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Let C ⊂ Rn be a convex body. We introduce two notions of convexity asso-
ciated to C. A set K is C-ball convex if it is the intersection of translates of
C, or it is either ∅, or Rn. The C-ball convex hull of two points is called a
C-spindle. K is C-spindle convex if it contains the C-spindle of any pair of
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we characterize those n-dimensional convex bodies C for which every C-ball
convex set is the C-ball convex hull of finitely many points. Finally, we ob-
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sets, and diametrically maximal sets in n-dimensional Minkowski spaces.
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1. Introduction

Closed convex sets may be introduced in two distinct manners: either as
intersections of half-spaces, or as closed sets which contain the line segments
connecting any pair of their points. We develop these approaches further to
obtain the notions of ball convexity and spindle convexity with respect to a
convex body. Let C be a convex body (a compact convex set with non-empty
interior) in Euclidean n-space, Rn.

Definition 1.1. A set K ⊂ Rn is called ball convex with respect to C
(shortly, C-ball convex), if it is either ∅, or Rn, or the intersection of all
translates of C that contain K.

Definition 1.2. Consider two (not necessarily distinct) points p, q ∈ Rn such
that there is a translate of C that contains both p and q. Then the C-spindle
(denoted as [p, q]C) of p and q is the intersection of all translates of C that
contain p and q. If no translate of C contains p and q, we set [p, q]C = Rn.
We call a set K ⊂ Rn spindle convex with respect to C (shortly, C-spindle
convex), if for any p, q ∈ K, we have [p, q]C ⊂ K.

In this paper, we study the geometric properties of ball and spindle convex
sets depending on C, and how these two families are related to each other.

In 1935, Mayer [26] defined the notion of “Überkonvexität”. His definition
coincides with our spindle convexity with the additional assumption that C
is smooth and strictly convex.

Intersections of (finitely many) Euclidean unit balls on the plane were
studied by Bieberbach [7], and in three dimensions by Heppes [13], Heppes
and Révész [14], Straszewitcz [35] and Grünbaum [12]. Recent developments
have led to further investigations of sets that are ball convex with respect
to the Euclidean unit ball Bn. For these results, the reader is referred to
[3], [6], [8], [19], [18], [17] and [28]. A systematic investigation of these sets
was started by Bezdek et al. [5]: the authors examined how fundamental
properties of convex sets can be transferred to sets that are ball convex
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with respect to Bn; in particular, they gave analogues of Kirchberger’s and
Carathéodory’s theorems, examined separation properties of ball convex sets
and variants of the Kneser-Poulsen conjecture. It is also shown there that
the notions of ball and spindle convexity coincide when C = Bn. In the spirit
of the results in [5], the authors of [20] gave generalizations of Kirchberger’s
theorem for separation of finite point sets by homothets or similar copies of a
given convex region. The notion of C-ball convex hull (cf. Definition 2.2) was
defined for centrally symmetric plane convex bodies by Martini and Spirova
[26].

In Section 2, we introduce our notation and basic concepts. In Section 3,
we examine how the notions of ball and spindle convexity are related to
each other and how sets are separated by translates of C. In Section 4,
we define the arc-distance between two points with respect to a planar disc
C, and examine when the triangle inequality holds and when it fails. In
Section 5, we introduce and examine the Carathéodory numbers associated
to these convexity notions. In Section 6, we give a partial characterization of
convex bodies C for which every C-ball convex set is the C-ball convex hull
of finitely many points. Finally, in Section 7, we prove that the operation of
taking intersections of translates of C is stable in a certain sense. By applying
this result to Hadwiger’s Covering Problem for certain C-ball convex sets,
and diametrically maximal sets in a Minkowski space, we obtain a stability
of upper bounds on covering numbers.

2. Spindle and ball convex hull, convexity structures

We use the standard notation bdS, intS, relintS, aff S, conv(S) and
cardS for the boundary, the interior, the relative interior, the affine hull,
the (linear) convex hull and the cardinality of a set S in Rn. For two
points p, q ∈ Rn, [p, q] denotes the closed segment connecting p and q. The
vectors e1, e2, . . . , en ∈ Rn denote the standard orthonormal basis of the
space, and for a point x ∈ Rn, the coordinates with respect to this basis are
x = (x1, x2, . . . , xn). The Euclidean norm of p ∈ Rn is denoted by |p|. As
usual, αA+ βB denotes the Minkowski combination of sets A,B ⊂ Rn with
coefficients α, β ∈ R (cf. [31]).

Definition 2.1. Let C ⊂ Rn be a convex body, X ⊆ Rn a nonempty set and
r ≥ 0. Then we set

B+
C(X, r) =

⋂
v∈X

(rC + v) and B−C(X, r) =
⋂
v∈X

(−rC + v)
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Furthermore, we set B+
C(∅, r) = B−C(∅, r) = Rn. When r is omitted, it is one:

B+
C(X) = B+

C(X, 1),B−C(X) = B−C(X, 1). When C = −C we may omit the
+/− signs.

Note that by Definition 1.2, we have

[p, q]C = B+
CB−C ({p, q}) .

In the paper we often use the following two fundamental concepts.

Definition 2.2. The spindle convex hull of a set A with respect to C (in
short, C-spindle convex hull), denoted by convsC (A), is the intersection of all
sets that contain A and are spindle convex with respect to C. The ball convex
hull of A with respect to C (or C-ball convex hull), denoted by convbC (A),
is the intersection of all C-ball convex sets that contain A.

We remark that convbC (A) is the intersection of those translates of C that
contain C, or in other words, convbC (A) = B+

CB−C(A).
Next, we study the notions of ball and spindle convexity in the context

of the theory of abstract convexity.

Definition 2.3. A convexity space is a set X together with a collection
G ⊆ P(X) of subsets of X that satisfy

i. ∅, X ∈ G, and

ii. G is closed under arbitrary intersection.

Such a collection G of subsets of X is called a convexity structure on X.
If a third condition

(iii) G is closed under the union of any increasing chains (with respect to
inclusion)

also holds, then we call the pair (X,G) an aligned space (and G an aligned
space structure). This is the terminology used, for example, by Sierksma [34]
and by Kay and Womble [15].

We note that in the literature (cf. van de Vel [36]), if G satisfies (i) and
(ii), but does not necessarily satisfy (iii), then it is often referred to as a
Moore family, or a closure system. On the other hand, ‘convexity space’
frequently refers to what we call an aligned space (see [16]). Other terms
used for an aligned space in the literature are ’domain finite convexity space’
and ’algebraic closure system’.
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The convex hull operation associated with a convexity space (X,G) is:
convG(A) = ∩{G ∈ G : A ⊆ G} for any A ⊆ X. The roughest convexity
(resp. aligned space) structure G which contains a given family S ⊆ P(X)
is the convexity (resp. aligned space) structure generated by S. This is the
intersection of all convexity (resp. aligned space) structures which contain
S.

For a convex body C ⊆ Rn, we denote the family of C-ball convex sets
by BC . Clearly, (Rn,BC) is a convexity space. We note that the family of
C-spindle convex sets is an aligned space structure, while the family of closed
C-spindle convex sets is a convexity structure. Furthermore, the space of C-
spindle convex bodies is a geometrical aligned space (an aligned space (X,G)
is called geometrical if A =

⋃
{convG(F ) | F ⊆ A, card(F ) ≤ 2} for every

A ∈ G, see [16]).
Clearly, BC is the convexity space generated by the translates of C. Let

TC denote the aligned space structure generated by these translates. In The-
orem 1, we compare their corresponding hull operations convbC and convTC .
For the proof we need the following result of Sierksma [34].

Lemma 2.4 (Theorem 7 in [34]). Let (X,S) be a convexity space, and let G
be the aligned space structure generated by S. If A ⊆ X, then

convG(A) =
∞⋃
k=0

[
∪ {convS(F ) : F ⊆ A, |F | ≤ k}

]
.

