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Abstract

A coloring c of the vertices of a graph G is nonrepetitive if there exists no path
v1v2 . . . v2l for which c(vi) = c(vl+i) for all 1 ≤ i ≤ l. Given graphs G and H with
|V (H)| = k, the lexicographic product G[H] is the graph obtained by substituting
every vertex of G by a copy of H, and every edge of G by a copy of Kk,k. We prove
that for a sufficiently long path P , a nonrepetitive coloring of P [Kk] needs at least
3k + bk/2c colors. If k > 2 then we need exactly 2k + 1 colors to nonrepetitively color
P [Ek], where Ek is the empty graph on k vertices. If we further require that every copy
of Ek be rainbow-colored and the path P is sufficiently long, then the smallest number
of colors needed for P [Ek] is at least 3k + 1 and at most 3k + dk/2e. Finally, we define
fractional nonrepetitive colorings of graphs and consider the connections between this
notion and the above results.

1 Introduction

A sequence x1 . . . x2l is a repetition if xi = xl+i for all 1 ≤ i ≤ l. A sequence is nonrepetitive
if it does not contain a string of consecutive entries forming a repetition. In 1906, Thue [11]
found an infinite nonrepetitive sequence using only three symbols.

Alon, Grytczuk, Ha luszczak, Riordan [2] generalized the notion of nonrepetitiveness to
graph coloring: a coloring c of a graph G is nonrepetitive if there is no path v1, . . . , v2l in G
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such that the string c(v1), . . . , c(v2l) is a repetition. Throughout the paper, for any vertex v
and set A of vertices, c(v) denotes the color of v, while c[A] = {c(v) : v ∈ A} denotes the set
of colors that appear on the set A. The Thue chromatic number of G is the least integer
π(G) such that there exists a nonrepetitive coloring c of G using π(G) colors. With this
notation, Thue’s result says π(P∞) = 3 (the fact that 2 colors are not enough can be easily
seen for a path of length at least 4). A survey and a good introduction to the topic is [7].

In this paper we are interested in nonrepetitive coloring of the lexicographic product of
graphs.

Definition 1.1. Let G = (V1, E1) and H = (V2, E2) be two graphs. The lexicographic product
of G and H is the graph G[H] with vertex set V1×V2 and (v1, v2) is joined to (v′1, v

′
2) if either

(v1, v
′
1) ∈ E1 or v1 = v′1 and (v2, v

′
2) ∈ E2.

For any vertex v ∈ V1, the set {(v, v2) : v2 ∈ V2}, denoted by v[H], is called a layer of
G[H] and the subgraph induced by a layer is isomorphic to H. If all the vertices in v[H]
are colored by distinct colors, then we say v[H] is rainbow colored. A rainbow nonrepetitive
coloring of G[H] is a nonrepetitive coloring c of G[H] in which all the layers are rainbow
colored. The rainbow Thue chromatic number of G[H] is the least integer πR(G[H]) such
that there exists a rainbow nonrepetitive coloring c of G[H] using πR(G[H]) colors.

Denote by En, Kn, Pn the empty graph, the complete graph and the path on n vertices,
respectively. It follows from the definition that π(G[Ek]) ≤ πR(G[Ek]) ≤ πR(G[Kk]) =
π(G[Kk]) for any graph G (note that every nonrepetitive coloring of G[Kn] is a rainbow
nonrepetitive coloring).

Non-repetitive colorings of the lexicographic product of graphs has not been studied
systematically before. However, a result of Barát and Wood [3] can be rephrased in our
context: in Lemma 2 of their paper they showed that for any tree T and integer k, π(T [Kk]) ≤
4k. We shall prove that this bound is sharp, by constructing a tree T for which π(T [Ek]) = 4k
for every positive integer k (Lemma 2.4).

Our main results concentrate on the lexicographic product of paths with complete graphs
or empty graphs.

Theorem 1.2. For any n ≥ 4 and k 6= 2, π(Pn[Ek]) = 2k+1. For k = 2, 5 ≤ π(Pn[E2]) ≤ 6.

Theorem 1.3. For any pair of integers n ≥ 24 and k ≥ 2, 3k+1 ≤ πR(Pn[Ek]) ≤ 3k+dk/2e.

Theorem 1.4. For any integer n ≥ 28, 3k + bk/2c ≤ π(Pn[Kk]) ≤ 4k.

2 Proofs

We present the proofs of the lower and upper bounds in separate subsections. Most lower
bounds rely on the same lemmas. The proofs for the upper bounds use earlier ideas and
results by Kündgen and Pelsmajer [10].
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2.1 Lower bounds

Lemma 2.1. Let c be a nonrepetitive coloring of G[Ek]. If v ∈ V (G) is a vertex of degree d
and two vertices in v[Ek] receive the same color, then c uses at least dk + 1 colors.

Proof. Let v1, v2, . . . , vd be the neighbors of v in G, and let u1, u2 ∈ v[Ek] be vertices with
c(u1) = c(u2). For any pair of vertices w1, w2 ∈ ∪d

i=1vi[Ek], we have c(w1) 6= c(w2), for
otherwise the coloring of the path w1u1w2u2 would be a repetition. Also colors used for
vertices in ∪di=1vi[Ek] are different from that of u1 and u2. Hence c uses at least dk + 1
colors.

Lemma 2.2. Let P = (v1v2v3v4) be a path of 4 vertices in G and c be a nonrepetitive coloring
of G[Ek]. Then either the color sets of the first three layers are pairwise disjoint or the color
sets of the last three layers are pairwise disjoint. In particular, if all the four layers are
rainbow colored, then c uses at least 3k colors.

Proof. Otherwise there exist a ∈ c[v1[Ek]]∩ c[v3[Ek]] and b ∈ c[v2[Ek]]∩ c[v4[Ek]], and hence
a path with colors abab.

We now construct a tree T with π(T [Ek]) matches the upper bound of Barát and Wood
[3] mentioned in the introduction. Let T3,6 denote the rooted tree in which all non-leaf
vertices have degree three, and all leaves have distance 5 from root vertex, i.e. T3,6 looks
like the usual binary tree except that the root has three children. We will use the notions
children and father in the standard way.

Lemma 2.3. A rainbow nonrepetitive coloring c of T3,6[Ek] uses at least 4k colors.

