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while incurring some known cost c(e).
The Tree Search Problem with Non-Uniform Cost is the following: given
a tree T on n vertices, each edge having an associated cost, construct a
strategy that minimizes the total cost of the identification in the worst
case.
Finding the strategy guaranteeing the minimum possible cost is an NP-
complete problem already for input trees of degree 3 or diameter 6.
The best known approximation guarantee was an O(logn/ log log logn)-
approximation algorithm of [Cicalese et al. TCS 2012].
We improve upon the above results both from the algorithmic and the
computational complexity point of view: We provide a novel algorithm
that provides an O( logn

log logn
)-approximation of the cost of the optimal

strategy. In addition, we show that finding an optimal strategy is NP-
complete even when the input tree is a spider of diameter 6, i.e., at most
one vertex has degree larger than 2.
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1 Introduction

The design of efficient procedures for searching in a discrete structure
is a fundamental problem in discrete mathematics [1, 2] and computer
science [10]. Searching is a basic primitive for building and managing
operations of an information system as ordering, updating, and retrieval.
The typical example of a search procedure is binary search which allows
to retrieve an element in a sorted list of size n by only looking at O(log n)
elements of the list. If no order can be assumed on the list, then it is
known that any procedure will have to look at the complete list in the
worst case. Besides these two well characterized extremes, extensive work
has also been devoted to the case where the underlying structure of the
search space is a partial order. Partial orders can be used to model lack
of information on the totally ordered elements of the search space [12]
or can naturally arise from the relationship among the elements of the
search space, like in hierarchies used to model knowledge representation
[15], or in tree-like indices for information retrieval of large databases [3].
For more about applications of tree search see the end of this section.

In this paper, we focus on the case where the underlying search space
is a tree-like partially ordered set and tests have nonuniform costs. We
investigate the following problem.

The Tree Search Problem with non-uniform costs

Input: A tree T = (V,E), |V | = n, with non-negative rational costs
assigned to the edges defined by a c : e ∈ E 7→ c(e) ∈ Q.

Output: A strategy that minimizes (in the worst case) the cost spent
to identify an initially unknown vertex x of T by using edge queries. An
edge query e = {u, v} ∈ E asks for the subtree Tu or Tv which contains
x, where Tu and Tv are the (maximal connected) components of T − e,
including the vertex u and v respectively. The cost of the query e is c(e).
The cost of identifying a vertex x is the sum of the costs of the queries
asked.

More formally, a strategy for the Tree Search Problem with nonuni-
form costs over the tree T is a decision tree D which is a rooted binary tree
with |V | leaves where every leaf ` is associated with one vertex v ∈ V and
every internal node6 ν ∈ V (D) is associated with one test e = {u, v} ∈ E.
The outgoing edges from ν are associated with the possible outcomes of
the query, namely, to the case where the vertex to identify lies in Tu or

6 For the sake of avoiding confusion between the input tree and the decision tree, we
will reserve the term vertex for the elements of V and the term node for the vertices
of the decision tree D.
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Tv respectively. Every vertex has at least one associated leaf. The actual
identification process can be obtained from D starting with the query as-
sociated to the root and moving towards the leaves based on the answers
received. When a leaf ` is reached, the associated vertex is output (see
also Fig. 1 for an example).
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Fig. 1. An example of the tree search problem, T is the input tree and D is a decision
tree with cost(D) = 7 = costD(a) = costD(c). If the vertices of the tree T represent the
parts of a device to assemble, the decision tree corresponds to the assembly procedure
that at time 0 joins e with b; then at time 3 joins b with c and e with g. At time 4 the
joining of d with c and e with f is started. Finally, at time 6 part a is joined with part
c and the procedure ends by time 7.

Given a decision tree D, for each vertex v ∈ V (T ), let costD(v) be the
sum of costs of the edges associated to nodes on the path from the root of
D to the leaf identifying v. This is the total cost of the queries performed
when the strategy D is used and v is the vertex to be identified.

In addition, let the cost of D be defined by

cost(D) = max
v∈V (T )

costD(v).

This is the worst-case cost of identifying a vertex of T by the decision
tree D. The optimal cost of a decision tree for the instance represented
by the tree T and the cost assignment c is given by

OPT (T, c) = min
D

cost(D),

where the min is over all decision trees D for the instance (T, c).

