
ON THE EQUILIBRIA OF FINELY DISCRETIZED CURVES AND
SURFACES
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Abstract. Our goal is to identify the type and number of static equilibrium
points of solids arising from fine, equidistant n-discretrizations of smooth, con-
vex surfaces. We assume uniform gravity and a frictionless, horizontal, pla-
nar support. We show that as n approaches infinity these numbers fluctuate
around specific values which we call the imaginary equilibrium indices asso-
ciated with the approximated smooth surface. We derive simple formulae for
these numbers in terms of the principal curvatures and the radial distances
of the equilibrium points of the solid from its center of gravity. Our results
are illustrated on a discretized ellipsoid and match well the observations on
natural pebble surfaces.

1. Introduction

The study of equilibria of rigid bodies was initiated by Archimedes [1]; his results
have been used in naval design even in the 18th century (cf. [2]). Archimedes’ main
concern was the number of the stable balance points of the body.

Static equilibria of convex bodies correspond to the singularities of the gradient
vector field characterizing their surface. Modern, global theory of the generic sin-
gularities of smooth manifolds appears to start with the papers of Cayley [4] and
Maxwell [14] who independently introduced topological ideas into this field yielding
results on the global number of stationary points. These ideas have been further
generalized by Poincaré and Hopf, leading to the Poincaré-Hopf Theorem [3] on
topological invariants. If applied to generic, convex bodies, represented by gradient
fields defined on the sphere, this theorem states that the number S of ‘sinks’ (stable
equilibria), the number U of ‘sources’ (unstable equilibria) and the number N of
saddles always satisfy the equation

(1) S + U −N = 2.

This formula, the so-called Poincaré-Hopf formula can be regarded as a generaliza-
tion of the well-known Euler’s formula [12] for convex polyhedra.

Static equilibria of polyhedra have also been investigated; in particular, the
mininal number of equilibria attracted substantial interest. Monostatic polyhedra
(i.e. polyhedra with just S = 1 stable equilibrium point) have been studied in [13],
[6],[7] and [8].
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The total number T of equlibria (T = S + U + N) has also been in the focus of
research. In planar, homogeneous, convex bodies (rolling along their circumference
on a horizontal support), we have T ≥ 4 [9]. However, convex homogeneous objects
with T = 2 exist in the three-dimensional space (cf. [17]). Zamfirescu [18] showed
that for typical convex bodies, T is infinite. While typical convex bodies are nei-
ther smooth objects, nor are they polyhedral surfaces, Zamfirescu’s result strongly
suggests that equilibria in abundant numbers may occur in physically relevant sce-
narios.

This is indeed the case if we study the surfaces of natural pebbles which, while
rolling on a horizontal plane, are supported on their convex hull [11]. Their convex
hull is well approximated by a many-faceted polyhedron P , on which, by studying
its detailed 3D scanned images one can observe large numbers of adjacent equilibria
in strongly localized flocks. If we approximate the polyhedron P by a sufficiently
smooth surface M , then we can see that the flocks of equilibria on P appear in the
close vicinity of the (isolated) equilibrium points of M (cf. Figure 4).

In this paper we seek a mathematical justification for this observation. We study
the inverse phenomenon: namely, we seek the numbers and types of static equilib-
rium points of the families of polyhedra Pn arising as equidistant n-discretizations
on an increasingly refined [u, v]-grid of a smooth surface M with T generic equi-
librium points, denoted by mi (i = 1, 2, . . . T ). As n → ∞, Pn → M and we find
that the diameter of each of the T flocks on Pn (appearing around mi) shrink and
approach zero. However, we also find that inside a fixed, 2k × 2k rectangular grid
domain (centered at mi), the numbers Sn

i , Un
i , Nn

i of equilibria in each flock fluctu-
ate around specific values S?

i ,U?
i and N?

i that are independent of the mesh size and
the parametrization of the surface. We call these quantities the imaginary equilib-
rium indices associated with mi. We may eliminate the fluctuation of S?

i ,U?
i ,N?

i

by averaging over meshes in random positions (with uniform distributions) and in
Theorem 2 of Section 4, we obtain the following simple formulae in terms of the
principal curvatures κ1,i, κ2,i ≤ 0 and the distance ρi of mi from the center of
gravity:

(2) S?
i = di, U?

i = κ1,iκ2,iρ
2
i di, N?

i = −(κ1,i + κ2,i)ρidi

where di = 1/|(κ1,iρi + 1)(κ2,iρi + 1)|. We also remark that due to (2) we have

S?
i + U?

i −N?
i =

{
−1, if mi is a saddle point,
1, otherwise,

and thus, by summation over all equilibrium points mi of M , for the full polyhedron
Pn, the Poincaré-Hopf formula is satisfied.

Since imaginary equilibrium indices are defined via local quantities associated
with mi, we may interpret them as describing properties of infinitely fine discretiza-
tions. Nevertheless, they also provide approximate prediction for the number and
type of localized equilibrium points for finite, dense meshes. Beyond those numbers,
we also identify the spatial patterns associated with equilibria on fine discretizations
and illustrate these patterns on an ellipsoid (cf. Figure 1). We also note that these
numbers match well with observations on scanned pebble surfaces, as we point out
in Section 6, Remark 7 and illustrate this in Figure 4.

In Section 2, we introduce the notations and concepts used in our investigation.
We examine the properties of the equilibrium points of curves in R2 in Section 3.
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Our results about those of a surface in R3 are presented in Section 4. In Section 5
we describe a method which, under a slightly special condition, finds a more direct
connection between imaginary equilibrium indices and the numbers of equilibrium
points of the approximating surface than the one in the previous sections. Finally,
in Section 6, we collect our remarks, and propose some open problems.

2. Preliminaries

In this paper, we identify points with their position vectors. For points p, q ∈
Rd, we denote the closed segment with endpoints p, q by [p, q]. Furthermore, we
denote the standard inner product of p and q by 〈p, q〉, and the Euclidean norm
of p by ||p|| =

√
〈p, p〉. The convex hull of a set S is denoted by conv S, or, if

S = {p1, p2, . . . , pk} is finite, then possibly by [p1, p2, . . . , pk]. We denote the origin
by o.

Since we intend to examine equilibrium points of nonconvex and/or nonsmooth
surfaces, we introduce the following types of equilibrium points, which we examine
for d = 2 and d = 3.

Definition 1. Let H ⊂ Rd be a C1-class hypersurface (i.e. a compact, 1-codi-
mensional C1-submanifold in Rd), and let p ∈ Rd \ H. If the (unique) tangent
hyperplane of H at m ∈ H is orthogonal to m− p, we say that m is an equilibrium
point of H relative to p.

Definition 2. Let P ⊂ Rd be a polyhedral hypersurface (i.e. a compact, 1-co-
dimensional C0-submanifold in Rd which is also the polyhedron of a polyhedral
complex), and let p ∈ Rd \ P . If, m ∈ P has a neighborhood V such that the
hyperplane H, orthogonal to m − p and passing through m, supports conv({p} ∪
(P ∩ V )), we say that m is an equilibrium point of P relative to p.

For simplicity, we assume that our reference point is the origin o. We deal only
with generic equilibrium points of C2-hypersurfaces (cf. [15]); that is, we assume
that at these points the Jacobian of the Euclidean norm function is regular. In
other words, if ρ denotes the distance of o and the equilibrium point m, we assume
that κ 6= − 1

ρ , where κ is the (signed) curvature of the curve at m for d = 2, and
any of the two fundamental curvatures of the surface at m if d = 3.