Proof. Assume c is a rainbow nonrepetitive coloring of T3,6[Ek] using at most 4k − 1 colors.
By pigeonhole principle, the root r has two children, say v1, v2 with c[v1[Ek] ∩ c[v2[Ek]] 6= ∅.
This implies that for the two children w1, w2 of v1, c[wi[Ek]] ∩ c[r[Ek]] = ∅, for otherwise, if
a ∈ c[wi[Ek]] ∩ c[r[Ek]] and b ∈ c[v1[Ek] ∩ c[v2[Ek]], then there is a path coloured as abab.

By pigeonhole principle again, c[w1[Ek]] ∩ c[w2[Ek]] 6= ∅. The same argument as above
shows that the colour set of any child of w1 is disjoint from the colour set of the father of
w1.

Repeat this argument, we find a path u0u1u2u3u4u5 in T3,6 such that u0 is the root of
T3,6 and c[ui[Ek]] is disjoint from c[uj[Ek]] for j = i± 1, 2. But then again as c uses at most
4k − 1 colors we find vertices wi ∈ ui[Ek] i = 0, 1, . . . , 5 such that c(w0) = c(w3), c(w1) =
c(w4), c(w2) = c(w5) and thus w0w1w2w3w4w5 is a repetition of size six.

Lemma 2.4. There exists a tree T such that for any positive integer k, π(T [Ek]) = 4k.

Proof. Let T = T4,7 be the rooted tree in which all non-leaf vertices have degree four, and all
leaves have distance 6 from the root vertex. As mentioned above, it was proved by Barát and
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Wood [3] that π(T [Ek]) ≤ 4k. Let c be a nonrepetitive coloring of T [Ek]. We shall show that
at least 4k colors are used. If a subgraph of T4,7[Ek] isomorphic to T3,6[Ek] is rainbow-colored,
then we are done by Lemma 2.3. If not, then we are done by Lemma 2.1.

To prove the lower bounds of Theorem 1.3 and Theorem 1.4 we need some preparations.
Given a nonrepetitive sequence S over 3 letters A,B,C, by a palindrome we mean a subse-
quence of consecutive elements x1 . . . x2l+1 of odd length 2l + 1 ≥ 3 such that xi = x2l+2−i
for i = 1, 2, . . . , l. The middle letter xl+1 of a palindrome is called a peak of the sequence.
When writing a sequence, we emphasize peaks by underlining them. The gap between two
consecutive peaks is the number of letters between them in S. For technical reasons, the first
and the last letter of a sequence is also regarded as a peak. In other words, a letter is not a
peak if and only if its two neighbors exist and are different. Two sequences are equivalent if
they are the same up to a permutation of the letters A,B and C.

Lemma 2.5. In a sequence S over 3 letters that avoids repetitions of length at most 6 each
gap is at most 3 and at least 1, except the first and the last gap that can be 0.

Proof. If there is a 0 gap which is neither the first gap nor the last gap, then there would
be a repetition of length 4 in S. To prove that a gap is at most 3, observe that between two
peaks the letters are determined by the first peak-letter x and the letter after x. Indeed,
without loss of generality, if these letters are AB then as B is not a peak, the third letter
is C. In general the next letter is always the letter different from the previous two letters
until we reach the next peak. Thus if there would be a gap of size 4 then there would be a
sequence equivalent to ABCABC (the last letter may or may not be a peak), which includes
a repetition.

Lemma 2.6. In a sequence over 3 letters, if v is a peak with gap g1 on one side and g2 ≥ g1
on the other side, then it is the center of a palindrome of length 2g1 + 3.

Proof. This follows again from the fact that the peak and its neighbor determine all the
letters until the next peak (on both sides). So going from v to each side, the g1 + 1 letters
are the same, and hence v is the center of a palindrome of length 2g1 + 3.

Lemma 2.7. Assume S is a sequence on 3 letters that avoids repetitions of length at most
6. If there are three consecutive gaps g1 ≥ g2 ≤ g3, then there is a subsequence equivalent to
one of the following

1. CBABCBA

2. ACBABCACBA

3. BACBABCABACBA.

4



Proof. By Lemma 2.5, g2 = 1, 2 or 3. By observing that letters between two peaks are
determined by the peak-letters and the letter besides the peak letters, it is easy to verify
that if g2 = 1 (respectively, g2 = 2 or g2 = 3), then the resulting subsequence is as the first
(respectively, the 2nd or the 3rd) listed above. Note that the first and last letters in these
sequences might also be peaks.

Lemma 2.8. Given a sequence S of length 22 on 3 letters that avoids repetitions of length
at most 6, there exist three consecutive gaps g1 ≥ g2 ≤ g3.

Proof. By Lemma 2.5, the series of gaps contains only the numbers 0, 1, 2, 3. Suppose that
the sequence S does not contain three consecutive gaps g1 ≥ g2 ≤ g3. Then 0 can only be
the length of the first or the last gap, a gap of length 1 must be adjacent to a gap of length
0, a gap of length 2 must be adjacent to a gap of length at most 1, and a gap of length 3
must be adjacent to a gap of length at most 2. The longest such sequence of gaps is the
following: 0, 1, 2, 3, 3, 2, 1, 0. Thus the sequence can have length at most 12 + 9 = 21 (the
number of letters in gaps plus the number of peak letters interceding them).

Lemma 2.9. For k ≥ 2, πR(P24[Ek]) ≥ 3k + 1.

Proof. Let P24 = p1p2 . . . p24 and G = P24[Ek]. For simplicity we denote the layer corre-
sponding to pi by Vi. Suppose G has a nonrepetitive rainbow 3k-coloring. By Lemma 2.2,
all 3k colors are used. We distinguish two cases.

Case A: There exists an index 2 ≤ j ≤ 21 such that c[Vj] 6= c[Vj+2] and c[Vj]∩c[Vj+2] 6= ∅.
Suppose first that 2 ≤ j ≤ 19. Let b be a color in c[Vj] ∩ c[Vj+2]. By Lemma 2.2,

c[Vj−1] ∩ c[Vj+1] = ∅ and c[Vj+1] ∩ c[Vj+3] = ∅.
As both {c[Vj−1], c[Vj], c[Vj+1]} and {c[Vj+1], c[Vj+2], c[Vj+3]} partition the colors into 3

parts of size k and c[Vj] 6= c[Vj+2], there exist colors d ∈ c[Vj] ∩ c[Vj+3], e ∈ c[Vj−1] ∩ c[Vj+2]
and f ∈ c[Vj−1] ∩ c[Vj+3]. Now c[Vj+4] must be disjoint from c[Vj+1], as a color a appearing
in both c[Vj+1] and c[Vj+4] would yield a repetition edaeda of colors on Vj−1, Vj, Vj+1, Vj+2,
Vj+3, Vj+4. As c[Vj+4] is also disjoint from c[Vj+3] we must have c[Vj+4] = c[Vj+2]. As k ≥ 2,
there are colors b, h ∈ c[Vj+2] = c[Vj+4].