Previous results and related work. The Tree Search Problem has
been first studied under the name of tree edge ranking [9, 5, 11, 13, 7],
motivated by multi-part product assembly. In [11] it was shown that in the
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case where the tests have uniform cost, an optimal strategy can be found
in linear time. A linear algorithm for searching in a tree with uniform
cost was also provided in [14]. Independently of the above articles, the
first paper where the problem is considered in terms of searching in a tree
is [3], where the more general problem of searching in a poset was also
addressed.

The variant considered here in which the costs of the tests are non-
uniform was first studied by Dereniowski [6] in the context of edge rank-
ing. In this paper, the problem was proved NP-complete for trees of di-
ameter at most 10. Dereniowski also provided an O(log n) approximation
algorithm. In [4] Cicalese et al. showed that the tree search problem with
non-uniform costs is strongly NP-complete already for input trees of di-
ameter 6, or maximum degree 3, moreover, these results are tight. In fact,
in [4], a polynomial time algorithm computing the optimal solution is also
provided for diameter 5 instances and an O(n2) algorithm for the case
where the input tree is a path. For arbitrary trees, Cicalese et al. provided
an O( log n

log log logn)-approximation algorithm.

Our Result. Our contribution is both on the algorithmic and on the
complexity side. On the one hand, we provide a new approximation algo-
rithm for the tree search problem with non-uniform costs which improves
upon the best known guarantee given in [4]. In Section 3 we will prove
the following result.

Theorem 1. There is an O(log n/ log logn)-approximation algorithm for
the Weighted Tree Search Problem that runs in polynomial time in n.

In addition, we show that the tree search problem with non-uniform
costs is NP-hard already when the input tree is a spider7 of diameter 6.

More about applications. We discuss some scenarios in which the
problem of searching in trees with non-uniform costs naturally arises.

Consider the problem of locating a buggy module in a program in
which the dependencies between different modules can be represented
by a tree. For each module we can verify the correct behavior indepen-
dently. Such a verification may consist in checking, for instance, whether
all branches and statements in a given module work properly. For differ-
ent modules, the cost of using the checking procedure can be different
(here the cost might refer to the time to complete the check). In such a
situation, it is important to device a debugging strategy that minimizes
the cost incurred in order to locate the buggy module in the worst case.

7 By spider we mean a tree with at most one vertex of degree greater than 2.
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Checking for consistency in different sites keeping distributed copies of
tree-like data structures (e.g., file systems) can be performed by maintain-
ing at each node some check sum information about the subtree rooted
at that node. Tree search can be used to identify the presence of “buggy
nodes”, and efficiently identifying the inconsistent part in the structure,
rather than retransmitting or exhaustively checking the whole data struc-
ture. In [3], an application of this model in the area of information retrieval
is also described.

Another example comes from a class of problems which is in some
sense dual to the previous ones: deciding the assembly schedule of a multi-
part device. Assume that the set of pairs of parts that must be assembled
together can be represented by a tree. Each assembly operation requires
some (given) amount of time to be performed and while assembling two
pieces, the same pieces cannot be involved in any other assembly opera-
tions. At any time different pairs of parts can be assembled in parallel.
The problem is to define the schedule of assembly operations which mini-
mize the total time spent to completely assembly the device. The schedule
is an edge ranking of the tree defined by the assembly operations. By re-
versing the order of the assembly operation in the schedule we obtain
a decision tree for the problem of searching in the tree of the assembly
operation where each edge cost is equal to the cost of the corresponding
assembly.

2 Basic lower and upper bounds

In this section we provide some preliminary results which will be useful in
the analysis of our algorithm presented in the next section. We introduce
some lower bounds on the cost of the optimal decision tree for a given in-
stance of the problem. We also recall two exact algorithms for constructing
optimal decision trees which were given in [4]. The first is an exponential
time dynamic programming algorithm which works for any input tree.
The second is a quadratic time algorithm for instances where the input
tree is a path. Finally, we show a construction of 2-approximation decision
trees for spider graphs.

Let T denote the input tree and c the cost function. It is not hard to
see that, given a decision tree D for T , we can extract from it a decision
tree for the instance of the problem defined on a subtree T ′ of T and the
restriction of c to the vertices in T ′. For this, we can repeatedly apply
the following operation: if in D there is a node ν associated with an edge
e = {u, v}, such that Tu (resp. Tv) is included T − T ′, then remove the
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node ν together with the subtree rooted at the child of ν corresponding
to the case where the vertex to identify is in Tu (resp. Tv). Let D′ be
the resulting decision tree when the above step cannot be performed any
more. Then, clearly cost(D′, c) ≤ cost(D, c). We have shown the following
(also observed in [4]).