3. The equilibria of plane curves

Throughout this section, we assume that the curve under investigation satisfies
the C3 differentiability property, and has exactly one equilibrium point m. Note
that as a plane curve is a one-dimensional submanifold of R2, there is a neighbor-
hood of m in which the examined curve is given as a simple r : [τ1, τ2] → R2 three
times continuously differentiable curve. Since for sufficiently fine discretization, all
the equilibrium points of the approximating polygon are located in this neighbor-
hood of m, we may assume that the curve is given in the above form. For simplicity,
we may assume that m = r(0) = (0, ρ) with 0 ∈ (τ1, τ2) and ρ > 0, and that the
tangent line at r(0) is horizontal; or in other words, that ẏ(0) = 0. Furthermore,
we may assume that ẋ(0) > 0. We denote the signed curvature of r at m by κ.
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Let Fn denote the n-segment equidistant partition of [τ1, τ2]. If i(τ2−τ1)
n is a

divison point of Fn, then we introduce the notation pn
i = r

(
i(τ2−τ1)

n

)
. Let Pn be

the polygonal curve with edges of the form [pn
i−1, p

n
i ]. Note that then Pn is the

approximating polygonal curve defined by the equidistant partition Fn, and, fur-
thermore, the vertices of Pn are labeled in a way that the indices are not necessarily
positive integers, but real numbers that are congruent mod 1. These numbers can
be written in the form nτ1

τ2−τ1
+ k, where k = 0, 1, . . . , n.

Let Un(K) denote the number of the equilibrium points of Pn at the vertices
pn

i of Pn satisfying |i| ≤ K. Similarly, let Sn(K) be the number of the equilibrium
points of Pn lying in the relative interiors of edges [pn

i , pn
i+1] satisfying |i| ≤ K.

Our aim is to determine the values of Un(K) and Sn(K) for ‘large’ values of n and
K. We assume that the equilibrium points of Pn are generic; that is, that for any
equilibrium at a vertex pn

i , the vector pn
i is orthogonal to neither pn

i − pn
i−1, nor to

pn
i − pn

i+1. The main result of this section is the following.

Theorem 1. Let K +K(κ, ρ) be sufficiently large. Then there is a value of nε such
that for every n > nε, we have

Un(K) =
⌊

|ρκ|
|ρκ + 1|

⌋
or

⌊
|ρκ|

|ρκ + 1|

⌋
+ 1,

and

Sn(K) =
⌊

1
|ρκ + 1|

⌋
or

⌊
1

|ρκ + 1|

⌋
+ 1.

Proof. We use the notations introduced in the preliminary part of this section, and
for simplicity, instead of pn

i we write only pi. Let ∆n = τ2−τ1
n , which yields that

pi = r(i∆n).

First, we consider the relative interiors of the edges of Pn. Our key observation
is that [pi, pi+1] contains an equilibrium point if, and only if the following holds:

(3) 〈pi, pi+1 − pi〉 < 0 < 〈pi+1, pi+1 − pi〉.

To find the equilibrium points, we use the second degree Taylor polynomial of
r(τ) with the Lagrange form of the remainder term; that is, we write the curve as

(4) r(τ) = r(0) + ṙ(0)τ +
1
2
r̈(0)τ2 +

1
6
...
r (ζ)τ3

for some ζ ∈ (0, τ).

After substituting (4) into the left-hand side expression in (3) and simplifying,
we obtain that

〈pi, pi+1 − pi〉 = (iẋ2(0) +
1
2
ρÿ(0) + iρÿ(0))∆2

n + Err ∆3
n,

where Err is an error term depending on the first three derivatives of r(τ), ∆n and
i. Note that for any fixed value of i, or more generally if we keep i bounded, this
error term is bounded. Thus, for any K, if n is sufficiently large and if |i| ≤ K,
then the sign of this expression is determined by the first three terms. In other
words, in this case the left-hand side inequality of (3) is satisfied if and only if

iẋ2(0) +
1
2
ρÿ(0) + iρÿ(0) < 0
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Note that κ = ÿ(0)
ẋ2(0) . Thus, we have that

i(ρκ + 1) < −1
2
ρκ.

By a similar argument we obtain that for any value of |i| ≤ K, if n is sufficiently
large, then the right-hand side inequality of (3) is equivalent to

−1− 1
2
ρκ < i(ρκ + 1).

Thus, for any |i| ≤ K, relint[pi, pi+1] contains an imaginary equilibrium point if
and only if

(5) −1− 1
2
ρκ < i(ρκ + 1) < −1

2
ρκ.

Hence, the number of these edges is no more, and if K is sufficiently large then it
is equal to, the different values of i that fit in a certain interval of length 1

|ρκ+1| .

Since the possible values of i are congruent mod 1, this number is either
⌊

1
|ρκ+1|

⌋
,

or one more.

Now we deal with the vertices of Pn. Note that pi is an equilibrium point if, and
only if one of the following holds:

(6) 〈−pi, pi+1 − pi〉 ≥ 0 and〈−pi, pi−1 − pi〉 ≥ 0,

or

(7) 〈−pi, pi+1 − pi〉 ≤ 0 and〈−pi, pi−1 − pi〉 ≤ 0.

Using the same kind of argument that we used for edges, we obtain that for suffi-
ciently large values of n and K and for |i| ≤ K, the systems of equation above are
equivalent to

1
2
ρκ ≤ i(ρκ + 1) ≤ −1

2
ρκ

and
−1

2
ρκ ≤ i(ρκ + 1) ≤ 1

2
ρκ,

respectively.

Clearly, if κ > 0, then the first system can be satisfied for no value of i, and
so is the second one if κ < 0. Thus, in both cases, the number of the values of i

satisfying the corresponding system of equations is either
⌊

ρ|κ|
|ρκ+1|

⌋
or one more. �

4. The equilibria of surfaces

Similarly like in the previous section, we may assume that the surface, given
in the form r : D → R3 with (u, v) ∈ D = [u1, u2] × [v1, v2], satisfies the C3

property. For simplicity, we examine only the case that the surface has exactly one
equilibrium point, namely m = r(0, 0) = (0, 0, ρ) with (0, 0) ∈ intD and ρ > 0.
Without loss of generality, we may assume that the tangent plane of r at m is
horizontal, and that its normal vector n? = ru(0, 0) × rv(0, 0) is an outer normal
vector of the surface; that is, it points in the direction of the positive half of the
z-axis. We denote the two principal curvatures of the surface at m by κ1 and κ2,
and note that, dealing with generic equilibria, we assume in the rest of the section
that ρκ1 + 1 6= 0 6= ρκ2 + 1. To be able to define the approximating surface, we
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assume that r(D) is convex; more specifically, that r(D) is a subset of the boundary
of a compact, convex set with nonempty interior, containing o in its interior, which
yields, in particular, that κ1, κ2 ≤ 0.

Consider an equidistant partition of the rectangle D into n2 homothetic copies
of ratio 1

n . Similarly like in the previous section, for the indices of the division
points of the partition we use not necessarily integers, but real numbers that are
congruent mod 1. More precisely, we set pn

i,j = r
(
iu2−u1

n , j v2−v1
n

)
. For simplicity,

for the point pn
i,j , we may use the notation pi,j . Furthermore, we set ∆u,n = u2−u1

n ,
∆v,n = v2−v1

n and λ = ∆v,n

∆u,n
.