Now, c[Vj+5] is disjoint from c[Vj+4] and also disjoint from c[Vj+3] (as otherwise there
would be a repetition hghg, where g ∈ c[Vj+3] ∩ c[Vj+5]). Thus c[Vj+5] = c[Vj+1]. Picking
a color a ∈ c[Vj+5] = c[Vj+1] we obtain a repetitively colored path v−1, v0, v1, v2, v3, v4, v5, v

′
4

(vi ∈ Vj+i and v′4 ∈ Vj+4) with colors fbahfbah, a contradiction.
This proof works only if 2 ≤ j ≤ 19, as we used the existence of Vj−1, . . . , Vj+5. Yet a

symmetric reasoning works in case 6 ≤ j ≤ 23, thus covering the whole range of possible
values of j.

Case B: For each 2 ≤ j ≤ 21, either c[Vj] = c[Vj+2] or c[Vj] ∩ c[Vj+2] = ∅.
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First we prove that there exists a partition A∪B∪C of the 3k colors such that for every
2 ≤ j ≤ 21, c[Vj] = A or B or C. Indeed, write A = c[V2] and B = c[V3]. We prove by
induction that for every 4 ≤ j ≤ 21, c[Vj] equals to one of A,B,C. To avoid repetitions of
size two c[Vj] must be disjoint from c[Vj−1] and if it is not the same as c[Vj−2], then by the
assumption of Case B, c[Vj]∩ c[Vj−2] = ∅. As there are only 3k available colors, c[Vj] must
be equal to the third color set (the one different from c[Vj−1] and c[Vj−2], which by induction
are two color sets from A,B,C).

Thus the coloring of the layers from j = 2 to j = 23 can be regarded as a sequence
on the three letters A,B,C, which has length 22. Observe that this sequence is repetition-
free, as otherwise there would be a repetitive path in the coloring of the original graph. By
Lemma 2.7 and Lemma 2.8, there is a subsequence of the form CBABCBA orACBABCACBA
or BACBABCABACBA.

Each of A,B,C contains k ≥ 2 colors. Let a1, a2 (respectively, b1, b2 and c1, c2) be two dis-
tinct colors in A (respectively, B and C). Then a path of color sequence b1c1b2a1b1c1b2a1 can
be found from the parts with color sequence CBABCBA. Indeed, to find this start from the
second part (which has color set B), go to the first part (which has color set A), then follow
the original path to the end. Similarly, paths of color sequences b1c1a1c2b2a1b1c1a1c2b2a1 and
b1c1a1b1a2c2b2a1b1c1a1b1a2c2b2a1 can be found from the parts with color sequenceACBABCACBA
and BACBABCABACBA, respectively.

Theorem 2.10. For any integer k ≥ 1, π(P28[Kk]) ≥ 3k + bk/2c.

Proof. Assume to the contrary that there is a nonrepetitive coloring c of G = P28[Kk] with
3k+ bk/2c − 1 colors. The vertices of P28 are v1, v2, . . . , v28. Let Xi = c(vi[Kk]). So each Xi

is a k-subset of the 3k + bk/2c − 1 colors. For the remainder of this proof, a set of colors
means a k-subset of the set of the 3k+ bk/2c− 1 colors. For two sets of colors X and Y , we
say X is Y -rich (and Y is X-rich) if |X ∩ Y | ≥ dk/2 + 1e. We write XY Z ∈ T if X, Y, Z
are three pairwise disjoint color sets, and write XY ZW ∈ Q if XY Z ∈ T and Y ZW ∈ T .
We shall frequently use the following observation.

Proposition 2.11. If Y is X-rich and Z is Y -rich then |X ∩ Z| ≥ 2. If XY ZW ∈ Q then
W is X-rich.

Claim 2.12. Assume P11[Kk] is nonrepetitively colored with 3k + bk/2c − 1 colors, and the
color sets of the layers are XY ABCDEFGZW and ABC ∈ T .

(1) If DEF ∈ T , then D,E, F are either B,A,C-rich respectively, or A,C,B-rich, respec-
tively.

(2) If D ∩ F 6= ∅, then EFG ∈ T and one of the following holds:

(i) F is D-rich and D,E, F,G are A,B,A,C-rich, respectively.
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(ii) G is D-rich and D,E, F,G are B,A,C,B-rich, respectively.

The proof of this claim is postponed to the next subsection. Now we use this claim and
continue with the proof of Theorem 2.10.

We (partially) label the sequence X3X4 . . . X30 by three labels as follows: The first three
consecutive pairwise disjoint color sets are labeled A,B,C, respectively. In other words, if
X3X4X5 ∈ T , then X3, X4, X5 are labeled A,B,C, respectively. Otherwise, X4X5X6 ∈ T ,
then X4, X5, X6 are labeled A,B,C, respectively, and X3 is unlabeled. Suppose we have
already labeled X3X4 . . . Xi (with X3 possibly unlabeled). Let j be the largest index such
that j ≤ i and Xi+1 is Xj-rich. We label Xi+1 the same label as Xj. By Claim 2.12, we can
label three or four consecutive color sets simultaneously at each step. Note that by using
Claim 2.12 to label three or four consecutive color sets, the last three consecutive color sets
are always pairwise disjoint. So we can repeatedly apply Claim 2.12 to label the next three
or four consecutive color sets. Thus the labeling is well-defined, except possibly the last
three color sets are unlabeled.

Denote by S the label sequence constructed above, which has length at least 22 (the first
two color sets were not labeled, further, the third color set and the last five color sets may
not be labeled). The following observation follows from the definition.

Observation 2.13. If two color sets Xi and Xj have the same label and there is at most
one other color set between them that gets the same label, then |Xi ∩Xj| ≥ 2.

