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Abstract. In this note we prove two ellipsoid characterization theorems. The
first one is that if K is a convex body in a normed space with unit ball M ,
and for any point p /∈ K and in any 2-dimensional plane P intersecting int K

and containing p, there are two tangent segments of the same normed length
from p to K, then K and M are homothetic ellipsoids. Furthermore, we
show that if M is the unit ball of a strictly convex, smooth norm, and in this
norm billiard angular bisectors coincide with Busemann angular bisectors or

Glogovskij angular bisectors, then M is an ellipse.

1. Introduction

The problem what geometric or other properties distinguish Euclidean spaces
from the other normed spaces is extensively studied in convex geometry and func-
tional analysis (cf. for instance, the book [1]). In this note we present two more
such properties.

In our investigation, R
n denotes the standard n-dimensional real linear space,

with origin o. For points p, q ∈ R
n, [p, q] denotes the closed segment with endpoints

p and q, and [p, q〉 denotes the closed ray emanating from p and containing q. If M
is an o-symmetric convex body, then M is the norm induced by M , and ||p||M is
the norm of p. If it is obvious which norm we mean, we may write simply ||p||.

Let K be a convex body in R
n with n ≥ 2. A closed nondegenerate segment

[p, q], contained in a supporting line of K (also called a tangent line of K) and with
q ∈ K, is a tangent segment of K from p. If for some norm M and convex body
K ⊂ R

n, for any point p /∈ K and in any 2-dimensional plane P intersecting int K
and containing p, there are two tangent segments from p to K of the same length
in M, we say that K satisfies the equal tangent property with respect to M. It is
well-known that Euclidean balls have this property with respect to the standard
Euclidean norm, and it has been proved that, among convex bodies, only they have
this property (cf. [8]). On the other hand, Wu [12] showed that for any norm M,
if the unit ball M has the equal tangent property with respect to M, then M is an
ellipsoid.

Our first theorem is a combination of these results. We note that our definitions
of tangent segment and equal tangent property are slightly more general than the
one in [12]. On the other hand, for a strictly convex body K, equal tangent property
with respect to M simplifies to the property that for any p /∈ K, all tangents from
p to K have equal length with respect to M.
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Theorem 1. Let K ⊂ R
n be a convex body and let M be a norm. If K satisfies the

equal tangent property with respect to M, then K and M are homothetic ellipsoids.

Our second theorem involves angular bisectors in normed planes. Based on the
properties of angular bisectors in the Euclidean plane, these bisectors can be defined
in several ways. Here we mention two of them (cf. [3] and [6], and for a detailed
discussion on bisectors, [10]).

Definition 1. Let [a, a + b〉, [a, a + c〉 ⊂ R
2 be closed rays, and let M be a norm.

The Busemann angular bisector of [a, a + b〉 and [a, a + c〉 with respect to M is

AB([a, a + b〉, [a, a + c〉) =

[

a, a +
b

||b|| +
c

||c||

〉

.

For the following definition we note that the distance of a point p ∈ M and a
set S ⊂ M is inf{||p − q||M : q ∈ S}.
Definition 2. Let [a, a + b〉, [a, a + c〉 ⊂ R

2 be closed rays, and let M be a norm.
The Glogovskij angular bisector AG([a, a+b〉, [a, a+c〉) of [a, a+b〉 and [a, a+c〉 with
respect to M is the set of points in conv([a, a + b〉, [a, a + c〉) that are equidistant
from [a, a + b〉 and [a, a + c〉 in M.

We remark that a point p of the convex hull of the two rays is equidistant from
the rays if, and only if, p + λM touches the rays for some λ ≥ 0, and thus, for any
two rays, their Glogovskij bisector is a closed ray.

In this note we define another angular bisector with respect to a strictly convex,
smooth norm. To do this, we recall the notion of billiard reflection in a normed
plane.

A billiard path in a Riemannian, or in particular in a Euclidean space, is a piece-
wise smooth geodesic curve with the nonsmooth points contained in the boundary
of the space, where the smooth arcs are connected via the reflection law: the angle
of reflection is equal to the angle of incidence. A generalization of billiard paths for
Finsler geometries was introduced by Gutkin and Tabachnikov [9], who replaced the
reflection law by the least action principle, namely, that two points are connected
by the shortest piecewise smooth geodesic arc containing a point of the boundary.

Formally, let M be a strictly convex, smooth norm in R
2, L be a line, and let

[a, b〉 and [a, c〉 be closed rays, with a ∈ L, that are not separated by L. If a is a
critical point of the distance function F (z) = ||z − b||+ ||z − c||, where z ∈ L, then
we say that [a, c〉 is a billiard reflection of [a, b〉 on L with respect to M.