Theorem 1. Let C be a convex body in Rn, and let A ⊆ Rn. Assume that
dim convbC (A) = n. Then

cl (convTC (A)) = convbC (A) (1)

that is, cl (convTC (A)) is the intersection of all translates of C that contain
A.

Proof. Clearly, cl (convTC (A)) ⊆ B+
CB−C(A). To prove the reverse contain-

ment, assume that x ∈ int B+
CB−C(A). By Lemma 2.4, it is sufficient to show

that x ∈ B+
CB−C(F ) for some finite F ⊆ A.

Since − intC + x ⊇ B−C(A) (see Remark 5.5), we have (− bdC + x) ∩
B−C(A) = ∅. From the compactness of − bdC + x it follows that there is an
F ⊆ A finite set with (− bdC + x) ∩B−C(F ) = ∅. Thus, x ∈ B+

CB−C(F ).
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Clearly, if any C-spindle is n-dimensional, then so is the C-ball convex
hull of any set containing more than one point. This leads to the following
observation.

Remark 2.5. If C is a strictly convex body in Rn, then cl(convTC (A)) =
convbC(A) for any set A ⊂ Rn.

We expect a positive answer to the following question:

Problem 2.6. Can we drop the condition on the dimension of convbC (A) in
Theorem 1?

3. Relationship between spindle and ball convexity, and separation
by translates of a convex body

Clearly, for any convex body C, a C-ball convex set is closed and C-
spindle convex. Thus, for any X and C the C-ball hull of X contains its
C-spindle convex hull. In [5], it is shown that if C is the Euclidean unit ball,
then for closed sets the notions of spindle and ball convexity coincide. Now
we show that it is not so for every convex body C.

Example 3.1. We describe a 3-dimensional convex body C and a set H ⊆ R3

for which H is C-spindle convex but it is not C-ball convex. Let T ⊂ R3 be
a regular triangle in the x3 = 0 plane, with the origin as its centroid (cf.
Figure 1). Let C = conv

(
(T + e3)∪ (−T − e3)

)
. Let H be the intersection of

C with the plane with the equation x3 = 0. Note that H is a regular hexagon:
H = (T − T )/2.

Figure 1: Example 3.1
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We show that H is C-spindle convex. Note that H and T are of constant
width two in the two-dimensional norm defined by H. Thus, for any p, q ∈ H,
there is a chord of T , parallel to [p, q], that is not shorter than [p, q]. From
this, it follows that there is a translate T + z1 of T that contains p, q, and
similarly, a set −T + z2 containing p and q. We observe that [p, q]C ⊆
C ∩ (C + z1 − e3) ∩ (C + z2 + e3) ⊆ H, which yields the desired statement.

We have that convsC (H) = H but clearly, there is only one translate of C
containing H, namely C. Thus, H = convsC (H) 6= convbC (H) = C.

We introduce the following notions. Note the order of X and Y in Defi-
nition 3.2.

Definition 3.2. Let C ⊂ Rn be a convex body, and let X, Y ⊂ Rn. We
say that a translate C + x of C separates X from Y , if X ⊂ C + x, and
int(C + x) ∩ Y = ∅. If X ⊂ int(C + x) and (C + x) ∩ Y = ∅, then we say
that C + x strictly separates X from Y .

In [5], it is proved that if C = Bn is the Euclidean ball, then any C-
spindle convex set is separated from any non-overlapping C-spindle convex
set by a translate of C. By Example 3.1, not all convex bodies have this
property (there, H is not separated from any singleton subset of C). Thus,
we introduce the following notions.

Definition 3.3. Let C ⊂ Rn be a convex body, and let K ⊂ Rn be a C-
spindle convex set. We say that K satisfies Property (p), (s) or (h) with
respect to C, if

(p) For every point p /∈ K, there is a translate of C that separates K from
p.

(s) For every C-spindle convex set K ′ that does not overlap with K there
is a translate of C that separates K from K ′.

(h) For every hyperplane H with H ∩ intK = ∅, there is a translate of C
that separates K from H.

It is not difficult to show that Property (h) yields (s), which in turn yields
(p).

Remark 3.4. A closed set K satisfies (p) if, and only if, K is C-ball convex.
In particular, for closed sets the notions of spindle convexity and ball con-
vexity with respect to a convex body C coincide if, and only if, every closed
C-spindle convex set satisfies (p).
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Remark 3.5. For a smooth convex body C, (s) and (h) are equivalent.

Recall that in Example 3.1, H is C-spindle convex but not C-ball convex.
We note that C may be replaced by a smooth C ′ such that H is C ′-spindle
convex but not C ′-ball convex. Simply, apply the following theorem for the
convex body C of Example 3.1 and any smooth and strictly convex body D.
Then, it follows that H of Example 3.1 is C ′-spindle convex for C ′ = C +D,
but it is easy to see that H is not C ′-ball convex.

Theorem 2. Let C,D be convex bodies in Rn and let S ⊆ Rn. If S is C-ball
convex, then S is (C + D)-ball convex. Similarly, if S is C-spindle convex,
then S is (C +D)-spindle convex.

We need the following standard lemma, for a proof, see Lemma 3.1.8. in
[31].

Lemma 3.6. If C,D are convex bodies in Rn, then C =
⋂
x∈D(C +D − x).

Proof of Theorem 2. Observe that by Lemma 3.6 we have that convbC+D(S) ⊆
convbC(S), and convsC+D(S) ⊆ convsC(S), for any S ⊆ Rn. These readily im-
ply the statement of the theorem concerning ball convexity. The statement
concerning spindle convexity follows from the fact that for any two points
p, q ∈ S we have [p, q]C+D = convbC+D ({p, q}) ⊆ convbC ({p, q}) = [p, q]C .

A frequently used special case of Theorem 2 is the following.

Corollary 3.7. Let C be a convex body in Rn, let S ⊆ Rn, and let 0 < r < 1
be arbitrary. If S is C-ball convex, then rS is C-ball convex. In particular,
rC is C-ball convex. Similarly, if S is C-spindle convex, then rS is C-spindle
convex. In particular, rC is C-spindle convex.

Proof. We apply Theorem 2 to rC and (1− r)C.

For n ≥ 3, the analogous implication of Theorem 2 is not true for S +D
in general, so ball convexity is not preserved in general by adding a convex
body D to both a C-ball convex set S and to C. The same holds for spindle
convexity. We show both in the following example.

Example 3.8. We describe convex bodies C,D ⊂ Rn and a set S ⊂ Rn, for
any n ≥ 3, such that S is C-ball convex (and thus S is C-spindle convex),
and S+D is not (C+D)-spindle convex. We note that all sets C,D, S ⊆ Rn

will be centrally symmetric.
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Let C = conv([−1, 1]n∪{±(1+ε)ei}n−1i=1 ), where 0 < ε < 1. Let D = rBn,
that is D is a Euclidean ball of radius r for some r > 0, centered at the
origin. Choose S = [en,−en]. Then S = convbC (S) = convsC (S) since
S =

(
C +

∑n−1
i=1 ei

)
∩
(
C −

∑n−1
i=1 ei

)
.

On the other hand, (S +D) ∩ {xn = 0} = rBn−1 × {0}, and thus ±rei ∈
bd(S +D) for any 1 ≤ i ≤ n− 1, while we have

±rei ∈ int

(
convsC+D

(
(1+r)en∪

(
− (1+r)en

)))
⊆ int

(
convsC+D(S+D)

)
,

for any 1 ≤ i ≤ n− 1, so (S +D) ( convsC+D(S +D).

In the following, we show that Example 3.1 is not a ‘rare phenomenon’.

Theorem 3. Let n ≥ 3. The family of those smooth n-dimensional convex
bodies for which the associated ball and spindle convexity do not coincide,
forms an everywhere dense set in the metric space of the n-dimensional con-
vex bodies, equipped with the Hausdorff metric.