In particular, if |i − j| ≤ 3 and Xi and Xj have the same label, then |Xi ∩ Xj| ≥ 2.
Therefore, if S has a repetition of length at most 6, then it yields a repetitive path in G of
length at most 6 along the corresponding layers. Thus S contains no repetition of length at
most 6. By Lemma 2.7 and Lemma 2.8, there exists a subsequence S ′ that is equivalent to
one of the following sequences:

Case (i) S ′ = CBABCBA
We write the sequence of color sets corresponding to S ′ as CBAB1C1B2A1. By Observa-

tion 2.13, there is a repetitive path in G with colors cbab′cbab′ where c ∈ C,C1; b ∈ B,B2; a ∈
A,A1, b

′ ∈ B1, B2.

Case (ii) S ′ = ACBABCACBA
We write the sequence of color classes of the layers corresponding to S ′ asACBA1B1C1A2C2B2A3.

Again it follows from Observation 2.13 that there is a repetitive path in G with colors
acba′b′c′acba′b′c′ where a ∈ A,A2; c ∈ C,C2; b ∈ B,B2, a

′ ∈ A1, A3, b
′ ∈ B1, B2, c

′ ∈ C1, C2.

Case (iii) S ′ = BACBABCABACBA
We write the sequence of color sets corresponding to S ′ asB0A0C0B1A1B2C1A2B3A3C2B4A4.
We claim that there is a repetitive path in G with colors bacb′a′b′′c′a′′bacb′a′b′′c′a′′ where

b ∈ B0, B3; a ∈ A0, A3; c ∈ C0, C2; b
′ ∈ B1, B4, a

′ ∈ A1, A4, b
′′ ∈ B2, B4, c

′ ∈ C1, C2; a
′′ ∈

A2, A3. For this purpose, it suffices to show that in each pair of layers from which we need
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to pick vertices with the same color, we have at least two possible choices. This follows from
Observation 2.13 if the two layers correspond to Yi and Yi+1 or Yi and Yi+2 for some letter
Y ∈ {A,B,C}. There are some pairs of the form Yi and Yi+3 with Y ∈ {A,B} for which
we need to pick vertices with the same color. Hence we need to show that |Yi ∩ Yi+3| ≥ 2
for these pairs. For this purpose, by Proposition 2.11, it suffices to show that either Yi is
Yi+2-rich or Yi+1 is Yi+3-rich. The required properties follow from the following claim.

Claim 2.14. B1 is B3-rich and A1 is A3-rich.

Proof of Claim. Consider the reverse of the subsequence C0B1A1B2C1A2B3A3. Since A2 is
A3-rich, by Lemma 2.2, C1, A2, B3 are pairwise disjoint. Apply Claim 2.12 to the reverse of
C0B1A1B2C1A2B3, we conclude that B1 is B3-rich. Similarly, by Lemma 2.2, A1, B2, C1 are
pairwise disjoint, and apply Claim 2.12 to A1B2C1A2B3A3C2, we know that A1 is A3-rich.

This completes the proof of Theorem 2.10 (except that the proof of Claim 2.12 will be
given in the next subsection).

2.2 Proof of Claim 2.12

Claim 2.12 follows from the following three lemmas.

Lemma 2.15. Assume P6[Kk] is nonrepetitively colored with 3k+ bk/2c− 1 colors, and the
color sets of the layers are ABCDEF . If ABC ∈ T and DEF ∈ T , then D,E, F are either
B,A,C-rich respectively, or A,C,B-rich respectively.

Proof. We consider three cases.

Case 1: D ∩ A = ∅.
BACD ∈ Q implies that D is B-rich. As D ∩ B 6= ∅, by Lemma 2.2, E ∩ C = ∅. Now

ACDE ∈ Q, implies that E is A-rich, and CDEF ∈ Q implies that F is C-rich.

Case 2: D ∩B = ∅.
ABCD ∈ Q implies that D is A-rich. If E intersects both B and C, then there is a

repetitive path abcabc where a ∈ A,D, b ∈ B,E and c ∈ C,E, a contradiction. If E is
disjoint from B, then CBDE ∈ Q implies that E is C-rich, and BDEF ∈ Q implies that F
is B-rich. So D,E, F are A,C,B-rich, respectively, and we are done. If E is disjoint from
C, then BCDE ∈ Q implies that E is B-rich, and CDEF ∈ Q implies that F is C-rich.
But then there is a repetition abcabc, a ∈ A,D; b ∈ B,E; c ∈ C,F .

Case 3: D ∩ A 6= ∅ and D ∩B 6= ∅.
In this case, E ∩C = ∅, for otherwise there is a repetition bcbc, b ∈ B,D; c ∈ C,E. Now

CDEF ∈ Q implies that F is C-rich. This implies that E ∩ B = ∅, for otherwise there
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would be a repetition abcabc, a ∈ A,D; b ∈ B,E; c ∈ C,F . Then ABCE ∈ Q implies that
E is A-rich, and BCED ∈ Q implies that D is B-rich.

Lemma 2.16. Assume P7[Kk] is nonrepetitively colored with 3k+ bk/2c− 1 colors, and the
color sets of the layers are ABCDEFG. If ABC ∈ T and D ∩ F 6= ∅, then D,E, F,G are
either F,B,A,C-rich respectively, or B,A,C,B-rich respectively.

Proof. By Lemma 2.2 and D∩F 6= ∅, we know that EFG ∈ T and CDE ∈ T . We consider
three cases

Case 1: D ∩B = ∅.
As BCD ∈ T , we can apply Lemma 2.15 to the color set sequence BCDEFG. Thus

E,F,G are either C,B,D-rich respectively, or B,D,C-rich respectively. Also ABCD ∈ Q
implies that D is A-rich, and BCDE ∈ Q implies that E is B-rich. Moreover, E cannot
be C-rich, as CDE ∈ T . So D,E, F,G are A,B,D,C-rich respectively. This implies that
F ∩ B = ∅, for otherwise there is a repetitive path with colors abb′cabb′c, a ∈ A,D; b ∈
B,E; b′ ∈ B,F ; c ∈ C,G. Also F ∩C = ∅, for otherwise there is a repetitive path with colors
abcabc, a ∈ A,D; b ∈ B,E; c ∈ C,F . Now ABCF ∈ Q implies that F is A-rich. Thus we
have proved that D,E, F,G are F,B,A,C-rich, respectively, and D is also A-rich.