Note that since M is strictly convex and smooth, the distance function has a
unique critical point, which is independent of the choice of b and c. Furthermore,
for any two closed rays emanating from the same point, there is a unique line on
which they are a billiard reflection, which coincides with the tangent line of any
metric ellipse with its foci on the two rays. For reference on metric ellipses and
conic sections in normed planes, the interested reader is referred to [5].

Billiard reflections can be interpreted geometrically as well (cf. Corollary 3.2 and
Proposition 5.1 of [9]): if L is a line containing o, then [o, c〉 is a billiard reflection
of [o, b〉 if, and only if, the tangent lines of M at − b

||b|| and c
||c|| meet on L (cf.

Figure 1).
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We remark that billiard reflections in [9] were defined only for norms with unit
disks satisfying the C∞ differentiability property, and thus, the authors of [9] gave
a geometric interpretation only for such norms. On the other hand, recall that
the subfamily of strictly convex C∞ norms is everywhere dense in the family of
strictly convex, smooth norms (cf. [7]). Hence, by continuity, the equivalence of
our definition with the geometric interpretation in Figure 1 holds for any strictly
convex, smooth norm.

Figure 1

Definition 3. Let [a, b〉, [a, c〉 ⊂ R
2 and let M be a strictly convex, smooth norm.

We say that L is an external billiard bisector of [a, b〉 and [a, c〉 with respect to M,
if [a, c〉 is a billiard reflection of [a, b〉 on L with respect to M. The closed ray of
the external billiard bisector of [a, b〉 and [a, 2a−c〉, contained in conv([a, b〉∪ [a, c〉)
is called the internal billiard bisector or shortly billiard bisector of [a, b〉 and [a, c〉,
denoted by Ab([a, b〉, [a, c〉).

In Figure 1, the two dashed lines show the external and the internal billiard
bisectors of the rays [o, b〉 and [o, c〉.

Our second result is the following.

Theorem 2. Let M be a strictly convex, smooth norm. Then the following are

equivalent.

2.1 For every [a, b〉, [a, c〉 ⊂ R
2, we have Ab([a, b〉, [a, c〉) = AG([a, b〉, [a, c〉).

2.2 For every [a, b〉, [a, c〉 ⊂ R
2, we have Ab([a, b〉, [a, c〉) = AB([a, b〉, [a, c〉).

2.3 M is an ellipse.

We note that, by a result of Düvelmeyer [4], Busemann and Glogovskij angular
bisectors coincide if, and only if, the plane is a Radon plane.

The definition of billiards for normed planes gives rise to numerous possible
questions, among which we mention one. It is well-known that in the Euclidean
plane the pedal triangle of an acute triangle T (that is the triangle connecting the
base points of the altitudes of T ) is a billiard triangle; in fact, this is the only billiard
triangle in T . This billiard triangle is called the Fagnano orbit. Using the definition
of billiard reflections, Fagnano orbits can be generalized for normed planes (cf. [9]).
On the other hand, we may define the altitudes of T in a natural way: For a triangle
T with vertices a, b and c, [a, ha] is called an altitude of T , if, in terms of Birkhoff
orthogonality, a − ha is normal to b − c (for Birkhoff orthogonality, cf. [11]).
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Our question is the following.

Question 1. Let M be a strictly convex, smooth norm. Prove or disprove that if
the pedal triangle of any triangle T , if it exists, is a billiard triangle in T , then M
is an ellipse.

In Sections 2 and 3 we present the proofs of Theorems 1 and 2, respectively.

2. Proof of Theorem 1

In the proof we use the following definition and lemma. First, set W = {(x, y) ∈
R

2 : x < 1, y < 1, x + y > 1}.
Definition 4. Let F denote the family of curves, with endpoints (0, 1) and (1, 0),
that are contained in the triangle W and can be obtained as an arc of the boundary
of a strictly convex, smooth disk with supporting half planes x ≤ 1 and y ≤ 1.

Lemma 1. If G ∈ F is an integral curve of the differential equation

(1) y′(1 − x)(x − y + 1) + (1 − y)(y − x + 1) = 0

for 0 < x < 1, then G is a conic section arc satisfying

(2) x2 + y2 − 1 + c(x − 1)(y − 1) = 0

for some c ∈ R with c < 2.

Proof. Note that as G is an arc of the boundary of a smooth convex body, the
function representing it is continuously differentiable for 0 < x < 1. We distinguish
three cases.