Let S = {pi,j , pi+1,j , pi+1,j+1, pi,j+1}, and set Q = conv(S ∪ {o}). Since for
sufficiently large values of n the equilibrium points of Pn are contained in a small
neighborhood of m and since ru(u, v) and rv(u, v) are continuous functions, we may
assume that o is a vertex of this polyhedron, and that the rays emanating from o
and passing through pi,j , pi+1,j , pi+1,j+1, pi,j+1, respectively, are in counterclock-
wise order.

If S is not coplanar, then either [pi,j , pi+1,j+1] or [pi+1,j , pi,j+1] is an edge of Q,
depending on the position of the points of S. Thus, in this case Q has two triangle
faces not containing o, namely either [pi,j , pi+1,j , pi+1,j+1] and [pi,j , pi+1,j+1, pi,j+1],
or [pi,j , pi+1,j , pi,j+1] and [pi+1,j , pi+1,j+1, pi,j+1]. We denote these faces F 1

i,j and
F 2

i,j . If S is coplanar, we dissect it into two triangles by either [pi,j , pi+1,j+1] or
[pi+1,j , pi,j+1], and regard it as the union of two triangle faces. Now we define the
approximating polyhedral surface Pn as the union of the faces F 1

i,j and F 2
i,j for all

possible indices (i, j). The vertices of Pn are the points pi,j , and the edges and the
faces are those described in this paragraph. We observe that Pn is simplicial, and
that it is not necessarily a subset of the boundary of a convex polyhedron.

The equilibrium points of Pn can be vertices, or relative interior points of edges
or faces of Pn. We assume that each of these equilibria is generic, that is, if q is an
equilibrium of Pn in the relative interior of a face F of dimension 0, 1 or 2, then for
some neighborhood V of q, the plane passing through and orthogonal to q contains
no point of V other than those of F . We denote the number of the equilibrium
points of Pn at a vertex pi,j satisfying |i| ≤ K and |j| ≤ K, by Un(K). Similarly,
the numbers of the equilibrium points on an edge or a face of Pn, which has a
vertex pi,j satisfying |i| ≤ K and |j| ≤ K, by Nn(K) and Sn(K), respectively. Our
aim is to estimate Un(K), Nn(K) and Sn(K) if n and K are sufficiently large.

Note that, by the conditions for r described before, we have ru(0, 0) = (xu, yu, 0)
and rv(0, 0) = (xv, yv, 0), and that the outer normal vector of the surface at m is

n? =
ru(0, 0)× rv(0, 0)
||ru(0, 0)× rv(0, 0)||

= (0, 0, 1)

We recall the notions of the first and the second fundamental quantities of a
surface. In our setting, for these at the point m we have

E = x2
u + y2

u, F = xuxv + yuyv and G = x2
v + y2

v .

Furthermore, L, M and N are the z-coordinates of ruu(0, 0), ruv(0, 0) and rvv(0, 0),
respectively. It is well-known in differential geometry that

(8) EG− F 2 =
(
ru(0, 0)× rv(0, 0)

)2 = (xuyv − xvyu)2,
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and that

(9) κ1κ2 =
LN −M2

EG− F 2
, and κ1 + κ2 =

EN − 2FM + GL

EG− F 2
.

According to our conditions, we have E,G > 0, EG − F 2 > 0, L,N ≤ 0 and
LN −M2 ≥ 0.

In our investigation, we examine only the case that λM ≤ L and λM ≤ λ2N .
Since LN − M2 ≥ 0, these two inequalities are satisfied for some values of λ;
for instance, for the value satisfying L = λ2N . These conditions ensure that the
discretization mesh sizes do not differ radically in the u and v directions. We note
that, in order to obtain the area of a surface by taking the limit of an approximating
triangulated surface, a similar condition is necessary.

In the formulation of the main result of this section, we need the following
notations.
V1 = λρL(G + ρN), W1 = λ2ρN(F + ρM),
V2 = ρL(F + ρM), W2 = λρN(E + ρL),
V3 = λ2ρ(NF −MG), W3 = λ((EG− F 2)− ρ(MF − LG)),
V4 = λ((EG− F 2)− ρ(MF −NE)), W4 = ρ(LF −ME),
V5 = λ(ρ(NE −MF ) + (EG− F 2)), W5 = λρ2(λ|N | − |M |)(ME − LF ),
V6 = F + ρM, W6 = ρ(λ|N | − |M |)(E + ρL),
V7 = λ2ρ(NF −MG), W7 = λρ(|L| − λ|M |)(ρ(LG−MF ) + (EG− F 2)),
V8 = λ(G + ρN), W8 = ρ(|L| − λ|M |)(F + ρM),
V9 = V5, W9 = λρ2|M |(ME − LF ),
V10 = V6, W10 = ρ|M |(E + ρL),
V11 = V7, W11 = λ2|M |(ρ(LG−MF ) + (EG− F 2)),
V12 = V8, W12 = ρλ|M |(F + ρM),

and

ErrU = 2 +

2∑
s=1

max{|Vs|, |Ws|, |Vs −Ws|, |Vs + Ws|}

λ(EG− F 2)|(κ1ρ + 1)(κ2ρ + 1)|
,

ErrS = 4 + 2

4∑
s=3

max{|Vs|, |Ws|, |Vs −Ws|, |Vs + Ws|}

λ(EG− F 2)|(κ1ρ + 1)(κ2ρ + 1)|
,

ErrN = 6 +

12∑
s=5

max{|Vs|, |Ws|, |Vs −Ws|, |Vs + Ws|}

λ(EG− F 2)|(ρκ1 + 1)(ρκ2 + 1)|
.

Our main result is the following.

Theorem 2. Let K = (ρ, κ1, κ2, λ) be sufficiently large. Then there is a value nε

such that for every n > nε, we have∣∣∣∣Un(K)− ρ2κ1κ2

|(κ1ρ + 1)(κ2ρ + 1)|

∣∣∣∣ ≤ ErrU ,∣∣∣∣Sn(K)− 1
|(κ1ρ + 1)(κ2ρ + 1)|

∣∣∣∣ ≤ ErrS ,∣∣∣∣Nn(K) +
(κ1 + κ2)ρ

|(κ1ρ + 1)(κ2ρ + 1)|

∣∣∣∣ ≤ ErrN .
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We can interpret this theorem in the following way. Our result in Theorem 1
can be interpreted in a way that the number of a certain type of equilibrium point
fluctuates around a specific number that depend only of local quantities of the
curve at m, within an error one. In general, this fluctuation seems random as we
compute this numbers for different values of n. Here we have a similar result, with
the only difference that the error term is not one, but a complicated expression of
the fundamental quantities of the surface and λ. In general, this fluctuation seems
random; that is, if we compute these numbers for different values of n, then the
discrepancy between the measured number and the corresponding estimate in the
theorem ’averages out’. For more information about the sizes of the error terms, the
reader is referred to Remark 4, and for a more precise treatment of the fluctuation
to Section 5. The error functions in Theorem 2 provide a global bound and may in
many cases grossly overestimate the actual errors. In particular, the mesh ratio λ
as well as the topology of flocks may radically influence the actual errors. This can
also be observed in our example illustrated in Figure 1 showing a triaxial ellipsoid
with axis ratios a:b:c=1.23:1.15:1.

We start with two lemmas that we need in the proof.