Proof. Let C be any convex body. Note that there are two distinct points
x, y of C with a hyperplane F through the origin such that the parallel
hyperplanes F +x and F + y support C and their intersection with C is {x}
and {y}, respectively.

Let T be a small (n−1)-dimensional regular simplex in F with the origin
as its centroid. Let C ′ = conv(C∪(T+x)∪(−T+y)) and let H = (T−T )/2.
Similarly to Example 3.1, we observe that H is an (n − 1)-dimensional C ′-
spindle convex set, whereas convbC′ (H) is n-dimensional.

To construct a smooth body with respect to which ball and spindle con-
vexity do not coincide, we take H and C̄ = C ′ + ρBn. If ρ > 0 is sufficiently
small, then C̄ is close to C.

Now we present an example of C and a closed convex set H where H
satisfies Property (p), i.e. it is C-ball convex, but does not satisfy (h).

Example 3.9. Let T be the Euclidean unit disk centered at the origin in the
plane U = {x3 = 0} in R3, and consider the points p = e1 and q = −e2.
Let T ′ ⊂ T + e3 be a smooth plane convex body in the U + e3 plane with
the following properties: T ′ is symmetric about e3, and the chord [p′, q′] of T ′

connecting its supporting lines parallel to the x2-axis is parallel to and slightly
longer than [p, q]. We choose our notation in a way that T ′+p−p′ and T are
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Figure 2: Example 3.9

on the same side of the line L defined by the equations x1 = 1, x3 = 0. Let p∗

be the reflection of p′ about the plane U , and set C = conv(T ∪ T ′ ∪ (−T ′)).
Figure 2 shows the x3 = 0 and x3 = 1 sections of C, viewing it from the
top. Let H = (C + p − p′) ∩ (C + p − p∗) and observe that H = T ′ + p − p′
is a C-ball convex set contained in U . Consider the plane with the equation
x1 = 1, and note that it supports H at p.

If a translate C+v of C separates H from the plane x1 = 1 then p ∈ C+v,
and x1 = 1 is a support plane of C + v. It follows that v = 0. However,
C + H because |p′ − q′| > |p− q|.

A suitable modification of this example yields a smooth convex body C
arbitrarily close to the Euclidean unit ball such that some C-ball convex sets
(which thus satisfy (p)) do not satisfy (h). Hence, by Remark 3.5, there are
spindle convex sets that satisfy (p) and do not satisfy (s) for some convex
body C.

We propose the following problems.

Problem 3.10. Is there a spindle convex set K that satisfies (h) and does
not satisfy (s) with respect to some convex body C?

Problem 3.11. Is there a convex body C such that every C-spindle convex
set K satisfies (p) (respectively (s)), but at least one of them does not satisfy
(s) (respectively (h))?
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We conclude this section by finding some special classes of convex bodies
such that any spindle convex set with respect to any of them satisfies Property
(h). Thus, if a set is closed and spindle convex with respect to any of them,
then it is ball convex with respect to the same convex body. First, we recall
a standard definition.

Definition 3.12. The central symmetral 1
2
(C−C) of a convex body C ⊂ Rn

defines a norm on Rn, called the relative norm of C (cf. [9]). We recall that
in this norm, C is a convex body of constant width two. For points p, q ∈ Rn,
we call the distance between p and q, measured in the norm relative to C, the
C-distance of p and q (cf. Lassak [22]). For a set X, we denote the diameter
of X measured in C-distance by diamC X. If C is the Euclidean ball, we may
write simply diamX.

Theorem 4. Let C ⊂ R2 be a plane convex body. Then any K ⊂ Rn C-
spindle convex set satisfies (h).

Proof. Clearly, we may assume that K is closed. We show the assertion for
the case that K is a plane convex body. We leave it to the reader to verify
it in the cases that K is not bounded or has an empty interior.

Let K be a C-spindle convex body, and L be any line supporting K.
Since translating C does not change whether K satisfies (h) or not, we may
assume that L supports also C. Let L′ be the other supporting line of C
parallel to L.

First, consider the case that C ∩ L is a singleton {x}. Note that as K
is C-spindle convex, we have that K ∩ L is also a singleton, since otherwise
the C-spindle of the endpoints of K ∩ L has a point on the side of L not
containing K. Without loss of generality, we may assume that K ∩L = {x}.

Assume that K 6⊆ C, and consider a point y ∈ K \ C. Observe that
there is a translate of C containing x and y if, and only if their C-distance
is at most two. Thus, y is contained in the closed unbounded strip between
L and L′. Note that if we sweep through C by a family of parallel lines,
the C-length of the intersecting segment strictly increases while its length
reaches two, then it may stay two for a while, then it strictly decreases until
it reaches the other supporting line of C. Consider the chords of C that are
parallel to and not shorter than [x, y], and observe that, since y /∈ C, they
all are on the side of the line, passing through x and y, that contains L′ ∩C
(cf. Figure 3). From this, it follows that the intersection of all the translates
of C containing x and y (or in other words, the C-spindle of x and y) has a
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point on the side of L not containing C. Since K is C-spindle convex and L
supports K at x, we arrived at a contradiction.

Figure 3:When C ∩ L = {x} Figure 4:When C ∩ L = [p, q]

Now consider the case that C ∩ L = [p, q] with p 6= q. Let K ∩ L = [s, t].
Then |s−t| ≤ |p−q|, and we may assume that [s, t] ⊂ [p, q] and that t ∈ [s, q].
If there is a point v ∈ K not contained in the closed strip bounded by L and
L′, then the C-distance of v and s is greater than two; a contradiction. Set
C0 = t − q + C, C1 = s − p + C and u = q − p − (s − t), which yields that
C1 = u+ C0.

Assume that there is no translate of C, with supporting line L, that
contains K. Then, Cλ \K 6= ∅ for every λ ∈ [0, 1], where Cλ = λu+C0. Let
H denote the closed strip bounded by L and L′. For simplicity, we regard
the connected component of H \ Cλ, not containing q as the one below Cλ,
and the other one as the one above Cλ. It is easy to see that if there is no λ
with K ⊂ Cλ, then there is a value of λ such that both components of H \Cλ
contain a point of K. Let λ be such a value, and let x, y ∈ K be points such
that x is in the component below Cλ and y is in the component above Cλ
(cf. Figure 4).

Consider the segment [x, y] and note that if their C-distance is greater
than two, then [x, y]C = R2. Thus, all the chords of Cλ that are parallel
to and not shorter than [x, y] are on the same side of the line containing
[x, y]. Similarly like in the previous case, it follows that [x, y]C 6⊂ H, which
contradicts our assumption that K 6⊆ H.
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Corollary 3.13. For a plane convex body C ⊂ R2, any closed C-spindle
convex set is C-ball convex.

Proposition 3.14. Let C1 ⊂ Rk and C2 ⊂ Rm be convex bodies, and consider
a set S ⊂ Rk⊕Rm = Rk+m. Let proj1 and proj2 be the orthogonal projections
of Rk ⊕ Rm on the first and second factor, respectively. Then,

convbC1×C2
(A) = convbC1

(proj1A)× convbC2
(proj2A) ;

convsC1×C2
(A) = convsC1

(proj1A)× convsC2
(proj2A) .

Proof. Note that for any x ∈ Rk+m, x+(C1×C2) = (proj1 x+C1)×(proj2 x+
C2). Thus, A ⊆ x + (C1 × C2) is equivalent to proj1A ⊆ (proj1 x+ C1) and
proj2A ⊆ (proj2 x + C2). This immediately yields the equality of the ball
convex hulls. It follows that for any points p, q ∈ Rk+m, we have [p, q]C1×C2 =
[proj1 p, proj1 q]C1 × [proj2 p, proj2 q]C2 . Hence, the right-hand side in the
second equality contains the left-hand side. Now consider any (C1 × C2)-
spindle convex set K. We show that proj1K × proj2K ⊆ K. Consider
points p1 ∈ proj1K and q2 ∈ proj2K. We need to show that (p1, q2) ∈ K.
Note that (p1, p2) ∈ K and (q1, q2) ∈ K for some p2 ∈ Rm and q1 ∈ Rk.
Thus, by applying the first equality for (C1 × C2)-spindles, we obtain that
(p1, q2) ∈ K, which is what we wanted to prove.