From this notation, we omit c if it is clear from the context. The
following lower bound for OPT (T ) was observed in [4].

Lemma 1. Let T ′ be a subtree of T . Then, OPT (T, c) ≥ OPT (T ′, c).

Another immediate observation is that for a given input tree T , the
value OPT (T, c) is monotonically non-decreasing with respect to the cost
of any edge. This is recorded in the following.

Lemma 2. Let c and c′ be cost assignments on a tree T such that c′(e) ≤
c(e) for every e ∈ E(T ). Then, OPT (T, c) ≥ OPT (T, c′).

Proof. Let D be an optimal decision tree for the instance (T, c). Let a
decision tree D′ be obtained from D by changing c to c′. This gives
OPT (T, c′) ≤ cost(D′) ≤ cost(D) = OPT (T, c). ut

The next proposition shows that subdividing an edge cannot decrease
the cost of the optimal decision tree.

Proposition 1. Let c be a cost assignment on a tree T . Let v ∈ V (T )
have exactly two neighbors u1, u2 ∈ V (T ). If T ′ is obtained from T − v by
adding the edge {u1, u2} and c′ is obtained from c by setting c′(u1u2) =
min{c(u1v), c(u2v)}, then OPT (T, c) ≥ OPT (T ′, c′).

Proof. Let D be an optimal decision tree for the instance (T, c). Let us
assume without loss of generality that in D the node ν1 associated with
e1 = {u1, v} is an ancestor of the node ν2 associated with e2 = {u2, v}.
Notice that one of the children of ν2 is a leaf associated with the vertex
v. Let D̃ be the subtree of D rooted at the non-leaf child of ν2.

Let D′ be the decision tree obtained from D by associating the node
ν1 to the edge e = {u1, u2} and replacing the subtree rooted at ν2 with
the subtree D̃.

It is not hard to see that D′ is a proper decision tree for T ′. In addition
we also have that for any vertex z of T ′ which is associated to a leaf in D̃
it holds that costD

′
(z) = costD(z)− c(e1)− c(e2) + c′(u1u2), and for any

other vertex z of T ′ we have costD
′
(z) = costD(z) − c(e1) + c′(u1u2) or

costD
′
(z) = costD(z). It follows thatOPT (T ′, c′) ≤ cost(D′) ≤ cost(D) =

OPT (T, c). ut
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The following two results from [4] provide exact algorithms for the
construction of optimal strategies. More precisely, Proposition 2 provides
an exponential dynamic programming based algorithm for general trees.
Theorem 2 gives an O(n2) time algorithm for the special case where the
input tree is a path and will be useful in the analysis of our main algorithm
and also in Lemma 3 regarding the spider tree.

Proposition 2 ([4]). Let T be an edge-weighted tree on n vertices. Then
an optimal decision tree for T can be constructed in O(2nn) time.

As we use the construction from Proposition frequently, we include
the proof.

Proof (Proof from [4]). Let E be the set of edges of T and c be a cost
function. We have that

OPT (T ) = min
e={u,v}∈E

(c(e) + max{OPT (Tu),OPT (Tv)}),

where Tu (Tv) is the tree component of T − e that contains u (v). Since
there are at most 2n subtrees in T and there are at most n choices for the
root of T , it follows that this equation can be solved in O(n2n) time by
means of dynamic programming. The optimal decision tree can be easily
computed from the values of OPT (·). ut

The following theorem was proved by Cicalese et al. in [4] and will
be useful later in the analysis of our algorithm and also in the following
lemma regarding the spider tree.

Theorem 2 ([4]). There is an O(n2) time algorithm that constructs an
optimal decision tree D for a given weighted path on n vertices.

Note that for a star T any decision tree D has the same cost, since
all the edges have to be asked in the worst case. Hence, for a tree T
such that there is only one node with degree greater than 1 we have
OPT (T, c) =

∑
e∈E(T ) c(e), for any cost function c.

Definition 1. A tree T is a spider if there is at most one vertex in T of
degree greater than two. We refer to this vertex as the head (or center)
of the spider. Moreover, each path from the head of the spider to one of
the leaves will be referred to as a leg of the spider.