Lemma 1. Let S ⊂ Rd a nonempty Lebesgue measurable set with finite measure
λ(S). Let pk denote the probability that x+S contains exactly k points of the lattice
Zd, where x is chosen from the cube [0, 1]d using the uniform distribution. Define
the probability distribution σ by P (σ = k) = pk. Then the expected value of σ is
E(σ) = λ(S).

Proof. First, note that as λ(S) is finite, we may write S as the disjoint union of
finitely many Lebesgue measurable sets with diameters less than one. Let these sets
be S1, S2, . . . , Sm. Let σi be the distribution such that P (σi = k) is the probability
that x + Si contains k lattice points, where x is chosen uniformly from the unit
cube of Rd. By the linearity of the expectation, we have

E(σ) =
m∑

i=1

E(σi).

We show that E(σi) = λ(Si), from which the assertion readily follows. Without
loss of generality, we may assume that S ⊂ (−1, 0)d. Then for any x ∈ [0, 1]d, x+Si

either contains the origin, or it does not contain any point of Zd. Note that the set
of points x for which x+Si contains the origin is −Si, and thus, E(σi) = λ(Si). �

We remark that, clearly, the lattice Zd in the formulation of Lemma 1 can be
replaced by any lattice, if x is chosen from the corresponding fundamental lattice
parallelotope.

Lemma 2. For every value of K, if n is sufficiently large then for every vertex pi,j

of Pn with |i| ≤ K |j| ≤ K we have the following:

• If M > 0, then E+ = [pi,j , pi+1,j+1] is an edge of Pn, and
• if M < 0, then E− = [pi+1,j , pi,j+1] is an edge of Pn.

Proof. Recall that if pi,j is sufficiently close to m, then o and the endpoints of E+

and E− are in convex position, and the rays emanating from o and passing through
pi,j , pi+1,j , pi+1,j+1 and pi,j+1 are in this counterclockwise order in their conic hull.
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Let S+ denote the sum of the volumes of the tetrahedra [o, pi,j , pi+1,j , pi+1,j+1]
and [o, pi+1,j+1, pi,j+1, pi,j ], and S− the sum of the volumes of [o, pi,j , pi+1,j , pi,j+1]
and [o, pi+1,j , pi+1,j+1, pi,j+1]. Observe that if S+ − S− > 0, then E+ is an edge
of Pn, if S+ − S− < 0 then E−, and if S+ − S− = 0, then the two segments are
coplanar. Note that the signed volume of the tetrahedron spanned by the vectors
a, b and c is 1

6 〈a, b× c〉. Thus, the sign of S+ − S− coincides with the sign of

V = 〈pi,j , pi+1,j × pi+1,j+1〉+ 〈pi+1,j+1, pi,j+1 × pi,j〉
−〈pi,j , pi+1,j × pi,j+1〉 − 〈pi+1,j , pi+1,j+1 × pi,j+1〉.

We use the second degree Taylor polynomial of r(u, v) to approximate the surface.
In other words, we write the surface in the form

(10) r(u, v) = r(0, 0) + ru(0, 0)u + rv(0, 0)v +
1
2
ruu(0, 0)u2 + ruv(0, 0)uv+

+
1
2
rvv(0, 0)v2 + K1u

3 + K2u
2v + K3uv2 + K4v

3,

where K1,K2,K3 and K4 are bounded R2 → R3 functions of u and v.

After computing V and substituting ∆v,n = λ∆u,n, we obtain a polynomial of
∆u,n. In this polynomial, the first nonzero coefficient, which is that of ∆4

u,n, is
M
√

EG− F 2. Thus, for any |i| ≤ K and |j| ≤ K, if n is sufficiently large, then
sign(S+−S−) = sign M . Hence, if M > 0 then E+ is an edge of the convex hull, if
M < 0 then E−, and if M = 0 then it can be both: it is determined by the higher
degree terms in the approximation. �

Now we prove Theorem 2.

Proof of Theorem 2. We prove the three formulas separately.

Part 1: The proof of the assertion for Un(K).

As in the proof of Lemma 2, we approximate the surface r(u, v) by its second
degree Taylor polynomial. We start with the observation that pi,j is an equilibrium
point if, and only if, each of the eight angles of the form ∠(opi,jpi+δi,j+δj ), where
δi, δj ∈ {−1, 0, 1} and (δi, δj) 6= (0, 0), is acute, or each is obtuse. We note that by
Lemma 2, it is sufficient to examine six of the angles.

First, we examine the condition under which ∠(opi,jpi+1,j) < π
2 . Note that this

condition is equivalent to

(11) 〈−pi,j , pi+1,j − pi,j〉 > 0.

After substituting (10) and ∆v,n = λ∆u,n into this inequality and then expanding,
the first nonzero term, which does not depend on K1,K2,K3 and K4, is of degree
two. Since the coefficients of the remaining terms are bounded functions for any
|i| ≤ K and |j| ≤ K, if n is sufficiently large, then (11) is satisfied if and only if
the first nonzero term is positive. We can rewrite this term using the fundamental
quantities of the surface, which yields the following inequality:

(12) X < −1
2
ρL,
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where X = i(E + ρL) + λj(F + ρM). From the condition ∠(opi,jpi−1,j) < π
2 , we

obtain similarly that

(13)
1
2
ρL < X.

We remark that from ∠(opi,jpi+1,j) > π
2 and ∠(opi,jpi−1,j) > π

2 it follows sim-
ilarly that if n is sufficiently large, then − 1

2ρL < X < 1
2ρL. Since L ≤ 0, it is a

contradiction, and thus, we have that if pi,j is an equilibrium point, then all the
eight angles are acute.

From the condition that the remaining six angles are acute, we have that

(14)
1
2
λ2ρN < Y < −1

2
λ2ρN,

where Y = λi(F + ρM) + λ2j(G + ρN), and

(15)
1
2λ2ρN + λρM + 1

2ρL < X + Y < − 1
2λ2ρN − λρM − 1

2ρL
1
2λ2ρN − λρM + 1

2ρL < Y −X < − 1
2λ2ρN + λρM − 1

2ρL

Let P denote the convex polygonal region in the (X, Y )-plane defined by the
inequalities in (12), (13), (14) and (15). We determine the shape of P .

Observe first that as L,N ≤ 0, the first four inequalities define a (possibly
degenerate) rectangle R. Next, we note that the two pairs of inequalities in (15)
define two (possibly degenerate) infinite strips. Recall that LN −M2 ≥ 0, which
implies that the quadratic forms of λ on the right-hand sides of (15) are positive
semidefinite. Thus, the two infinite strips defined in (15) are of nonnegative widths.
From (15), it follows also that if M ≤ 0, then the first strip contains R, and
otherwise the second one. Furthermore, since λ|M | ≤ |L|, λ2|N |, the other strip
contains exactly two (opposite) vertices of R. Hence, P is a (possibly degenerate)
centrally symmetric hexagon that is obtained as the rectangle R truncated with
parallel lines at two opposite vertices. This hexagon can be observed in Part (c) of
Figure 1

We have that, for sufficiently large n, the number of the equilibrium points at the
vertices of Pn is equal to the points of a translate of the lattice {(X(i, j), Y (i, j)) :
i, j ∈ Z2} contained in P ; or, equivalently, the number of lattice points contained
in a translate of P . Let Q denote the fundamental parallelogram of the lattice; that
is, Q = {(X(i, j), Y (i, j)) : i, j ∈ [0, 1]}. Then, by Lemma 1, choosing the translate
of P ‘randomly’, the expected value of the number of lattice points in it is area(P )

area(Q) .