Case 2: D ∩ A = ∅.
Then BACD ∈ Q implies that D is B-rich. As CDE ∈ T , E∩C = ∅. Thus ACDE ∈ Q

and hence E is A-rich.
If F ∩ B 6= ∅, then (F ∪G) ∩ C = ∅, for otherwise there is a repetitive path with colors

bab′cbab′c, b ∈ B,D, ; a ∈ A,E; b′ ∈ B,F ; c ∈ C,F ∪G. Then (E ∪ F ∪G)∩C = ∅, which is
a contradiction as EFG ∈ T . So F ∩B = ∅.

Case 2(i): E ∩B 6= ∅.
Then F ∩ C = ∅, for otherwise there is a repetitive path with colors bab′cbab′c, b ∈

B,D; a ∈ A,E; b′ ∈ B,E; c ∈ C,F . Now ABCF ∈ Q implies that F is A-rich, which is a
contradiction as E is A-rich and E ∩ F = ∅.

Case 2(ii): E ∩B = ∅.
Now BEFG ∈ Q implies that G is B-rich, and CBEF ∈ Q implies that F is C-rich. So

we have proved that D,E, F,G are B,A,C,B-rich, respectively.

Case 3: D ∩ A 6= ∅ and D ∩B 6= ∅.
Case 3(i): E ∩ A = ∅.
Now BACE ∈ Q implies that E is B-rich, and ACED ∈ Q implies that D is A-

rich. This implies that F is disjoint from C, for otherwise there is a repetition abcabc,
a ∈ A,D; b ∈ B,E; c ∈ C,F . Then ACEF ∈ Q implies that F is A-rich, and DECF ∈ Q
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implies that F is D-rich, and CEFG ∈ Q implies that G is C-rich. Thus D,E, F,G are
F,B,A,C-rich respectively (and D is also A-rich), and we are done.

Case 3(ii): E ∩B = ∅.
Then ABCE ∈ Q implies that E is A-rich, and BCED ∈ Q implies that D is B-rich.

If F ∩ B = ∅, then CBEF ∈ Q implies that F is C-rich and BEFG ∈ Q implies that
G is B-rich. So D,E, F,G are B,A,C,B-rich, respectively. Thus we assume F ∩ B 6= ∅.
Then (F ∪ G) ∩ C = ∅, for otherwise there is a repetitive path with colors bab′cbab′c,
b ∈ B,D; a ∈ A,E; b′ ∈ B,F ; c ∈ C,F ∪ G. Now (D ∪ E ∪ F ∪ G) ∩ C = ∅, which is a
contradiction.

Case 3(iii): E ∩ A 6= ∅ and E ∩B 6= ∅.
In this case, F ∩ C = ∅, for otherwise there is a repetitive path with colors abcabc,

a ∈ A,D; b ∈ B,E; c ∈ C,F . If F ∩ B 6= ∅ then G ∩ C = ∅, for otherwise there is
a repetitive path with colors abb′cabb′c, a ∈ A,D; b ∈ B,E; b′ ∈ B,F ; c ∈ C,G. Then
(D ∪ E ∪ F ∪ G) ∩ C = ∅, which is a contradiction. Thus F ∩ B = ∅. Now ABCF ∈ Q
implies that F is A-rich, and BCFE ∈ Q implies that E is B-rich, and CEFG ∈ Q implies
that G is C-rich, and DCEF ∈ Q implies that F is D-rich. So D,E, F,G are F,B,A,C-rich,
respectively.

Lemma 2.17. Assume P11[Kk] is nonrepetitively colored with 3k+ bk/2c−1 colors, and the
color sets of the layers are XY ABCDEFGZW , and ABC ∈ T and D ∩ F 6= ∅.

(i) If D,E, F,G are F,B,A,C-rich, respectively, then D is A-rich.

(ii) If D,E, F,G are B,A,C,B-rich, respectively, then G is D-rich.

Proof. Observe that in the proof of Theorem 2.10 we started the labeling process without
using X1, X2 so that we can always find the color sets X, Y used in this lemma.

We assumed that ABC ∈ T and also by Lemma 2.2 and the assumption D ∩ F 6= ∅, we
know that EFG ∈ T and CDE ∈ T .

First we prove (i), thus we assume that D,E, F,G are F,B,A,C-rich, respectively. Note
that in this case we do not use the existence of Z,W .

Case 1: BAY ∈ T .

We can apply Lemma 2.15 to the color set sequence EDCBAY . We get that B,A, Y
are either D,E,C-rich or E,C,D-rich, respectively. In the first case A is E-rich and E is
B-rich by assumption, so A ∩B 6= ∅, a contradiction. In the second case, as Y AB ∈ T and
ABC ∈ T , Proposition 2.11 implies that C is Y -rich. As D is also Y -rich, C ∩ D 6= ∅, a
contradiction.

Case 2: B ∩ Y 6= ∅.
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We can apply Lemma 2.16 to the color set sequence EDCBAYX. We get that B,A, Y,X
are either Y,D,E,C-rich or D,E,C,D-rich, respectively. In the first case, the only case not
leading to contradiction, we get that A is D-rich, as we claimed. In the second case we get
that A is E-rich and E is B-rich by assumption, so A ∩B 6= ∅, a contradiction.

Now we prove (ii), thus we assume that D,E, F,G are B,A,C,B-rich, respectively. Note
that in the proof of this case we will already use the statement of (i) and also we need the
existence of Z,W .

Case 3: DCB ∈ T .

We can apply Lemma 2.15 to the color set sequence GFEDCB. We get that D,C,B
are either F,G,E-rich or G,E, F -tich, respectively. In the first case C is G-rich and by the
assumption G is B-rich, thus C ∩ B 6= ∅, a contradiction. In the second case similarly B is
F -rich and by the assumption F is C-rich, thus C ∩B 6= ∅, a contradiction.

Case 4: B ∩D 6= ∅.
We can apply Lemma 2.16 to the color set sequence GFEDCBA. We get that D,C,B,A

are either B,F,G,E-rich or F,G,E, F -rich, respectively.
In the first case, as GFE ∈ T and F ∩D 6= ∅, we can apply Lemma 2.17(i) to the color set

sequence WZGFEDCBAYX. We get that if D,C,B,A are B,F,G,E-rich , respectively
(and this is exactly the case), then D is G-rich, as we claimed.