Corollary 3.15. If C is an n-dimensional axis-parallel cube, and A ⊆ Rn is
any set, then both convbC (A) and convsC (A) are either the axis-parallel brick
containing A and minimal with respect to inclusion, or Rn.

4. Arc-distance defined by C

In the theory of spindle convexity with respect to the Euclidean disk,
there is a naturally arising associated distance function. This distance is
called arc-distance, and is defined for points p, q ∈ R2 as the Euclidean
length of a shortest unit circle arc connecting the points (cf. [3] and [5]).
The aim of this section is to generalize this distance for spindle convexity
with respect to any origin-symmetric plane convex body.

Let C be a planar o-symmetric convex body, that is the unit disk of
a normed plane. We recall that the C-length of a polygonal curve is the
sum of the C-distances between the consecutive pairs of points, and that
the C-length of a curve is the supremum, if it exists, of the C-lengths of the
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polygonal curves for which all the vertices are chosen from the curve. If D is a
convex body, then the perimeter of D with respect to C is the C-length of the
boundary of D. We denote this quantity by perimC D. It is known that for
any plane convex bodies C and D, we have perimC D = perimC(1

2
(D −D))

(cf. [10]), and 6 ≤ perimC C ≤ 8 (cf. [11] or [30]).

Definition 4.1. Let C be an o-symmetric plane convex body, and let p, q be
points at C-distance at most two. Then the arc-distance ρC(p, q) of p, q with
respect to C is the minimum of the C-lengths of the arcs, with endpoints p
and q, that are contained in bd(y + C) for some y ∈ R2.

Definition 4.2. Let C be an o-symmetric plane convex body, z ∈ R2 and
0 ≤ ρ ≤ 1

2
perimC C. Then the arc-distance disk, with respect to C, of

center z and radius ρ is the set

∆C(z, ρ) = {w ∈ R2 : ρC(z, w) ≤ ρ}.

Furthermore, we set ∆C(ρ) = ∆C(o, ρ).

Clearly, for any C, arc-distance disks of the same radius are translates of
each other, but those of different radii are not necessarily even similar. We
note that if C is a Euclidean disk, then its arc-distance disks are Euclidean
disks.

Theorem 5. For any o-symmetric plane convex body C and 0 ≤ ρ ≤
1
2

perimC C, the arc-distance disk ∆C(ρ) is convex.

Proof. Note that by compactness arguments, it is sufficient to prove the
assertion for the case that C is a convex polygon with, say, m vertices and
for values of ρ such that 0 ≤ ρ ≤ 1

2
perimC C is not equal to the sum of some

sides of C. In this case no chord of C connecting two vertices determines an
arc of length ρ.

Let us move a point p(t) around on bdC at a constant speed measured
in C-distance, and consider the point q(t) such that ρC(p(t), q(t)) = ρ. Note
that on any side of C, the points p(t) and q(t) move at a constant speed
also in the Euclidean metric, and their Euclidean speed is proportional to
the lengths of the longest chords of C parallel to the corresponding edges of
C. Thus, the vector q(t) − p(t) is a linear function of t if p(t) and q(t) are
on different edges, and a constant if they are on the same edge, which yields
that Q = bd ∆C(ρ) is a (starlike) polygonal curve with at most 2m vertices.
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Figure 5: Polygon C in the proof of Theorem 5

We show that Q is convex. Since Q is clearly star-like with respect to the
origin, it is sufficient to prove that for each vertex of Q if we consider that
vertex, one point on each edge meeting at that vertex and the origin, then
these four points are in convex position. Any vertex of Q is of the form q−p,
where q is a vertex of C, and p is a point in the relative interior of some edge
of C.

Consider the sufficiently small vectors v, v1 and v2 whose Euclidean
lengths are proportional to the Euclidean lengths of the longest chords of
C parallel to them, and such that p − v, p, p + v are on the same edge of
C, and q + v1 and q + v2 are on the two consecutive edges of C meeting
at q. We choose our notation in a way that the line passing through [p, q]
separates p − v and q + v2 from p + v and q + v1, and that v, −v1 and v2
are in counterclockwise order (cf. Figure 5). Note that as C is convex, the
segment [q + v1, q + v2] intersects [p, q].

Now, to show that Q is convex, we need to show that the points o, q +
v1 − (p− v), q − p and q + v2 − (p+ v) are in convex position. Adding p to
each point, we are considering the quadrilateral with vertices p, q+ v1 + v, q
and q + v2 − v. It is clearly convex by the convexity of C.

We note that if C is not o-symmetric, we may define a non-symmetric
arc-distance, for which we may prove the assertion of Theorem 5 using a
similar technique.

Remark 4.3. If C is smooth, then ∆C(ρ) is smooth for any positive value
of ρ.
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Proof. Consider the C-arc-length parametrization Γ : [0, α] → R2 of bdC.
Then bd ∆C(ρ) is the graph of the curve τ 7→ Γ(τ + ρ) − Γ(τ). If Γ is
differentiable, then so is this function.

Our next corollary follows from Theorem 5 and the fact that ∆C(ρ1) ⊂
∆C(ρ2) for any ρ1 < ρ2.

Corollary 4.4. For any x, y, z ∈ R2 and an o-symmetric plane convex body
C, the function τ 7→ ρC(x, y + τz) is quasiconvex on its domain; that is:
it consists of a strictly decreasing, possibly a constant and then a strictly
increasing interval.

We prove the following version of the triangle inequality for arc-distance,
which, for the Euclidean case, appeared first as Lemma 1 in [3].

Theorem 6. Let C be an o-symmetric plane convex body, and let x, y, z ∈ R2

be points such that each pair has a C-arc-distance.

(1) If y ∈ int[x, z]C, then ρC(x, y) + ρC(y, z) ≤ ρC(x, z),
(2) if y ∈ bd[x, z]C, then ρC(x, y) + ρC(y, z) = ρC(x, z), and
(3) if y /∈ [x, z]C and C is smooth, then ρC(x, y) + ρC(y, z) ≥ ρC(x, z).

Proof. The assertion of (2) is trivial. Assume that y ∈ int[x, z]C . Clearly,
there is a line L containing y such that L∩bd[x, z]C = {a, b} with ρC(x, a) =
ρC(x, b) and ρC(z, a) = ρC(z, b). Thus, the assertion in this case is a conse-
quence of Corollary 4.4.

Assume that C is smooth and y /∈ [x, z]C . If ρC(x, y) ≥ ρC(x, z), then
there is nothing to prove, and thus, we may assume that y ∈ int ∆C(x, ρC(x, z)).
Similarly, we may assume that y ∈ int ∆C(z, ρC(x, z)). For any 0 < τ <
ρC(x, z), let L(τ) denote the line for which L(τ) ∩ bd[x, z]C = {c, d} with
ρC(x, c) = ρC(x, d) = τ , and let R be the region swept through by the lines
L(τ), 0 < τ < ρC(x, z). Since C is smooth, the limit L+ of L(τ) as τ ap-
proaches ρ(x, z) is the supporting line of ∆C(x, ρ(x, z)) at z. Similarly, if
τ → 0, the limit L− of L(τ) is the supporting line of ∆C(z, ρC(x, z)) at x.
Since ∆C(x, ρC(x, z))∩∆C(z, ρC(x, z)) lies between the parallel lines L+ and
L−, and this open unbounded strip is clearly contained in R, y ∈ L(τ) for
some value of τ , and (3) follows from Corollary 4.4.