It is an elementary computation to show that area(P ) = λ2ρ2(LN − M2). On
the other hand, area(Q) is the absolute value of the determinant D of the linear
transformation T defining X and Y . Expanding D and using the identities in (9),
we obtain that

area(P )
area(Q)

=
ρ2κ1κ2

|(ρκ1 + 1)(ρκ2 + 1)|
.

To prove the assertion it suffices to show that the discrepancy between this ratio
and the number of the equilibrium points is within ErrU . Because of the properties
of the expected value, for this we need only show that the difference between the
numbers of the lattice points contained in two different translates of P is at most
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ErrU , or in other words, that the difference between the numbers of the points of
Z2 contained in two different translates of T−1(P ) is at most ErrU .

Note that if we move a convex region parallel to the x-axis, then on each line
parallel to the x-axis, the number of the points of Z2 can change by at most one.
Thus, the discrepancy is at most the vertical width of the region, rounded up. We
can observe the same property if we move a convex region parallel to the y-axis.
Thus, the error term is at most two more than the half-perimeter of the smallest
axis-parallel rectangle containing T−1(P ). Clearly, we can estimate this quantity
from above by computing the corresponding quantity for the parallelogram T−1(R)
instead of the hexagon T−1(P ). Hence, the error term is ErrU = 2+(xmax−xmin)+
(ymax − ymin), where xmax, xmin, ymax and ymin are the extrema of the coordinates
of the points of T−1(R). Clearly, these extrema are obtained at vertices of T−1(R).
We leave to the reader to verify that by computing these vertices we obtain the
error term ErrU of Theorem 2.

Part 2: The proof of the assertion for Sn(K).

We prove the statement in three different cases.

Case 1, M > 0. In this case we need to determine the conditions under which
there are equilibrium points on [pi,j , pi+1,j , pi+1,j+1] or [pi+1,j+1, pi,j+1, pi,j ].

Consider the face [pi,j , pi+1,j , pi+1,j+1]. First, we note that an outer normal
vector of this triangle face is

n̂ = (pi+1,j−pi,j)×(pi+1,j+1−pi,j) = pi,j×pi+1,j +pi+1,j×pi+1,j+1+pi+1,j+1×pi,j .

Our key observation is the following: There is an equilibrium point on the triangle
if and only if the ray emanating from the origin and perpendicular to the plane of
the triangle intersects the triangle. In other words, it happens if and only if n̂ is
contained in the conic hull of the triangle; that is, if the angles between n̂ and the
inner normal vectors of the faces of the tetrahedron [o, pi,j , pi+1,j , pi+1,j+1], apart
from −n̂, are acute. Thus, we have three conditions that determine if there is an
equilibrium point on the face:

〈n̂, pi,j × pi+1,j〉 > 0;

〈n̂, pi+1,j × pi+1,j+1〉 > 0;

〈n̂, pi+1,j+1 × pi,j〉 > 0.

After substituting (10) and ∆v,n = λ∆u,n into these inequalities and expanding,
the first nonzero terms, which do not depend on K1,K2,K3 and K4, are of degree
4 in ∆u,n. Expressing them with the fundamental quantities of the surface, we
obtain that

(16) λρME < X, λ2ρMF − λ2(EG− F 2) < Y, X + Y < λρME + λ2ρMF,

where

X = λiρ(LF −ME) + λ2j(ρ(MF −NE)− (EG− F 2)) +
1
2
λρLF − 1

2
λ2ρNE

and

Y = λ2i(ρ(LG−MF ) + (EG− F 2)) + λ3jρ(MG−NF ) +
1
2
λ2ρLG− 1

2
λ3ρNF.
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Similarly like in Part 1, we estimate the number of the faces with an equilibrium
point with the ratio of the area of the triangle defined in (16) to the absolute value
of the determinant of the affine transformation defining X and Y . An elementary
computation yields that the determinant D is

D = λ4(EG− F 2)2(κ1ρ + 1)(κ2ρ + 1)

and, furthermore, that the inequalities in (16) define a right triangle T1 the legs of
which are of length λ2(EG − F 2). Thus, the ratio of the area of T1 to the area of
the fundamental parallelogram of the affine transformation is:

1
2 |(κ1ρ + 1)(κ2ρ + 1)|

.

Now we consider the face [pi+1,j+1, pi,j+1, pi,j ]. An argument similar to the
previous one yields the inequalities
(17)
X < λ2(EG− F 2)− λ2ρMF, Y < −λ3ρMG, −λ2ρMF − λ3ρMG < X + Y,

where X and Y are defined as in the previous case. This region is a reflected copy
T2 of the triangle T1, and thus for the ratio of its area and the absolute value of
the determinant we obtain the same quantity.

Note that as M > 0 and as E + λF + λ2G is a positive definite quadratic form,
the open half planes defined with the third inequalities of (16) and (17) overlap.
Nevertheless, it may happen that T1 and T2 do not overlap; it happens, for instance,
when ρ is sufficiently large. These triangles can be observed in Parts (d0), (d1) and
(d2) of Figure 1.

Case 2, M < 0. We may apply a consideration similar to that in Case 1. The
faces we need to examine are [pi,j , pi+1,j , pi,j+1] and [pi+1,j , pi+1,j+1, pi,j+1]. For
the first face, we have the inequalities

(18) 0 < X, Y < 0, −λ2(EG− F 2) < Y −X,

and for the second one, we have

X < λ2(EG− F 2) + λρME − λ2ρMF,

(19) λ2ρMF − λ3ρMG− λ2(EG− F 2) < Y,

Y −X < −λρME + 2λ2ρMF − λ3ρMG− λ2(EG− F 2),
where X and Y are defined as in Case 1 of Part 2. These two regions define two
triangles. By computing their area we obtain the same estimate for the number of
the equilibrium points as in Case 1.

Case 3, M = 0. In this case the coefficient of the the term of degree four
in the polynomial V in Lemma 2 does not determine which of the edges E+ =
[pi,j , pi+1,j+1] and E− = [pi+1,j , pi,j+1] belongs to Pn. Note that to estimate Sn(K)
we may use the triangles defined by the inequalities in (16) and (17) from Case 1 if
this edge is E+, and the triangles defined by (18) and (19) if it is E−. Note that in
both cases, these two triangles degenerate into the same square in the (X, Y )-plane
if M = 0 (and in this case the two triangles do not overlap). This square is defined
by

(20) 0 < X < λ2(EG− F 2),−λ2(EG− F 2) < Y < 0.
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Thus, in the case M = 0, if a triangle with vertices from amongst pi,j , pi+1,j , pi+1,j+1

and pi,j+1 contains an equilibrium point, then there is exactly one such face of Pn

no matter which edge, E+ or E− belongs to Pn.

We have yet to determine the error term ErrS of the theorem for an arbitrary
value of M . Our method is similar to the one used in Part 1. Let T be the affine
transformation defined by the formulas for X and Y . Let S be an axis parallel
square of side length λ2(EG− F 2). Then ErrS in any of the cases is at most four
more than the perimeter of the parallelogram T−1(S). Hence, a simple computation
yields the required quantity.

Part 3: The proof of the assertion for Nn(K).

The proof is similar to those on Parts 1 and 2, and thus we just sketch it.

Case 1, M > 0. We need to find the conditions under which [pi,j , pi+1,j ],
[pi,j , pi,j+1] or [pi,j , pi+1,j+1] contains an equilibrium point. For simplicity, we call
these edges horizontal, vertical and diagonal, respectively.