In the second case D is F -rich and by the assumption F is C-rich, thus C ∩ D 6= ∅, a
contradiction.

2.3 Upper bounds

Before we start our proofs, we describe some tools from the paper of Kündgen and Pelsmajer
[10].

Lemma 2.18 (Kündgen, Pelsmajer, Lemma 3 in [10]). If c is a nonrepetitive palindrome-free
coloring of a path P , and P ′ is obtained from P by adding a loop at each vertex, then every
repetitively colored walk W1W2 in P ′ satisfies W1 = W2.

Let V1, . . . , Vm be a partition of V (G) and let Gk and G>k denote the subgraphs of G
induced by Vk and Vk+1 ∪ . . . ∪ Vm, respectively. The k-shadow of a subgraph H of G is
the set of vertices in Vk which have a neighbor in V (H). We say that G is shadow complete
(with respect to the partition) if the k-shadow of every component of G>k induces a complete
graph.

Theorem 2.19 (Kündgen, Pelsmajer, Theorem 6 in [10]). If G is shadow complete and each
Gk has a nonrepetitive coloring with b colors, then G has a nonrepetitive coloring with 4b
colors.
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Proof of Theorem 1.2. Recall that we want to prove that for any n ≥ 4 and k 6= 2, we have
π(Pn[Ek]) = 2k + 1 and for k = 2 we have 5 ≤ π(Pn[E2]) ≤ 6. The lower bounds of the
theorem follow from Lemma 2.1 and Lemma 2.2.

To prove the upper bounds we need to define a nonrepetitive coloring c of P∞[Ek]. For
k ≥ 3 let Y denote the set {k + 1, k + 2, . . . , 2k + 1} and X denote the set {1, 2, . . . , k}.
If k = 2, then let X = {1, 2}, Y = {3, 4, 5, 6}. Elements of Y will be denoted by lower
case letters a, b, c, a1, etc. Let S = s1s2s3s4 . . . . be an infinite palindrome-free nonrepetitive
sequence. There exists such a sequence that uses only 4 symbols [2]. Thus we can pick all
si’s from Y . Let the vertex set of P∞ be {v1, v2, . . .} and E(P∞) = {(vi, vi+1) : 1 ≤ i}. If
j = 4(i−1) + 1, then define c on vj[Ek] such that c[vj[Ek]] = X. If j = 4(i−1) + 2 or j = 4i,
then for any vertex u ∈ vj[Ek] let c(u) = si. Finally, if j = 4(i − 1) + 3, then define c on
vj[Ek] such that c[vj[Ek]] is a k-subset of Y \ si (note that if k ≥ 3, then |Y \ si| = k and if
k = 2, then |Y \ si| = 3).

We claim that c is nonrepetitive. Assume to the contrary that there is a path Q1Q2 in
P∞[Ek] such that the sequence of colors on Q1Q2 is a repetition. Remove all vertices from
Q1Q2 that have colors from the set X. The sequence of colors of the remaining vertices
Q′1Q

′
2 = (q′1,1 . . . q

′
1,lq
′
2,1 . . . q

′
2,l) still form a repetition. Let P ′∞ be an infinite path with

one loop added to each of its vertices. Furthermore, let cS be the coloring of P ′∞ with
cS(p′j) = sj. Let us define the function f : Q′1Q

′
2 → P ′∞ with f(q) = p′i if and only if

q ∈ v4(i−1)+2[Ek] ∪ v4(i−1)+3[Ek] ∪ v4i[Ek]. Writing W1 and W2 for the images of Q′1 and Q′2,
we obtain that W1W2 is a walk in P ′∞.

Claim 2.20. The sequence of colors of vertices in W1W2 with respect to the coloring cS is a
repetition.

Proof. Let 1 ≤ m ≤ l. Consider the largest parts of Q1 and Q2 that contain q′1,m and
q′2,m such that they form a subpath of Q′1 and Q′2, i.e. the subpaths of Q1 and Q2 that lie
between consecutive X-colored vertices of Q1 and Q2. Clearly, the part in Q1 lies entirely
within v4(i−1)+2[Ek]∪ v4(i−1)+3[Ek]∪ v4i[Ek] for some i and the part in Q2 lies entirely within
v4(j−1)+2[Ek] ∪ v4(j−1)+3[Ek] ∪ v4j[Ek] for some j and vertices of the former are mapped by f
to p′i and those of the latter are mapped by f to p′j. If these paths are (q′1,m1

. . . q′1,m . . . q
′
1,m2

)
and (q′2,m1

. . . q′2,m . . . q
′
2,m2

), then c(q′1,m1
) = c(q′2,m1

) and c(q′1,m2
) = c(q′2,m2

) and at least one
of the pairs (q′1,m1

, q′2,m1
), (q′1,m2

, q′2,m2
), say the former one, lie next to an X-colored vertex

and therefore their c-color is si and sj. This shows that cS(f(q′1,m)) = si = c(q′1,m1
) =

c(q′2,m1
) = sj = cS(f(q′2,m)).

By Claim 2.20 and Lemma 2.18, W1 = W2. Suppose first that W1 = W2 contains at
least two different vertices. This means that the original paths Q1 and Q2 had to cross from
v4(i−1)+2[Ek]∪ v4(i−1)+3[Ek]∪ v4i[Ek] to v4(i)+2[Ek]∪ v4(i)+3[Ek]∪ v4(i+1)[Ek] or vice versa. But
as the layer v4i+1[Ek] is rainbow colored with colors in X, the original color sequence of Q1Q2

could not be a repetition.
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Suppose then that W1W2 is a walk repeating the same vertex p′i. Then all vertices of
Q1Q2 must lie in v4(i−1)+1[Ek] ∪ v4(i−1)+2[Ek] ∪ v4(i−1)+3[Ek] ∪ v4i[Ek] ∪ v4i+1[Ek]. Therefore
Q1Q2 cannot contain any vertex from v4(i−1)+3[Ek] as they have unique colors among vertices
in these 5 layers, preventing the possibility of a repetition. By connectivity, we get that Q1Q2

must lie either in v4(i−1)+1[Ek]∪v4(i−1)+2[Ek] or in v4i[Ek]∪v4i+1[Ek], say the former. Observe
that Q1Q2 must contain a vertex from v4(i−1)+1[Ek] which has a unique color among vertices
in v4(i−1)+1[Ek] ∪ v4(i−1)+2[Ek]. This contradicts the fact that the color sequence of Q1Q2 is
a repetition. This finishes the proof of Theorem 1.2.