Example 4.5. Let C be the unit ball of the l∞ norm in R2. Then

∆(ρ) =

{
{(x1, x2) ∈ R2 : |x1|+ |x2| ≤ ρ}, if 0 < ρ ≤ 2
{(x1, x2) ∈ R2 : |x1|+ |x2| ≤ ρ, |x| ≤ 2, |y| ≤ 2}, if 2 < ρ ≤ 4
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In this example, for any two points x, z with ρC(x, z) ≤ 2, we have
ρC(x, y) + ρC(y, z) = ρ(x, z) for any y ∈ [x, z]C . Furthermore, if we replace
the corners of C with small circle arcs, then the boundary of the arc-distance
balls of the obtained body consists ’almost only’ of segments that are parallel
to the segments in bd ∆(ρ). Thus, we may create a smooth convex body and
points x, y, z with y /∈ int[x, z]C such that ρC(x, y) + ρC(y, z) = ρC(x, z).

We propose the following questions.

Problem 4.6. Can we drop the smoothness condition in part (3) of Theo-
rem 6?

Problem 4.7. Prove or disprove that if C is strictly convex, then ∆C(ρ) is
strictly convex for any 0 < ρ ≤ 1

2
perimC C.

Problem 4.8. Prove or disprove that if C is strictly convex, then the in-
equalities in (1) and (3) of Theorem 6 are strict.

5. Carathéodory numbers

Now we recall the notion of the Carathéodory-number of a convexity
space (cf. [21], [29] and [33]).

Definition 5.1. Let (X,G) be a convexity space (for the definition, see Sec-
tion 2). The Carathéodory number CarG of G is the smallest positive integer
k such that for any V ⊆ X and p ∈ convG(V ) there is a set W ⊆ V with
cardW ≤ k and with p ∈ convG(W ). If no such positive integer exists, we
set CarG =∞ .

Definition 5.2. Let C ⊂ Rn be a convex body, and let G1 (respectively
G2) be the family of closed C-spindle convex sets (respectively, the C-ball
convex sets) in Rn. Then we call CarG1 (respectively CarG2) the spindle
Carathéodory number (respectively, ball Carathéodory number) of C, and
denote it by CarsC (respectively, by CarbC).

These numbers were determined in [5] for the Euclidean ball Bn as C.

Theorem 7. Let C ⊂ R2 be a plane convex body. If C is a parallelogram,
then both Carathéodory numbers of C are two, otherwise both are three.
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Proof. By Theorem 4, for any C ⊂ R2, a closed set is C-spindle convex if,
and only if it is C-ball convex. Thus, the two Carathéodory numbers of C
are equal.

Let X ⊂ R2 be any closed set. The C-ball convex hull of X is the
intersection of all the translates of C that contain X. If X is a singleton, the
assertion immediately follows, and thus, we assume that cardX > 1. If no
translate of C contains X, then, by Helly’s theorem, there are at most three
points of X that are not contained in any translate of C.

Assume that there is a translate of C containing X. Consider a point
p ∈ bd convsC (X). If p ∈ X, we are done. Assume that p /∈ X. We leave
it to the reader to show that there is a translate u + C with the property
that bd(u + C) contains p and two distinct points z1, z2 ∈ X, such that the
C-distance of z1 and z2 is 2, or, if the C-distance of z1 and z2 is less than
two, then the connected component of (u+C)\ [z1, z2] containing p does not
contain points at C-distance two. Without loss of generality, we may assume
that the open arc in bd(u + C) with endpoints z1 and z2 that contains p is
disjoint from X.

If the C-distance of z1 and z2 is less than two, then, clearly, p is contained
in any translate of C that contains z1 and z2, or, in other words, p ∈ [z1, z2]C .
If the C-distance of z1 and z2 is equal to two, there are two parallel lines L1

and L2 that support u + C at z1 and z2, respectively. Since y ∈ convsC (X),
we have for i = 1, 2 that zi is the endpoint of the segment Li∩ (u+C) closer
to p. Thus, p ∈ [z1, z2]C .

Now consider a point p ∈ int convsC (X). Let v ∈ X be arbitrary. Choose
a point z ∈ bd convsC (X) such that p ∈ [v, z]. Then, by the previous
paragraph, there are points z1, z2 ∈ X such that z ∈ [z1, z2]C , and clearly,
p ∈ convsC ({v, z1, z2}).

Finally, assume that C is not a parallelogram. Note that in that case
there are three smooth points in bdC such that the unique lines supporting
C at them are the sidelines of a triangle containing C. Let X be the vertex
set of this triangle. Observe that for a sufficiently large λ > 0, the centroid c
of X is not contained in the (λC)-spindles determined by any two points of
X. Since c ∈ conv(X) ⊆ convsλC (X) for any value of λ, we have that both
Carathéodory numbers of C are three. The observation that they are two if
C is a parallelogram follows from the next theorem.

Proposition 5.3. If C is an n-dimensional parallelotope, then CarsC =
CarbC = n.
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Proof. Since both Carathéodory numbers are affine invariant quantities, we
may assume that C is the unit ball of the l∞ norm. By Corollary 3.15, the
two Carathéodory numbers of C are equal. Let X be a closed set in Rn.
Then convsC (X) is either Rn or the minimal volume axis-parallel brick that
contains X. In the first case it is easy to see that there are two points of X
that are not contained in any translate of C, from which the assertion readily
follows.

Assume that convsC (X) is the minimal volume axis-parallel brick that
contains X, and consider a point y ∈ convsC (X). Then, by a theorem of Lay
[24], there is a subset X ′ ⊆ X with cardX ′ ≤ n such that the minimal volume
axis-parallel brick containing X ′ contains y. Thus, we obtain y ∈ convsC (X ′)
and hence CarsC ≤ n.

On the other hand, let X be the n neighbors of a given vertex v of C.
Then convsC (X) = C. Let y be the vertex of C opposite of v, and observe
that, removing any point of X, the C-ball convex hull of the remaining points
is a facet of C not containing y. Thus, CarsC ≥ n.

Similarly to Corollary 3.15 and Proposition 5.3, we can prove the follow-
ing.

Proposition 5.4. Let C ⊂ Rn be a simplex.

(i) For any closed set X ⊂ Rn, both convbC (X) and convsC (X) are either
Rn, or the smallest positive homothetic copy of C that contains C.

(ii) CarsC = CarbC = n+ 1.

We apply the following remark several times in this section.

Remark 5.5. For any set H ⊂ Rn, a point p ∈ Rn, and a convex body
C ⊂ Rn, we have that p ∈ B−C(H) if, and only if, C + p ⊇ H, and similarly,
p ∈ B+

C(H) if, and only if, −C + p ⊇ H.

Proposition 5.6. Let C be a polytope in Rn with k facets. Then the ball
Carathéodory number of C is at most kn.

Proof. Let X ⊂ Rn and p ∈ convbC (X) be given. We need to find a subset
Y of X of cardinality nk such that p ∈ convbC (Y ). By Remark 5.5, we have
that C ⊇ B−C(X), that is, (Rn \C)∩

⋂
v∈X(−C + v) = ∅. Since Rn \C is the

union of k convex sets, the statement follows from Helly’s theorem.
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The following construction, similar to Example 4 in [27], shows that in R3

there are convex bodies with arbitrarily large ball Carathéodory numbers.

Theorem 8. Let k ∈ Z+ be given. Then there is an o-symmetric convex
body C ⊂ R3 and a set X ⊂ R3 such that o ∈ convbC (X), but for any Y ⊂ X,
|Y | < k we have that o /∈ convbC (Y ).