Consider a horizontal edge [pi,j , pi+1,j ]. Note that it contains an equilibrium
point if and only if the following holds:

• The angles ∠(o, pi,j , pi+1,j) and ∠(o, pi+1,j , pi,j) are acute.
• The two angles between the triangle [o, pi,j , pi+1,j ], and [pi,j , pi,j−1, pi+1,j ]

and [pi,j , pi+1,j , pi+1,j+1], are either both acute, or both obtuse.

Using the second degree Taylor polynomial, for the first nonzero terms we obtain
the following inequalities:

(21) 0 < Xh < E, 0 < Yh < −1
2
λρE(λN + M),

or
0 < Xh < E,−λρE(λN + M) < Yh < 0,

where

Xh = −i(E + ρL)− λj(F + ρM)− 1
2
ρL,

and

Yh = λiρ(ME − LF ) + λ2j
(
(EG− F 2) + ρ(NE −MF )

)
− λρ(λNE −MF ).

Observe that due to our assumption that λ|M | ≤ λ2|N |, the second system of
inequalities is not satisfied for any value of Yh. Note that the first system determines
a rectangle Rh in the (X, Y ) coordinate-system.

We estimate the number of horizontal edges with an equilibrium point as usual,
and obtain the quantity

Zh =
−Eρ(λN + M)

λ(EG− F 2)|(ρκ1 + 1)(ρκ2 + 1)|
.

For the vertical edge [pi,j , pi,j+1], using similar quantities Xv and Yv, we obtain
another rectangle Rv and the estimate

Zv =
−Gρ(L + λM)

(EG− F 2)|(ρκ1 + 1)(ρκ2 + 1)|
.
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For the edge [pi,j , pi+1,j+1], we have the inequalities

(22) 0 < Xd < E + 2λF + λ2G, 0 < Yd < λM(E + 2λF + λ2G)

or

0 < Xd < E + 2λF + λ2G, λM(E + 2λF + λ2G) < Yd < 0,

where

Xd = −i
(
E+ρL+λ(F +ρM)

)
−j

(
λ(F +ρM)+λ2(G+ρN)

)
− 1

2
ρ(L+2λM +λ2N),

and

Yd = −λi
(
ρ(LF −ME) + λ((EG− F 2) + λ(LG−MF ))

)
+ λ2j

(
ρ(NE −MF )+

+(EG−F 2)+λ(NF −MG)
)
+

1
2
λρ(2ME−LF +λ(NE +2MF −LG)+λ2NF ).

As 0 < λM(E + 2λF + λ2G), we have that only the first system of inequalities,
determining a rectangle Rd, has solutions. Thus, for the number of diagonal edges
with an equilibrium point, we obtain

Zd =
(E + 2λF + λ2G)ρM

λ(EG− F 2)|(ρκ1 + 1)(ρκ2 + 1)|
.

Thus, for the sum of the numbers of the edges with an equilibrium point on them
we obtain the estimate:

Zh + Zv + Zd =
−(LN − 2MF + NE)ρ

(EG− F 2)|(ρκ1 + 1)(ρκ2 + 1)|
=

−(κ1 + κ2)ρ
|(ρκ1 + 1)(ρκ2 + 1)|

.

The three different types of edges can be observed in Parts (e0), (e1), (e2) and
(e3) of Figure 1.

Case 2, M < 0. We need to examine the edges [pi,j , pi+1,j ], [pi,j , pi,j+1] and
[pi+1,j , pi,j+1]. We may apply the approach described in the previous case, and
obtain similar formulas for the numbers of horizontal, vertical and diagonal edges
that contain an equilibrium point. In this way, for the sum of the numbers of the
edges with equilibrium points we obtain the same estimate.

Case 3, M = 0. Similarly like in Part 2, we may apply the formulas from the
M > 0 case if E+ belongs to Pn, and those from the M < 0 case E− does. Note that
the inequalities that determine if [pi,j , pi+1,j ] or [pi,j , pi,j+1] contain an equilibrium
point degenerate into the same inequalities for M = 0, no matter which formulas
we apply. Thus, for Zh and Zv we obtain the same quantities. Furthermore, the
inequalities that determine if E+ contains an equilibrium point in Case 1, and those
that determine if E− contains such a point in Case 2, determine a planar figure of
zero area if M = 0, and thus, if M = 0, we have Zd = 0.

To compute ErrN , we may apply the approach used in Parts 1 and 2. We
remark that if M > 0, then Xd = Xh + Xv and Yd = Yh + Yv, and if M < 0, then
Xd = Xh −Xv and Yd = Yh − Yv. �
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Figure 1. Flocks of an ellipsoid

Figure 1 shows an ellipsoid with axis ratios a : b : c = 1.25 : 1.15 : 1.
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• Part a0 shows the equilibrium points of the ellipsoid. The stable,
unstable and saddle points are denoted by s1 and s2, u1 and u2,
and h1 and h2, respectively.

• Part a1 shows the equilibrium points of Pn near u1 and h1. Faces
with a stable point are shaded, unstable vertices are marked with
×, and edges with a saddle point are drawn with bold lines.

• Part b shows the equilibrium points of Pn near h1. The zoomed
hexagonal region is framed in Part a1.

• Part c shows the unstable equilibrium points near n1 inside the
hexagonal region P .

• Part d0 shows the stable equilibrium points near h1 with the
triangles T1 and T2. These triangles are separately shown in
Parts d1 and d2, respectively.

• Part e0 shows the saddle type equilibrium points near h1 with the
paralelograms R1, R2 and R3. Parts e1, e2 and e3 show these
parallelograms separately.

The estimates in Theorem 2 yield Un(K) = 20.19, Sn(K) = 22.59 and
Nn(K) = 43.78 for the ‘average’ number of the imaginary equilibrium
points in the ‘vicinity’ of h1. For the ellipsoid and the parametriza-
tion we used in Figure 1, we have Un(K) = 25, Sn(K) = 18 and
Nn(K) = 44. The error terms defined in Theorem 2 are the follow-
ing: ErrU = 15.11,ErrS = 30.04,ErrN = 44.98. As we can see, the
error functions grossly overestimate the actual errors, as we pointed
out after Theorem 2.

5. Results on the average of the equilibrium points of Pn

In this section, for x ∈ R, frac(x) denotes the fractional part of x. We start with
the following theorem.

Theorem 3. We have the following.

3.1 Let I ⊂ [0, 1] be a closed interval, and let η be an irrational real number.
Let An = card{frac(kη) ∈ I : k = 1, 2, . . . , n}. Then lim

n→∞
An

n exists and is
equal to the length of I.

3.2 Let X ⊂ [0, 1]2 be a closed axis parallel rectangle, and let η1, η2 be linearly
independent irrational numbers in the vector space R over Q. Let Bn =
card{

(
frac(kη1), frac(kη2)

)
∈ X : k = 1, 2, . . . , n)}. Then lim

n→∞
Bn

n exists
and is equal to the area of X.

In the proof we use the following, well-known result about the simultaneous
approximation of irrational numbers. A more general statement is proven, for
example, in Theorem 4.4, on page 45 of [16].