Proof of Theorem 1.3. We will construct a nonrepetitive rainbow coloring c of P∞[Ek] with
d7k/2e colors. Let us denote the vertices of P∞ by pi i = 1, 2, 3, . . . with (pi, pj) forming an
edge if and only if |i − j| = 1. We will write Vi = pi[Ek]. Let X,A,B,C,D,E be pairwise
disjoint sets with |X| = k, |B| = |C| = |D| = dk/2e, |A| = |E| = bk/2c. Let S = s1s2s3 . . .
be an infinite palindrome-free nonrepetitive sequence with si ∈ {1, 2, 3, 4} for all positive
integers i. We define a coloring of P∞[Ek] using colors X ∪ A ∪B ∪ C ∪D ∪ E as follows:

• If j = 4(i− 1) + 1 then c[Vj] = X.

• If si = 1, then c[V4(i−1)+2] = c[V4i] = A ∪B and c[V4(i−1)+3] is a k-subset of C ∪D.

• If si = 2, then c[V4(i−1)+2] = c[V4i] = A ∪ C and c[V4(i−1)+3] = B ∪ E.

• If si = 3, then c[V4(i−1)+2] = c[V4i] = C ∪ E and c[V4(i−1)+3] = A ∪D.

• If si = 4, then c[V4(i−1)+2] = c[V4i] = D ∪ E and c[V4(i−1)+3] is a k-subset of B ∪ C.

It is easy to verify that for any index i, any two colors c1 ∈ c[V4(i−1)+2] = c[V4i] and
c2 ∈ c[V4(i−1)+3] uniquely determine si.

We shall show that c is a nonrepetitive coloring of P∞[Ek]. Assume to the contrary that
there is a path Q1Q2 in P∞[Ek] such that the sequence of colors on Q1Q2 form a repetition.
Remove all vertices from Q1Q2 that have colors from the set X and also those vertices which
on the path Q1Q2 have only neighbors that have colors from the set X. The sequence of
colors of the remaining vertices Q′1Q

′
2 = (q′1,1 . . . q

′
1,lq
′
2,1 . . . q

′
2,l) still form a repetition. Let

P ′∞ be an infinite path with one loop added to each of its vertices. Furthermore, let cS
be the coloring of P ′∞ with cS(p′j) = sj. Let us define the function f : Q′1Q

′
2 → P ′∞ with

f(q) = p′i if and only if q ∈ v4(i−1)+2[Ek] ∪ v4(i−1)+3[Ek] ∪ v4i[Ek]. Writing W1 and W2 for
the images of Q′1 and Q′2, we obtain that W1W2 is a walk in P ′∞. By the observation above,
c1 ∈ c[V4(i−1)+2] = c[V4i] and c2 ∈ c[V4(i−1)+3] uniquely determine si. This ensures that the
color sequence of W1W2 with respect to cS is a repetition. Therefore by Lemma 2.18 we
obtain that W1 = W2.

The remainder of the proof is almost identical to that of Theorem 1.2. Suppose first that
W1 and thus W2 contains at least two different vertices. This means that the original paths
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Q1 and Q2 had to cross from v4(i−1)+2[Ek]∪v4(i−1)+3[Ek]∪v4i[Ek] to v4(i)+2[Ek]∪v4(i)+3[Ek]∪
v4(i+1)[Ek] or vice versa. But as the layer v4i+1[Ek] is rainbow colored with colors in X, the
original color sequence of Q1Q2 could not be a repetition.

Suppose then that W1W2 is a walk repeating the same vertex p′i. Then all vertices of Q1Q2

must lie in v4(i−1)+1[Ek] ∪ v4(i−1)+2[Ek] ∪ v4(i−1)+3[Ek] ∪ v4i[Ek] ∪ v4i+1[Ek]. Therefore Q1Q2

cannot contain any vertex from ∪v4(i−1)+3[Ek] as they have unique colors among vertices in
these 5 layers preventing the possibility of a repetition. By connectivity, we get that Q1Q2

must lie either in v4(i−1)+1[Ek] ∪ v4(i−1)+2[Ek] or in v4i[Ek] ∪ v4i+1[Ek], say the former. By
connectivity, Q1Q2 must contain a vertex from v4(i−1)+1[Ek] which has a unique color among
vertices in v4(i−1)+1[Ek] ∪ v4(i−1)+2[Ek]. This contradicts the fact that the color sequence of
Q1Q2 is a repetition.

Finally, if the walk W1W2 is empty, then all vetices of the path Q1Q2 are either X-
colored or all their neighbors in their part of Q1Q2 are X-colored. By connectivity, this is
only possible if all vertices of Q1Q2 lie with v4i[Ek] ∪ v4i+1[Ek] ∪ v4i+2[Ek] for some i. Then
again by connectivity Q1Q2 must contain a vertex from v4i+1[Ek]. This vertex has a unique
c-color in v4i[Ek] ∪ v4i+1[Ek] ∪ v4i+2[Ek] thus the color sequence of Q1Q2 with respect to c
cannot form a repetition. This contradiction completes the proof of Theorem 1.3.

3 Some remarks and open problems

Kündgen and Pelsmajer [10] applied their method to outerplanar graphs. Their techniques
can be used to prove the following theorem.

Theorem 3.1. For every outerplanar graph G and integer k ≥ 2, π(G[Kk]) ≤ 16k. Fur-
thermore, there exists an outerplanar graph G0 such that π(G0[Ek]) > 6k for every positive
integer k.

Proof. Kündgen and Pelsmajer [10] proved that a maximal outerplanar graph has a shadow
complete vertex-partition in which each Gk is a linear forest. Similarly, we can show that if
G is a maximal outerplanar graph, then G[Kn] has a shadow complete vertex-partition in
which each Gk is of the form P [Kn], where P is a linear forest. As π(P [Kn]) ≤ 4k, it follows
from Theorem 2.19 that π(G[Kk]) ≤ 16k.