Proof. We may assume that k is even. Consider the paraboloid P in R3

defined by x3 = x21 +x22. We choose k points on the parabola P0 = P ∩{x1 =
0}, and number these points according to the order in which they lie on
the parabola: U = {u1, u2, . . . , uk} ⊂ P0. Plane sections of P parallel to
the x2x3-plane are translates of this parabola. Let Pi = P ∩ {x1 = i}
for i ∈ I, where I =

{
−k

2
,−k

2
+ 1, . . . ,−2,−1, 1, 2, . . . , k

2

}
. Now, for each

i ∈ I, there is a unique translation vector ti such that P0 = Pi + ti. Let
Ui = (U \ {ui})− ti ⊂ Pi. Let h > 0 be larger than the largest x3 coordinate
of the points in any Ui. Finally, consider the (bounded) arc of P0 that lies in
the half-space {x3 ≤ h}. Delete from this arc very small open arcs around
each point of U , and call the remaining part of P0 (the union of k+ 1 closed
bounded arcs) U0. We define C as the following o-symmetric convex body:

C = conv

[(
k⋃
i=0

Ui − (0, 0, h)

)⋃
−

(
k⋃
i=0

Ui − (0, 0, h)

)]
.

Let X = {ti : i ∈ I}. Now, BC(X) ⊆ BC

{
t− k

2
, t k

2

}
, and the latter is

contained in the x1 = 0 plane. Moreover, BC(X) is contained in the planar
region conv(P0 − (0, 0, h)) ∩ − conv(P0 − (0, 0, h)). If the open arcs in the
definition of U0 are sufficiently small then a little more is true: BC(X) is
contained in the planar region conv(U0 − (0, 0, h)) ∩ − conv(U0 − (0, 0, h)).
Thus, BC(X) ⊂ C. It follows, by Remark 5.5, that o ∈ BCBC(X) =
convbC (X). On the other hand, for any i ∈ I, we have that ui ∈ BC(X \{ti}),
and hence, C 6⊃ BC(X \ {ti}). It follows (again by Remark 5.5) that o 6∈
convbC (X \ {ti}).

This example may be modified in several ways. First, we may generalize
it for Rn with n > 3, by replacing C with C × [−1, 1]n−3 and leaving X un-
changed. Second, by “smoothening” C, we may obtain a smooth and strictly
convex o-symmetric body C in Rn with an arbitrarily large ball Carathéodory
number. Third, we may replace U0 by a sufficiently dense finite subset of U0,
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and thus, obtain a polytope as C. Finally, the following modification of the
example yields an o-symmetric convex body in R3 whose ball Carathéodory
number is infinity: In the construction, replace the finitely many Pis with
planar sections of P of the form Pi = P ∩ {x1 = ai} where a1, a2, . . . is
a sequence of real numbers in (−1, 1), which is symmetric about zero and
which does not contain any of its accumulation points. Then, construct U
similarly: let u1, u2, . . . be a bounded sequence of points on P0, which does
not contain any of its accumulation points.

Problem 5.7. For n ≥ 3, find the minima of the ball/spindle Carathéodory
numbers of the n-dimensional convex bodies, and if it exists, find the maxi-
mum of their spindle Carathéodory numbers.

Problem 5.8. For n ≥ 3, prove or disprove the existence of a convex body
C ⊂ Rn such that its two Carathéodory numbers are different.

Problem 5.9. It is known (cf. [5]) that both Carathéodory numbers of the
n-dimensional Euclidean ball are n + 1. Prove or disprove that it holds also
in a small neighborhood of the Euclidean ball. If the answer is negative, is
the set of ball (resp., spindle) Caratheodory numbers bounded from above in
a neighborhood of the Euclidean ball?

6. When every C-ball convex set is finitely generated

Clearly, every C-spindle is C-ball convex, but the converse is not true in
general. However, there are convex bodies C for which every C-ball convex
set is a C-spindle, such as the simplices and rectangular boxes of Rn, see
Corollary 3.15 and Proposition 5.4. In this section, we examine a more gen-
eral problem: We investigate those convex bodies C that have the property
that every C-ball convex set is the C-ball convex hull of finitely many points.

Definition 6.1. If every C-ball convex set is the C-ball convex hull of at most
k points, for some fixed k ≥ 2, then we say that every C-ball convex set is
k-generated. Similarly, if every C-ball convex set is the C-ball convex hull
of finitely many points, then we say that every C-ball convex set is finitely
generated.

By an n-polytope we mean an n-dimensional polytope.

Theorem 9. If C is a convex body in Rn for which every C-ball convex set
is k-generated, then C is an n-polytope with at most kn facets.
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This theorem is a consequence of the next three lemmas. The first of
these readily follows by the minimality property of C-ball convex hull as the
intersection of translates of C.

Lemma 6.2. Let C be a convex body in Rn. Let K ⊆ Rn be a bounded
set, and assume that K = convbC (S) for some closed set S ⊆ K. Then, a
translate C + v contains K and fulfils bd(C + v) ∩ K 6= ∅ if and only if
bd(C + v) ∩ S 6= ∅.

Lemma 6.3. If C is a convex polytope in Rn for which every C-ball convex
set is k-generated, then C has at most kn facets.

Lemma 6.4. If C is a convex body in Rn for which every C-ball convex set
is finitely generated, then C is an n-polytope.

Proof of Lemma 6.3. We can obtain 1
2
C as the intersection of finitely many

translates of C: 1
2
C =

⋂m
i=1(C + vi). We perturb the translation vectors vi

to obtain another polytope P =
⋂m
i=1(C +wi) in a way that |vi−wi| < ε for

a sufficiently small ε > 0, and P is a simple polytope (that is, every vertex
of C is contained in exactly n facets of C), and each facet of P is contained
in the relative interior of a facet of C + wi for some value of i, and the nis
are pairwise distinct. By Lemma 6.2, there are k points of P such that every
facet of P contains at least one of these points. Since any point is contained
in at most n facets of P , we obtain m ≤ kn.

Proof of Lemma 6.4. Assume that C is not an n-polytope, and let 0 < r < 1.
It follows from Theorems 2.2.4 and 2.2.9 of [31] that there is an infinite se-
quence of pairwise distinct triplets Ti = (pi, Hi, ni), i = 1, 2, 3, . . . , such that
pi is a smooth boundary point of rC, Hi is the unique supporting hyperplane
of rC at pi, and ni is the outer normal unit vector of Hi with respect to rC,
for which ni 6= nj if i 6= j. To see this directly, it is also easy to construct
such triplets applying induction.

We choose an infinite subsequence {Ti | i ∈ I} of the triplets, for which
there is at most one cluster point of {pi | i ∈ I} and {ni | i ∈ I}, resp., and
that cluster point is not equal to any pi and ni.

Let H+
i be the half-space determined by Hi which contains rC. Let

r < r′ < 1. Let Ci be that translate of r′C which touches both rC and Hi at
pi, i ∈ I. Let P =

⋂
i∈I Ci. Since there is no cluster point among the points

pi and vectors ni (i ∈ I), we can define a sequence Bi of balls of positive radii
such that for every i ∈ I, Bi is centered at pi, and Bi ⊆ int(Cj) for any j 6= i.
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Therefore, every Ci can be translated by a vector vi towards the direction
ni within a sufficiently small, but positive distance such that the translates
C ′i = Ci + vi, i ∈ I form P ′ =

⋂
i∈I C

′
i in such a way that H ′i = Hi + vi

is the unique supporting hyperplane of P ′ at p′i = pi + vi, and at most n
hyperplanes have a common point among the hyperplanes Hi (i ∈ I).

Then, since the smaller homothetic copies Ci and C ′i (i ≥ 1) of C are
C-ball convex sets by Corollary 3.7, by assumption, P ′ is a C-ball convex
hull of finitely many points, so there should be a finite subset of bd(P ′) such
that every face H ′i ∩ P ′i contains at least one element of S (otherwise there
would be a translate of C touching P ′ and having a disjoint boundary from
those points, and by Lemma 6.2, that would contradict to the fact that P ′ is
a C-ball convex hull of those points). But one point can be contained in at
most n faces among the infinitely many faces H ′i ∩ P ′i , so P ′ can not be the
C-ball convex hull of finitely many points.