Lemma 3. Let X be a closed axis parallel rectangle in the unit square [0, 1]2, and
let η1, η2 be linearly independent irrational numbers in the vector space R over Q.
Then the set {

(
frac(nη1), frac(nη2)

)
∈ X : n = 1, 2, 3, . . .)} is everywhere dense.
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Proof of Theorem 3. We prove only (3.2), as the proof of (3.1) is just its simplified
version. We set S = [0, 1]2 and pn =

(
frac(nη1), frac(nη2)

)
. For simplicity, the

geometric figures in the proof are imagined as factored by S.

Let a and b denote the lengths of the horizontal and the vertical sides X, respec-
tively. By the previous lemma, for every δ > 0, there is a positive integer N̄ such
that frac(N̄η1) = δ1 < δ and frac(N̄η2)

frac(N̄η1)
= δ2 < δ. Note that the conditions of the

theorem yield that δ1 and δ2 are irrational.

Let M be the largest value with frac(MN̄η2) < 1. Then(
1
δ1
− 1

) (
1
δ2
− 1

)
≤ M ≤

(
1
δ1

+ 1
) (

1
δ2

+ 1
)

.

Consider the first MN̄ points. We estimate how many of them are contained in
X. Pick any value 1 ≤ k ≤ N̄ . We examine the point set P = {pk, pk+N̄ , pk+2N̄ , . . . , pk+(M−1)N̄}.
These points are equidistant points on a line ( mod S) with slope δ2 (cf. Figure 2).
We count the number of the points of P contained in X. Those that are are located
on segments such that their projections on the x-axis, possibily apart from the first
and the last one, are a long. Measured on the x-axis, the distance of the points of
P is δ1, and thus each such segment, possibly apart from the first and the last one,
contains at least a

δ1
− 1, and at most a

δ1
+ 1 points. There are at least b

δ2
− 1 ‘full’

segments, and at most b
δ2

+ 1 segments of any kind. Hence, the total number of

points in the rectangle is at least
(

a
δ1
− 1

) (
b
δ2
− 1

)
and at most

(
a
δ1

+ 1
) (

b
δ2

+ 1
)
.

Figure 2. An illustration for Theorem 3

Thus, we have

N̄
(

a
δ1
− 1

) (
b
δ2
− 1

)
N̄

(
1
δ1

+ 1
) (

1
δ2

+ 1
) <

BMN̄

MN̄
<

N̄
(

a
δ1

+ 1
) (

b
δ2

+ 1
)

N̄
(

1
δ1
− 1

) (
1
δ2
− 1

)
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Observe that as δ1, δ2 < δ, the inequalities above remain true if we replace δ1 and
δ2 by δ.

Clearly, in the way described above we can prove the same inequalities for the
second MN̄ points, and so on. Thus, for every value of k, we have

(a− δ)(b− δ)
(1 + δ)2

<
BkMN̄

kMN̄
<

(a + δ)(b + δ)
(1− δ)2

.

Finally, if kMN̄ ≤ n < (k + 1)MN̄ , then

Bn

n
≤

B(k+1)MN̄

kMN̄
≤ (k + 1)MN̄

kMN̄

B(k+1)MN̄

(k + 1)MN̄
≤ n + N̄M

n− N̄M

(a + δ)(b + δ)
(1− δ)2

,

and we may obtain similarly that

n− N̄M

n + N̄M

(a− δ)(b− δ)
(1 + δ)2

≤ Bn

n
.

Now, let ε > 0 be arbitrary. Then there is a sufficiently small δ > 0 such that
(a+δ)(b+δ)

(1−δ)2 ≤ ab+ ε
2 . Note that MN̄ depends on δ, but it is fixed if δ is fixed. Thus,

for the value of δ > 0 above, there is a positive integer N̄1 such that from n > N̄1

it follows that n−N̄M
n+N̄M

< ab+ε
ab+ ε

2
, and thus that Bn

n < ab + ε. We obtain similarly

the existence of a positive integer N̄2 such that n > N̄2 yields that Bn

n > ab − ε.
Hence, with the notation N? = max{N̄1, N̄2}, we have that n > N? implies that
|Bn

n − ab| < ε, or in other words, that lim
n→∞

Bn

n = ab. �

Remark 1. The interval I and the rectangle X in Theorem 3 can be replaced by
any Jordan measurable set.

Theorem 3 and Remark 1 yields the following corollary.

Corollary 1. We have the following.

1.1 Let η ∈ R \ Q and X ⊂ R be a set with Jordan measure λ(X). Let

An = card(Z ∩ (nη + X)). Then lim
n→∞

nP
k=1

Ak

n = λ(X).

1.2 Let η1, η2 be linearly independent irrational numbers, and let X ⊂ E2 be
a set with Jordan measure λ(X). Let Bn = card

(
Z2 ∩ (nη1, nη2) + X

)
.

Then lim
n→∞

nP
k=1

Bk

n = λ(X).

Proof. Again, we prove only (1.2). Clearly, we may assume that the diameter of
X is less than one and that it is contained in [−1, 0]2. Then it may contain at
most one point of the lattice Z2. Observe that (nη1, nη2) + X contains a lattice
point if and only if

(
frac(nη1), frac(nη2)

)
+ X contains the origin, which happens

if and only if
(
frac(nη1), frac(nη2)

)
is contained in −X. Since the measure of −X

is λ(X), from this the assertion readily follows. �

In the previous sections we have seen that the numbers of the different types
of equilibrium points ’fluctuate’ around specific values as we change n. Roughly
speaking, in Theorem 4 we prove that if the parameter of the equilibrium point
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m is positioned ’irregularly’ in the parameter range, then the fluctuation ’averages
out’ in the long run.

Theorem 4. We have the following.

4.1 Let r : [τ1, τ1] → R2 satisfy the conditions of Section 3. Assume that τ1
τ2−τ1

is irrational. Then, using the notations of Section 3, if K is sufficiently
large, we have

lim
n→∞

n∑
k=1

Uk(K)

n
=

ρ|κ|
|ρκ + 1|

and

lim
n→∞

n∑
k=1

Sk(K)

n
=

1
|ρκ + 1|

.

4.2 Let r : [u1, u2] × [v1, v2] → R3 satisfy the conditions of Section 4. Assume
that u1

u2−u1
and v1

v2−v1
are linearly independent irrational numbers. Then,

using the notations of Section 4, if K is sufficiently large, we have

lim
n→∞

n∑
k=1

Uk(K)

n
=

κ1κ2ρ
2

|(κ1ρ + 1)(κ2ρ + 1)|
,

lim
n→∞

n∑
k=1

Nk(K)

n
=

−(κ1 + κ2)ρ
|(κ1ρ + 1)(κ2ρ + 1)|

and

lim
n→∞

n∑
k=1

Sk(K)

n
=

1
|(κ1ρ + 1)(κ2ρ + 1)|

.

Proof. We prove only (4.2). Consider, for example, Case 1 of Part 2; that is, the
case of Sn(K) with M > 0. In the proof, we estimated the number of points pi,j

such that (i, j) is contained the triangles T−1(T1) and T−1(T2). Let η1 = ū−u1
u2−u1

and
η2 = v̄−v1

v2−v1
With the notation used in the proof, we have that frac(i) = frac(nη1)

and frac(j) = frac(nη2). Thus, we need to determine the number of the points of
the lattice (nη1, nη2) + Z2 in T1 or in T2. Hence the assertion follows from the
previous corollary. In the rest of the cases, we may apply a similar argument. �

6. Questions and concluding remarks

In light of our results in Sections 3 and 4, we introduce the following notions.