Case 1, x2 + y2 > 1 in some subinterval of (0, 1). Multiplying both sides of (1)
by (x2 + y2 − 1)−3/2, we may write the equation in the differential form

(3) (x2+y2−1)−3/2(1−x)(x−y+1) d y+(x2+y2−1)−3/2(1−y)(y−x+1) dx = 0.

Note that the coefficients of (3) are continuously differentiable functions of (x, y)
in the (simply connected) subset of W satisfying x2 + y2 > 1. Furthermore, it
satisfies Schwarz’s Theorem, and thus, by Poincaré’s Lemma, it has a potential
function F (x, y).

Using standard calculus, it is easy to check that any continuously differentiable
potential function satisfies

(4) (1 − c̄2)x2 + (1 − c̄2)y2 + 2xy − 2x − 2y + 1 + c̄2 = 0

for some c̄ ∈ R. Thus, G is a conic section arc. An elementary computation shows
that the eigenvalues of its matrix are 2 − c̄2 and −c̄2 with eigenvectors (1, 1) and
(−1, 1), respectively. Thus, it defines an ellipse if c̄2 > 2, a parabola if c̄2 = 2, a
hyperbola with a convex arc in 0 < x < 1 if 1 < c̄2 < 2, the union of the lines
y = 1 and x = 1 if c̄2 = 1, and a hyperbola with a concave arc in 0 < x < 1 if
0 ≤ c̄2 < 1. These last two possibilities are clearly impossible, thus we have 1 < c̄2.
Now, introducing the notation c = 2

1−c̄2 < 0, we may rewrite (4) as in (2) with
c < 0.

Note that these integral curves have no common points with the circle x2+y2 = 1,
and thus, by the continuity of G, we have that any curve G satisfying the condition
of Case 1 is an arc of one of the curves in (2) with some c < 0.
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Case 2, x2 + y2 < 1 in some subinterval of (0, 1). After multiplying both sides
by (1 − x2 − y2)−3/2, we may apply an argument similar to the one in Case 1 to
obtain the curves in (2) with 0 < c < 2.

Case 3, otherwise. Consider a subinterval of (0, 1). By our condition, in this
interval G contains a point of the unit circle x2 + y2 = 1. Thus, the x-coordinates
of the intersection points of G and the circle is an everywhere dense set in (0, 1),
which, by the continuity of G, yields that G is an arc of x2 + y2 = 1. �

Proof of Theorem 1. First, we show the assertion for n = 2. To show that K
is strictly convex, we may use the idea in [12]. More specifically, suppose for
contradiction that K is not strictly convex, and consider a segment [p, q] ⊂ bdK
that is maximal with respect to inclusion. Without loss of generality, we may
assume that the line containing [p, q] does not separate K and o. Then the point
r = λ

(

1
3p + 2

3q
)

is an exterior point of K for any λ > 1. On the other hand, if λ is
sufficiently close to 1, then there are no two equal tangent segments of K from r;
a contradiction.

Now we show that K is smooth. Suppose for contradiction that p is a nonsmooth
point of bdK; that is, there are two lines L1 and L2 tangent to K at p. Consider
two parallel supporting lines L and L′ of K which intersect both L1 and L2. Let
q and q′ be the tangent points of L and L′, respectively, and for i ∈ {1, 2}, let
ri and r′i be the intersection points of Li with L and L′, respectively. We choose
the indices in a way that r1 ∈ [q, r2], which yields that r′2 ∈ [q, r′1] (cf. Figure 2).
Observe that, applying the equal tangent property to r1 and r2, we have that

(5) ||r1 − r2||M + ||r1 − p||M = ||r2 − p||M.

We obtain similarly that

(6) ||r′1 − r′2||M + ||r′2 − p||M = ||r′1 − p||‖M.

Figure 2

Clearly, the triangle conv{p, r′1, r
′
2} is a homothetic copy of conv{p, r1, r2}, and

thus, a there is a value λ > 0 such that ||r′1 − p||M = λ||r1 − p||M, ||r′2 − p||M =
λ||r′2 − p||M and ||r′2 − r′1||M = λ||r2 − r1||M. After substituting these expressions
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into (6) and simplifying by λ, we immediately obtain that ||r1−r2||M+||r2−p||M =
||r1 − p||‖M , which contradicts (5).

In the remaining part, we assume that K is strictly convex and smooth. Consider
a parallelogram S circumscribed about M with the property that the midpoints
of its sides belong to M ; such a parallelogram exists: for instance, a smallest area
parallelogram circumscribed about M has this property.