As for the lower bound, in [1, 5] an outerplanar graph is shown that has star-chromatic
number at least 6 (a proper vertex coloring is a star-coloring if every path on four vertices
uses at least three distinct colors), thus also nonrepetitive-chromatic number at least 6. We
can modify this example so that it gives the desired lower bound. Start with a path P10 on
10 vertices. Add one vertex u connected to all vertices of P10. Then, for each vertex pi of
P10 add a 24-vertex path Qi whose 24 vertices are all connected to pi. Let us call this the
core of our future graph G0. Finally, for every vertex v in the core, let us add 6 more leaves
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`v,1, ..., `v,6 connected to v. Suppose there is a coloring of G0[Ek] with less than 6k colors,
we shall arrive to contradiction.

If on the vertices of a layer corresponding to a vertex of the core there is a repeated color,
then by Lemma 2.1 we need at least 6k + 1 colors. Thus we can suppose that the layers
corresponding to the vertices of the core are rainbow colored. The k colors 1, 2, . . . k used
for coloring u[Ek] do not appear on P10[Ek]. We call a color redundant if it appears at least
on two vertices of P10[Ek]. As non-redundant colors are all different, there are at most 5k
non-redundant colors. Thus by the pigeon-hole principle there exist two neighboring layers
pi[Ek] and pi+1[Ek] whose coloring contains at least one redundant color each. Observe that
on Qi[Ek] the colors 1, 2, . . . k cannot appear, as otherwise we would have a repetitive path
of length 4 (through u[Ek] and using the vertices of the redundant color). Also, either on
Qi[Ek] or on Qi+1[Ek] none of the 2k colors of pi[Ek] and pi+1[Ek] appear, as otherwise there
would be a repetitive path of length 4 with its endpoints in Qi[Ek] and Qi+1[Ek]. Suppose
that they do not appear on Qi[Ek]. Thus we can use at most 6k − k − 2k = 3k colors to
color Qi[Ek], but Theorem 1.3 implies that we would need at least 3k + 1 colors for this, a
contradiction.

Tightening the gap between lower and upper bounds in Theorem 1.3, Theorem 1.4 and
Theorem 3.1 are natural open problems related to results in this paper.

Fractional versions of graph parameters have attracted the attention of researchers. We
now introduce a fractional version of nonrepetitive coloring. For a pair of positive integers
p < q, a p-tuple nonrepetitive q-coloring of G is a mapping c : V (G) →

(
[q]
p

)
such that for

any path v1 . . . v2l in G the sequence c1 . . . c2l of colors is not a repetition for any choice of
ci ∈ c(vi). The fractional Thue chromatic number πf (G) of a graph G is defined as

πf (G) = inf

{
q

p
: ∃ p-tuple nonrepetitive q-coloring c of G

}
.

By definition, for any graph G, πf (G) ≤ π(G). It is easy to see that πf (Pn) = π(Pn) for all
n. On the other hand, already for the cycle of length 7, the ordinary Thue chromatic number
and the fractional Thue chromatic number do not coincide as π(C7) = 4 and πf (C7) = 3.5.
For the upper bound take the following (7, 2)-nonrepetitive coloring of C7: v1 → {1, 2}; v2 →
{3, 4}; v3 → {1, 7}; v4 → {5, 6}; v5 → {3, 4}; v6 → {2, 6}; v7 → {5, 7}. The lower bound is an
elementary case analysis.

Problem 3.2. How big can the be the difference π(G)−πf (G)? Is π(G) bounded from above
by a function of πf (G)?

For arbitrary graphs, it was proved [2, 4] that if the maximum degree of G is ∆ then
π(G) ≤ c∆2 (c is a constant independent of G and ∆). This immediately gives that
π(G[Kk]) ≤ ck2∆2, as the maximum degree of G[Kk] is k(∆ + 1)− 1. As the graphs G[Kk]
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have special structure, one may expect that the upper bound to be improved. Barát and
Wood investigated nonrepetitive colorings of walks [3]. Following their definitions, a walk
{v1, v2, . . . , v2t} is boring if vi = vt+i for all 1 ≤ i ≤ t. Clearly, a boring walk is repetitively
colored by every coloring. A coloring f is walk-nonrepetitive if only boring walks are repeti-
tively colored by f . Let πW (G) denote the least integer such that G has a walk-nonrepetitive
coloring with πW (G) colors. Barát and Wood pose the following problem: is there a func-
tion f such that πW (G) ≤ f(∆)? If this is true, then a rainbow blow-up of such a coloring
would immediately imply that πR(G[Ek]) ≤ kπW (G) ≤ kf(∆). Indeed a repetitive path in
G[Ek] would be a ’lift’ of a repetitive walk in the original coloring, thus boring, which is a
contradiction (as such a path in G[Ek] cannot be repetitive). It is also easy to see that the
same coloring would actually show that π(G[Kk]) ≤ kπW (G) ≤ kf(∆).

Problem 3.3. Is there a function f such that for every graph G of maximum degree ∆,
π(G[Kk]) ≤ kf(∆)? Perhaps π(G[Kk]) ≤ ck∆2 for some constant c?

A natural marriage of the above two notions is the fractional walk-nonrepetitive chromatic
number, where in the definition of p-tuple nonrepetitive q-coloring of G, the path v1v2 . . . v2l
in G is replaced by a walk. We denote by πW

f (G) the fractional walk-nonrepetitive chromatic
number of G. It is obvious that for path P of length at least 4, πW

f (Pn) ≥ πf (Pn) = π(Pn) = 3
and πW

f (Pn) ≤ πW (Pn) ≤ 4. It is also easy to see that inf(πR(Pn[Ek])/k) ≤ πW
f (Pn).

A natural question is to determine πW
f (Pn) and also to see whether equality holds in the

previous inequality.

Given a list assignment L with L(v) ⊂ N for all vertices v of a graph G, we say that G is
L-nonrepetitively colorable if there exists a nonrepetitive coloring C of G with c(v) ∈ L(v)
for all v ∈ V (G). The Thue choice number πL(G) of a graph G is the minimum integer m
such that G is L-nonrepetitive colorable for every list assignment L provided |L(v)| = m for
all v ∈ V (G). It is known [8] that the Thue choice number of a path is at most 4. However,
the Thue choice number of trees is unbounded [6].

Problem 3.4. Is there a constant c such that πL(P∞[Kk]) ≤ ck?

In the first draft of this paper, we posed the following conjecture, which has recently
been confirmed by Kozik [9].

Conjecture 3.5. There exists an infinite sequence on four letters, A,B,C and D such that
the sequence is nonrepetitive, palindrome-free and avoids the subsequences CD and DC.
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