861.