Note that for any affine transformation h, K has the equal tangent property with
respect to M if and only if h(K) has this property with respect to h(M). Hence, we
may assume that S is the square with vertices (1, 1),(−1, 1), (−1,−1) and (1,−1).

Consider the axis-parallel rectangle R circumscribed about K. Note that by
the equal tangent property, the two tangent segments from any vertex of R are of
equal Euclidean length. Thus, R is a square, and the tangent points on its sides
are symmetric to its two diagonals. Since any homothetic copy of K satisfies the
equal tangent property, we may assume that the points (1, 0) and (0, 1) are common
points of bdK and bdR and that the half planes x ≤ 1 and y ≤ 1 support K.

Consider a point p0 = (x0, y0) of bdK with 0 < x0 < 1 and y0 > 0, and let
s0 < 0 denote the slope of the tangent line L0 of K at p0. The equation of L0 is:

y = s0(x − x0) + y0.

This line intersects the line x = 1 at the point q1 = (1, y0 + s0(1−x0)) and the line

y = 1 at q2 =
(

x0 + 1−y0

s0

, 1
)

.

Figure 3

Let (µ, ν) ∈ bdM be the point with ν = s0µ and ν > 0 (cf. Figure 3). Thus, for
the normed lengths of the two tangent segments of K from q1, we have

y0 + s0(1 − x0) =
1 − x0

−µ

and for the ones from q2, we obtain similarly that

x0 +
1 − y0

s0
=

1 − y0

s0µ

Eliminating µ, we have

s0

(

x0

1 − y0
+ 1

)

= −
(

y0

1 − x0
+ 1

)

,
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which yields that the function representing the arc of bdK with 0 < x < 1 and
y > 0 satisfies the differential equation

y′(1 − x)(x − y + 1) + (1 − y)(y − x + 1) = 0.

To determine bdK, we need to find the integral curves of this differential equa-
tion in F. By Lemma 1, we have that the arc of bdK between (1, 0) and (0, 1) is of
the form x2 + y2 − 1 + c(x − 1)(y − 1) = 0 for some c < 2, and thus, in particular,
it is symmetric about the line y = x.

Consider the point u = (ζ, ω) of this arc, and let t = (1, τ) be the point where
the tangent line of K at u intersects the line x = 1. Then, by the axial symmetry of
the arc, we have that the tangent line of K at u′ = (ω, ζ) intersects the line y = 1 at
t′ = (τ, 1). Note that by the equal tangent property, the M -lengths of the segments
[u, v] and [u′, v′] are both equal to τ . Since they are of equal Euclidean lengths
as well, it follows that the radii of M in their directions are of equal Euclidean
lengths, which yields that the union of the arcs of bdM in the second and the
fourth quadrants is symmetric about the line y = x. Thus, the two supporting lines
of M , parallel to the line y = x, touch M at points on the line y = −x. We may
obtain similarly that the supporting lines of M , parallel to the line y = −x, touch
M at points on the line y = x. Then the rectangle S′, with these four supporting
lines as its sidelines, satisfies the property that the midpoints of its sides belong
to M . Hence, we may repeat our argument with S′ in place of S, and obtain that
bdK is the union of another four conic section arcs. Recall that conic section arcs
are analytic, and thus, we have that the four arcs belong to the same conic section,
which yields, by the compactness of K, that K is an ellipse.

Now, consider an affine transformation h that transforms K into a Euclidean
disk. We may assume that the centre of both h(K) and h(M) is the origin. Consider
any line L passing through o. If p is a point on L with p /∈ h(K) such that the two
tangent lines of h(K) containing p touch h(K) at q1 and q2, then the Euclidean
lengths of the segments [p, q1] and [p, q2] are equal. Since their h(M)-normed lengths
are also equal, we have that the two radii of h(M) in the directions of [p, q1] and
[p, q2] have equal Euclidean lengths. As p was an arbitrary point, it follows that
h(M) is axially symmetric to L. Thus, h(M) is axially symmetric to any line
passing through o, and hence it is a Euclidean disk. This yields the assertion for
the plane.

Finally, we examine the case n > 2. Consider any section of K with a plane P ,
and the intersection of M with the plane P ′ parallel to P that contains the origin.
We may apply our previous argument, and obtain that these planar sections are
homothetic ellipses. Thus, a well-known theorem of Burton [2] yields that M and
K are ellipsoids, from which the assertion readily follows. �

3. Proof of Theorem 2

Clearly, if M is an ellipse, then all the three angular bisectors coincide.

First, let M be a norm in R
2, and assume that Ab([a, b〉, [a, c〉) = AG([a, b〉, [a, c〉)

for any [a, b〉, [a, c〉 ⊂ R
2.