Theorem 9 implies the following corollary.

Corollary 6.5. Let C be a convex body in Rn. If every C-ball convex set in
Rn is a C-spindle, then C is an n-polytope and it has at most 2n facets.

While Corollary 6.5 is sharp for parallelotopes, we do not know if it is
the case for Theorem 9 for k ≥ 3. We ask the following question.

Problem 6.6. Let k ≥ 3 be arbitrary. Is there a convex n-polytope C having
kn facets such that every C-ball convex set is k-generated?

In the first part of this section, we find an upper bound for the number of
facets of those polytopes C for which every C-ball convex set is k-generated.
It is also natural to estimate these numbers from below. Now, we consider
the following problem: For a fixed integer k ≥ 2, what is the maximum
number m = m(n, k) for which every convex n-polytope C that has at most
m facets, also has the property that every C-ball convex set is k-generated?
We have the following partial solution for this problem.

Theorem 10. Let n ≥ 3.

(1) If 2 ≤ k ≤ n, then there is a convex n-polytope C having n + k + 2
facets such that not every C-ball convex set is k-generated.

(2) If k ≥ 2, and C is any convex n-polytope having at most n + k + 1
facets, then every C-ball convex set is k-generated.
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The example of a pentagon shows that the assertion in (2) fails for n =
k = 2. It is easy to see that (2) also holds for n = 2 and k ≥ 3.

Proof. To prove (1), let C be the convex n-polytope which is obtained from
an n-simplex Sn by intersecting it with k closed half-spaces near k vertices
of Sn so that the k new facets are pairwise disjoint. Let 0 < r < 1 arbitrary.
Observe that for any set T of k points, rC has a facet disjoint from T . Thus,
by Lemma 6.2, rC is not the C-ball convex hull of at most k points.

Next, we prove (2). Now assume that C is a convex n-polytope of n+k+1
facets. Let P be an arbitrary C-ball convex set of Rn, P 6= Rn. Then P is
a polytope of at most n + k + 1 facets. We will assume that C is a simple
convex polytope. We may do so, since it is easy to see that for every C-ball
convex set P there is a sequence {Pi}∞i=1 of simple convex n-polytopes such
that every Pi is a Ci-ball convex set, and Pi → P , Ci → C in the Hausdorff
metric, as i → ∞, where Ci is a convex n-polytope for every i = 1, 2, 3, . . . .
Then any sequence of k element subsets which span Pi as a Ci-ball convex
hull, for i = 1, 2, 3, . . . , have a subsequence whose elements converge to a k
element subset of P . Clearly, the C-ball convex hull of this set is P . By a
similar limit argument, we may further assume that dimP = n, P is a simple
polytope, and P has exactly n+ k + 1 facets.

We need to show that there are k points whose C-ball convex hull is P .
By Lemma 6.2, it is sufficient to prove that there are k vertices of P such that
for each facet F of C there is a translate C + t of C (t ∈ Rn) that contains
P and for which F + t contains at least one of the k points. With the above
assumption on the number of facets and dimension of P , it is equivalent to
the existence of a set T of k points such that every facet contains at least
one element of T .

Let v be a vertex of P . Let H be a hyperplane such that v /∈ H and H
is parallel to a supporting hyperplane H ′ of P at v for which H ′ ∩ P = {v}.
Let π be the central projection of Rn r H ′ to H from the point v, that
is π(x) = aff(v, x) ∩ H. Then π(P ) is bounded, in fact, it is an (n − 1)-
dimensional simplex Sn−1 since P is a simple convex n-polytope. Consider the
projection of the facets of P under π. Then the images of those facets which
contain v are the facets of an Sn−1, we denote them by F = {F1, F2, . . . , Fn}.
The images of the remaining k + 1 facets form a tiling of Sn−1, we denote
them by A = {A1, A2, . . . , Ak+1}. Clearly, every Ai is an (n−1)-dimensional
convex polytope. Denote by V the vertex set of Sn−1.

Obviously, there are k points that span P as the C-ball convex hull of
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those points if and only if either there are k−1 points of Sn−1 such that every
Ai contains at least one of them, or there are k points of Sn−1 such that every
Ai and Fj contains at least one of them. If there are three elements of A
having a common point, then such a set of k − 1 points exists, just pick any
point belonging to the three elements ofA and one point from each remaining
element of A. So, from now on, we may assume that there is no common
point of three elements of A.

Since A contains more than one element, no Ai contains all the vertices
of Sn−1.

Now we show that there are two disjoint elements of A such that both
contain at least one vertex of Sn−1. Let A1 and A2 be an intersecting pair,
Ai ∩ V 6= ∅, i = 1, 2. Consider an (n − 2)-dimensional affine subspace H12

that separates them in H. Then A1 ∩ A2 = H12 ∩ Sn−1 since H12 ∩ Sn−1 is
covered by A and it can not intersect any element of A distinct from A1 and
A2 (otherwise, there would be a common point of A1 ∩ A2 and some Ai, for
i 6= 1, 2). Thus we also obtain that A1 ∩ A2 is (n − 2)-dimensional. Now,
if p ∈ A1, q ∈ A2 are arbitrary points, then let x = [p, q] ∩ H12. We obtain
[p, x] ⊆ A1, [x, q] ⊆ A2, so A1∪A2 is convex, and therefore it can not contain
all vertices of Sn−1. So there is an Aj, j 6= 1, 2, say A3 such that A3 ∩V 6= ∅,
and either A1 or A2, say A1, is disjoint from A3, because A3 is disjoint from
H12. So we found two disjoint elements of A, A1 and A3, even if A1 and A2

were intersecting.
Let us choose two disjoint elements of A, say A1 and A2, such that Ai ∩

V 6= ∅, i = 1, 2. Since Sn−1 has n ≥ 3 vertices, it follows that one of them,
say A1, contains at most n− 2 vertices of Sn−1. Now, we pick a vertex w in
A2 ∩V and an edge E of Sn−1 connecting a vertex from V ∩A1 and a vertex
from V r (A1 ∪ {w}) 6= ∅. Furthermore, we may pick an Ai, say A3, such
that E ∩ A1 ∩ A3 6= ∅, since E intersects A1 but also has points outside A1.
Finally, the desired k points: Take a point u ∈ E ∩ A1 ∩ A3, take w ∈ A2,
and take further k−2 points, one from each remaining Ai. As u is contained
in E, it is contained in each facet of Sn−1 but the two that do not contain
E. These two facets contain w, and thus, every element of F contains at
least one of the points. Since, clearly, the same holds for the elements of A
as well, these points indeed satify the required property.

We ask the following question.

Problem 6.7. For any given n ≥ 3 and k ≥ 2, find a geometric charac-
terization of those n-dimensional convex polytopes C for which every C-ball

25



convex set is k-generated. In particular, find a geometric characterization of
those n-dimensional convex polytopes C for which every C-ball convex set is
a C-spindle.

7. Stability of the operation B+
C and covering intersections of balls

We consider the Levy-Markus-Gohberg-Boltyanski-Hadwiger Covering Prob-
lem (also know as the Illumination Problem) for two families of convex bodies,
denoted by D(C) and D̃(C) (see Definition 7.1, and Remark 7.2), associated
to any convex body C.

The covering number (see Definition 7.3) of sets of Euclidean constant
width (members of D(Bn)) has been studied extensively. One reason for its
popularity is its connection to Borsuk’s problem on partitioning convex sets
into sets of smaller diameter. Weissbach [37] and Lassak [23] proved that the
covering number of a set of Euclidean constant width in R3 is at most six. In
[5], this result is extended to any set K obtained as the intersection of Eu-
clidean unit balls with the property that the set of the centers is of diameter
at most one (members of D̃(Bn)). Recently, further bounds on the covering
number of sets in D̃(Bn) in dimensions n = 4, 5 and 6 have been found by
Bezdek and Kiss [4]. The best general bound is due to Schramm [32] who
proved that the covering number of a set of Euclidean constant width in Rn

is at most 5n3/2(4 + log n)
(
3
2

)n/2
. This result has been extended to members

of D̃(Bn) as well, cf. Bezdek [2]. For surveys on covering (illumination) see
Bezdek [1], and Martini and Soltan [25].