Definition 3. Let m ∈ Rd, where d = 2 or d = 3, be a generic equilibrium point
of a smooth hypersurface H ⊂ Rd with respect to o, and set ρ = ||m||. Then the
imaginary equilibrium indices of m are the quantities:

• U? = |ρκ|
|ρκ+1| and S? = 1

|ρκ+1| for d = 2, where κ is the (signed) curvature
of H at m;

• U? = |ρ2κ1κ2|
|(ρκ1+1)(ρκ2+1)| , N? = |ρ(κ1+κ2)|

|(ρκ1+1)(ρκ2+1)| and S? = 1
|(ρκ1+1)(ρκ2+1)| for

d = 3, where κ1 and κ2 are the fundamental curvatures of H at m.



20 G. DOMOKOS, Z. LÁNGI AND T. SZABÓ

In our investigation, we found the equilibrium points of Pn with indices in a
given ‘large’ neighborhood of 0 or (0, 0). It would be convenient to say that if
we choose a large value of K, then, for a fine discretization, we have found all
the equilibrium points of Pn in this way. Unfortunately, we cannot do that: our
method does not take into account an infinite sequence pnk

ik
of equilibria if ik is

not a bounded sequence of nk. This happens if, for example, ik is of order
√

nk,
in which case pnk

ik
→ m is still satisfied. This observation leads to the following

definition.

Definition 4. Let r be a curve satisfying the conditions in Section 3, with a unique
equilibrium point m = r(0). If {pnk

ik
} is a sequence of equilibrium points of Pn with

lim
k→∞

ik = ∞, then the sequence {pnk
ik
} is called an irregular equlibrium sequence.

We may similarly define the notion of an irregular equilibrium sequence for a
surface. Note that if a curve or surface has no irregular equilibrium sequence, then
for this curve or surface the estimates for Un(K), Nn(K) and Sn(K) in Sections 3
and 4 hold for the numbers of the different types of all the equilibrium points of
Pn.

A direct computation shows that if r : [τ1, τ2] → R2 satisfies the conditions in
Section 3, and its coordinate functions are polynomials, then r has no irregular
sequences. This leads to the following question.

Question 1. Prove or disprove that if the coordinate functions of r are analytic
functions of τ , then the curve has no irregular equilibrium sequence. What about
surfaces in R3?

Our method was to approximate our smooth surface S with a polyhedral, and
thus nonsmooth, surface Pn. We found that no matter how close Pn is to S, it
may occur that Pn has more equilibrium points than S. This is not the case if we
approximate S with a surface the first and second partial derivatives of which are
close to those of S.

Remark 2. Let r : D → R3 be a C2-class surface satisfying the conditions of
Section 4. Let ε > 0 be sufficiently small. Then any g : D → R3 C2-class surface
with the property that the difference between r(u, v) and g(u, v), and between any
first or second partial derivatives of r and g at (u, v) ∈ D is less, than ε, has exactly
one equilibrium m′. Furthermore, m′ is stable, unstable or a saddle point if, and
only if, m is stable, unstable or a saddle point, respectively.

Proof. We use the notations from Section 4.

Let r : D → R3 be a C2-class surface as in Section 4. Note that this surface
has a stable, unstable or saddle point at m = r(0, 0) if exactly two, zero and one
of ρκ1 + 1 and ρκ2 + 1 is positive. Thus, since r is C2, if we approximate r by
g in a way that the surface, and its first and second partial derivatives change at
most ε for some small ε > 0, then the signs of ρκ1 + 1 and ρκ2 + 1 do not change
in a neighborhood of g(0, 0). Clearly, if ε is sufficiently small, g has no equilibrium
outside this neighborhood, and the type of any equilibrium inside is the same as
that of m. Hence, our remark follows from the Poincaré-Hopf theorem. �
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Remark 3. In Section 4, to prove Theorem 2 we made the assumptions that
λ|M | ≤ |L| and λ|M | ≤ λ2|N |. Nevertheless, in the opposite case, a slight modi-
fication of the proof of the theorem shows that the estimates in the theorem are,
apart from the error terms, lower bounds for Un(K), Nn(K) and Sn(K).

Remark 4. We have not examined how large the error terms in Theorem 2 are
compared to the estimates of Un(K), Nn(K) and Sn(K). Note that the estimates
are approximated by the areas of certain convex regions, and that the error terms
are approximated by the sum of the half perimeters of certain parallelograms cir-
cumscribing these regions. Thus, roughly speaking, if the estimates are ‘large’, then
’probably’ the error terms are ‘relatively small’.

Remark 5. In Theorem 4, we described the number of equilibrium points in a
more precise way than in Theorems 1 and 2, under a special condition determined
by the location of the parameters of the equilibrium point of r in the domain of r.
Note that choosing the parameter range ‘randomly’, the conditions of Theorem 4
are satisfied with probability one.

Remark 6. Although we deal only with generic equilibrium points, Theorem 2
also gives a prediction for the degenerated cases as κρ → −1. Assuming ρ=1 and
κ1 < κ2, as κ1 → −∞ and κ2 → −1 we obtain the following limits:

lim
κ1→−∞

lim
κ2→−1

U? = lim
κ2→−1

lim
κ1→−∞

U? = ∞(23)

lim
κ1→−∞

lim
κ2→−1

N? = lim
κ2→−1

lim
κ1→−∞

N? = ∞,(24)

however, the limit of S? is undefined:

lim
κ2→−1

lim
κ1→−∞

S? = 0,(25)

lim
κ1→−∞

lim
κ2→−1

S? = ∞.(26)

Degenerated flocks corresponding to this limit are illustrated on a flattened oblate
spheroid in Parts (a) and (b) of Figure 3. In accordance with (23)-(24) we can
observe large numbers of unstable and saddle points, however, the number of stable
equilibrium points may be low (cf. Equation (25) and Part (a) of Figure 3) or high
(cf. Equation (26) and Part (b) of Figure 3). Similarly, as κ1 → −1 and κ2 → 0,
S? and N? converges to ∞, however, the limit of U? is undefined. This situation
is illustrated on an elongated prolate spheroid in Parts (c) and (d) of Figure 3.

Remark 7. Imaginary equilibrium indices were computed on natural pebble sur-
faces and were compared with the real number of equilibrium points (Figure 4).
Pebbles were digitized by a high-accuracy 3D scanning method, resulting a dense
point cloud. Since equilibrium points are located on the convex hull of the surface,
we identified equilibria on the convex hull of the point cloud [10]. Imaginary equi-
librium indices were computed by using a curvature estimation method [5] on the
triangular mesh. Although the convex hull of a pebble is clearly not an equidis-
tant discretization, as Figure 4 illustrates, imaginary equilibrium indices give a fair
estimate on the actual (integer) number of equilibrium points.

Clearly, imaginary equilibrium indices can be defined for hypersurfaces H ⊂ Rd

for d > 3 as well. Hence, a natural question is to ask about higher dimensional
analogues of our theorems.



22 G. DOMOKOS, Z. LÁNGI AND T. SZABÓ

Figure 3. Flocks on an oblate and on a prolate spheroid

a

b

c

a

b

c

Figure 4. Flocks on a pebble. Imaginary equilibrium indices
(S?, U?, N?) predicted by (2) and actual numbers of equilibrium
points (S, U, N) measured on the pebble:
flock S? S U? U N? N

a 4.84 4 0.60 1 4.44 4
b 0.72 1 1.03 1 2.75 3
c 2.88 3 9.55 12 11.43 14
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