Since M is centrally symmetric, there is a parallelogram S such that the mid-
points of its sides belong to M . We may apply an affine transformation such as
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in the proof of Theorem 1, and hence, we may assume that S is the square with
vertices (1, 1), (1,−1), (−1,−1) and (−1, 1).

Let the arc of bdM in the quadrant x ≥ 0 and y ≥ 0 be defined as the graph of
a function y = f(x). Note that f is continuously differentiable for 0 < x < 1, and
that f(1) = 0, f(0) = 1 and f ′(0) = 0.

Consider the point p0 = (x0, f(x0)), where 0 < x0 < 1. Let f(x0) = y0, and
f ′(x0) = s0. Then the equation of the tangent line of M at p0 is

y − y0 = s0(x − x0)

Let q1 and q2 be the points where this line intersects the lines x = 1 and y = 1,
respectively. Then

q1 =
(

1, y0 + s0(1 − x0)
)

and q2 =

(

x0 +
1 − y0

s0
, 1

)

.

Observe that q1 is equidistant from the x-axis and the line y = y0

x0

x. Clearly,

the normed distance of q1 and the x-axis is y0 + s0(1 − x0) > 0. Thus, the disk
q1 + (y0 + s0(1 − x0))M touches the line y = y0

x0

x, or in other words, the line L1

with equation y + 1 = y0

x0

(

x + 1
y0+s0(1−x0)

)

touches M .

From the observation that q2 (and thus also −q2) is equidistant from the y-axis
and the line y = y0

x0

x, we obtain similarly (for −q2) that the line L2 with equation

y − 1

x0+
1−y0

s0

= y0

x0

(x − 1) touches M . It is easy to check that then L1 and L2

coincide, and thus, that their y-intercepts are equal. Hence,

y0

x0
· y0 + s0(1 − x0) + 1

y0 + s0(1 − x0)
=

s0x0 + 1 − y0 + s0

s0x0 + 1 − y0
,

which yields the differential equation

y

x
· y + y′(1 − x) + 1

y + y′(1 − x)
=

y′x + 1 − y + y′

xy′ + 1 − y
.

Simplifying, we obtain that
(

y′(1 − x)(x − y + 1) + (1 − y)(y − x + 1)
)

(y′x − y) = 0

If the second factor is zero in some interval, then in this interval y = cx for some
constant c ∈ R. This curve cannot be contained in the boundary of an o-symmetric
convex disk. Thus, the first factor is zero in an everywhere dense set, which yields,
by continuity, that it is zero for every 0 < x < 1. Hence, by Lemma 1, we obtain
that the part of bdM in the first quadrant is a conic section arc. Applying a similar
argument for the arcs in the other quadrants, we obtain that bdM is the union of
four conic section arcs, with the lines y = x and y = −x as axes of symmetry. We
remark that these arcs are analytic curves.

Let R be the rectangle, with its sides parallel to the lines y = x and y = −x,
that is circumscribed about M . Observe that the midpoints of the sides of R are
points of M . Thus, we may apply our argument for R in place of S, which yields,
in particular, that bdM is analytic; that is, that bdM belongs to the same conic
section: an ellipse that contains the points (1, 0), (0, 1), (−1, 0) and (0,−1) and is
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contained in the square S. There is only one such ellipse: the circle with equation
x2 + y2 = 1; from which the assertion follows.

We are left with the case that (2.2) yields (2.3). Assume that Ab([a, b〉, [a, c〉) =
AB([a, b〉, [a, c〉) for any [a, b〉, [a, c〉 ⊂ R

2. Consider any point p ∈ bdM . Without
loss of generality, we may assume that p = (1, 0), and that the lines x = 1 and
y = 1 are tangent lines of M . Since M is smooth, for −1 < x < 1 and y > 0, bdM
is the graph of a continuously differentiable function y = f(x). Then, with the
notations y0 = f(x0) and s0 = f ′(x0), the equation of the tangent line L of M at
the point q = (x0, y0) intersects the line x = 1 at the point u = (1, y0 + s0(1−x0)).
This point is on the billiard bisector of [o, p〉 and [o, q〉. Furthermore, the point
v = (1 + x0, y0) is a point of the Busemann bisector of [o, p〉 and [o, q〉. Thus, we
have

y0

1 + x0
= y0 + s0(1 − x0),

which leads to the differential equation

−x

1 − x2
y = y′.

An elementary computation shows that the solutions of this differential equation
are y = c

√
1 − x2 for some c > 0. Since y = 1 is a tangent line of M , we have that

c = 1, which, by the symmetry of M , yields the assertion.
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