In this section, we study the stability of bounds on the covering number
of convex sets in D(C) and in D̃(C). First, we prove that the operation B+

C is
stable in a certain sense (Proposition 7.4), and then we deduce our stability
results concerning covering numbers.

Definition 7.1. Let C be a convex body in Rn. Let

D(C) = {K ⊂ Rn : K = B+
C(K)}, and

D̃(C) = {K ⊂ Rn : K = B+
C(X) for some X ⊂ Rn with X ⊆ B+

C(X)}.

Remark 7.2. For any convex body C, we have D(C) ⊆ D̃(C). Moreover, if
C = −C then D(C) is the family of diametrically maximal sets of diameter
one in the Minkowski space (that is, finite dimensional real Banach space)
with unit ball C. Since in the Euclidean space, a convex set is diametrically
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maximal if, and only if, it is of constant width, it follows that D(Bn) is the
family of sets of Euclidean constant width one.

Definition 7.3. Let K ∈ Rn be a convex body. The covering number (also
called the illumination number) i(K) of K is the minimum number of positive
homothetic copies of K, with homothety ratio less than one, that cover K.
For a family F of convex bodies, we set i(F) = max{i(K) : K ∈ F}. We note
that the illumination number is usually defined via the notion of illumination
by directions (or light sources), which we do not follow here — the equivalence
of those definitions with the one given here is well known, cf. [1].

The covering number is invariant under non-singular affine transforma-
tions, thus it is natural to use the Banach-Mazur distance to compare two
convex bodies K and L:

d(K,L) = inf{λ > 0 : K ⊂ T (L) ⊂ λ(K)},

where the infimum is taken over all non-singular affine transformations T .
Recall that this distance is multiplicative (the triangle inequality holds with
multiplication instead of addition) and the distance of a convex body from
any non-singular affine image of itself is one.

We phrase, informally, the problem of the stability of the covering number
in the following two manners.

Question 1. Fix a convex body C. If K is ‘close’ to a set L ∈ D(C)
(resp., to a set L ∈ D̃(C)), does it follow that i(K) ≤ i(D(C)) (resp.,i(K) ≤
i(D̃(C)))?

Question 2. Fix a convex body C. If D is ‘close’ to C, does it follow that
i(D(D)) ≤ i(D(C)) and i(D̃(D)) ≤ i(D̃(C))?

Recall that i(K) = n+1 for any smooth convex body, while i([0, 1]n) = 2n

for the cube. It illustrates that the covering number, in general, may vary
significantly along arbitrarily small perturbations. However, Theorems 11
and 12 provide positive answers to both questions.

Theorem 11. For every n ∈ Z+ and for every convex body C ⊂ Rn, there
is a δ > 1 such that if d(K,L) < δ for a convex body K in Rn and L ∈ D(C)
(resp., L ∈ D̃(C)) then i(K) ≤ i(D(C)) (resp., i(K) ≤ i(D̃(C))).

Theorem 12. For every n ∈ Z+ and for every convex body C ⊂ Rn, there
is a δ > 1 such that if d(C,D) < δ for a convex body D ⊂ Rn then
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1. i(D(D)) ≤ i(D(C)) and

2. i(D̃(D)) ≤ i(D̃(C)).

The main tool in proving these results is the following observation that
shows that the operation B+

C (and similarily, B−C) is stable in a certain sense.

Proposition 7.4. Let C1, C2, . . . be a sequence of convex bodies in Rn con-
verging to a convex body C in the metric space of closed convex subsets of Rn

equipped with the Hausdorff metric. Let X1, X2, . . . be a sequence of closed
sets in Rn converging to a set X such that the sequence B+

Ci
(Xi) also con-

verges (to some set K) . Assume that intK 6= ∅ or int(B+
C(X)) 6= ∅. Then

K = B+
C(X).

Proof. First, we show that int(B+
C(X)) ⊆ K. Let u ∈ Rn \ K. Then, for

infinitely many k ∈ Z there is a qk ∈ Xk such that u /∈ qk + C. By taking a
subsequence, we may assume that the qks converge to a point, say q. Clearly,
q ∈ X, moreover u /∈ q + intC. Thus, u /∈ int(B+

C(X)).
Next, we show that intK ⊆ B+

C(X). Let u ∈ intK. Then, there is a δ > 0
such that, for all sufficiently large n ∈ Z, u + δBn ⊂ B+

Cn
(Xn). It follows

that, for all sufficiently large n ∈ Z, u ∈ B+
Cn

(X). Hence, u ∈ B+
C(X).

We leave it as an exercise to show that the condition int(. . .) 6= ∅ cannot
be removed.

Let Kn denote the space of affine equivalence classes of convex bodies in
Rn endowed with the Banach-Mazur distance. We show that i : Kn → Z+ is
upper semi-continuous:

Proposition 7.5. Let K ∈ Kn. Then there is a δ > 1 such that i(L) ≤ i(K)
for any L ∈ Kn with d(K,L) < δ.

Proof. Let m = i(K). Then K is covered by v1 + λK, . . . , vm + λK for some
0 < λ < 1 and some translation vectors v1, . . . , vm. Let δ = 1/

√
λ. We may

assume that L ⊆ K ⊆ δL. Then L is covered by v1+
√
λL, . . . , vm+

√
λL.

Remark 7.6. Let C ⊂ Rn be a convex body and X ⊂ Rn a set for which
X ⊆ B+

C(X). Then int
(
B+
C(X)

)
6= ∅. To see this, one may assume that X

is convex, and then show that any point in the relative interior of X is an
interior point of B+

C(X). It follows that the members of D(C) and D̃(C) are
bodies.
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Proof of Theorem 11. By the semi-continuity of i on Kn (Proposition 7.5)
and the compactness of Kn, it is sufficient to show that D̃(C) and D(C) are
closed subsets of Kn. Let K1, K2, . . . be a convergent sequence of convex
bodies in D̃(C). Then, by John’s theorem, each one has an affine image
K ′i such that Bn ⊆ K ′i ⊆ nBn. Now, K ′1, K

′
2, . . . is a sequence of convex

bodies in D̃(C) which is convergent with respect to the Hausdorff distance.
By Proposition 7.4, the limit is also in D̃(C). The statement for D(C) easily
follows.

Proof of Theorem 12. By Theorem 11, we need to prove that for any ε > 1
there is a δ > 1 such that if d(C,D) < δ then for every L ∈ D(D) there is a
K ∈ D(C) with d(K,L) < ε.

Let Dk be a sequence of convex bodies in Rn such that d(C,Dk) < 1 + 1
k

and let Xk be a sequence of sets such that Lk := B+
Ck

(Xk) ∈ D(Ck). Suppose
by contradiction that for each Lk, the closest member ofD(C) is of distance at
least µ > 1. By compactness, we may choose a convergent subsequence of the
Xks. By taking a subsequence again, we may assume that the Lks converge,
too. Now, by Proposition 7.4 (using John’s position, as in the proof of
Theorem 11), the limit of these Lks is a member of D(C), a contradiction.

Acknowledgements. We are grateful to Antal Joós and Steven Taschuk for
the valuable conversations that we had with them on various topics covered
in these notes.

[1] K. Bezdek, The illumination conjecture and its extensions, Period.
Math. Hungar. 53 (2006) 59–69.

[2] K. Bezdek, Classical Topics in Discrete Geometry, CMS Books in Math-
ematics, Springer, to appear.

[3] K. Bezdek, R. Connelly, B. Csikós, On the perimeter of the intersection
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