Lemma 3. Let T be a spider. Then there is an algorithm which computes
a 2-approximate decision tree D for T and runs in time O(n2).

7



Proof. If T is a path, then by Theorem 2 there exists an algorithm
computing the optimal decision tree in O(n2) time. Assume T is not
a path. Then T contains exactly one vertex v of degree at least three.
Let Sv be the star induced by v and the vertices adjacent to v. Let
us denote by w1, . . . , wk the vertices adjacent to v, where k = deg(v).
By Theorem 2, for every i ∈ {1, . . . , k} we construct the optimal deci-
sion tree Di for the path component Ci of T − v containing wi in time
O(|Ci|2). Note that the total running time for construction of D1, . . . , Dk

is O(n2). Finally, for Sv we compute the optimal decision tree Dv (in
O(n) time). The decision tree D for T is obtained from Dv by replacing
the node corresponding to wi by the root of Di for every i ∈ {1, . . . , k}.
Clearly, the algorithm runs in O(n2) time and cost(D) ≤ OPT (Sv, c) +
max1≤i≤k{OPT (Ci, c)} ≤ 2OPT (T, c). The last inequality follows be-
cause by Lemma 1 both OPT (Sv, c) and max1≤i≤k{OPT (Ci, c)} are lower
bounds on OPT (T, c). ut

3 The Algorithm

In this section we present Algorithm TS for the tree search problem.
Let n be the size of the input tree and t = 2blog lognc+2 be a parameter

fixed for the whole run of the algorithm. It holds that 2 log n ≤ t ≤ 4 log n.
The basic idea of our algorithm is to construct a subtree S of the

input tree T such that: (i) we can construct a decision tree for S whose
cost is at most a constant times the cost of an optimal decision tree for
S; (ii) each component of T − S has size not larger than |T |/t.

This will allow us to build a decision tree for T by assembling the
decision tree for S with the decision trees recursively constructed for the
components of T − S. The constant approximation guarantee on S and
the fact that, due to the size of the subtrees on which we recur, we need
at most O( logn

log logn) levels of recursion to show that our algorithm gives

an O( logn
log logn) approximation.

The subtree S. We iteratively build subtrees S0 ⊂ S1 ⊂ · · · ⊂ St ⊆ T .
Starting with the empty tree S0, in every iteration i ∈ {1, . . . , t} we pick a
centroid8 xi of the largest component of the forest T −Si−1. The subtree
Si is set to be the minimal subtree containing xi and Si−1. If for some i
we have that Si = T , then we set S = Si = T and we stop the iterations.
If all t iterations are completed, then we set S = St.

We have the following lemma—which establishes (ii) above.

8 Recall that a centroid of a tree T is a vertex v such that any component of T − v
has size at most |T |/2.
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Lemma 4. If H is a component of T − S, then |H| ≤ |T |/ log |T |.

Proof. We prove by induction on k that after 2k iterations all components
of T − S2k have size at most |T |/2k−1. Let k = 0. We observe that by
the definition of centroid, after 1 = 2k iteration all components of T −S1
have size at most |T |/2 ≤ 2|T | = |T |/2k−1. This establishes the basis of
our induction.

Now fix some k > 0 and assume (induction hypothesis) that after 2k−1

iterations all components of T −S2k−1 have size at most |T |/2k−2. Among
these there are at most 2k−1 components that have size at least |T |/2k−1.
In the next 2k−1 iterations we will choose a centroid in each of these
components, one by one. Choosing a centroid in a component H splits H
into parts that have size at most half of H, thus after 2k = 2k−1 + 2k−1

steps all components of T − S2k have size at most |T |/2k−1.
Thus, if the process of constructing S is stopped after t = 2blog lognc+2

iterations all components have size at most |T |/2blog lognc+1 ≤ |T |/ log n.
On the other hand, if the process of constructing S is stopped at some
iteration i < t, then it means that S = T and trivially |H| = 0. ut

The Decision Tree for S. Let X contain all xi for i ∈ {1, . . . , t} and
vertices of degree at least three in S. Note that |X| ≤ 2t − 2 for t ≥ 2
and |X| = 1 = 2t − 1 for t = 1. Indeed, by induction on k, this is true
for k = 1, 2. Adding a new xi, Si is a tree which is the union of Si−1 and
a path reaching to xi, thus Si has at most one more vertex of degree at
least three than Si−1. Together with xi, X increases by at most two in a
step. Let Pu,v be the path of T whose endpoints are vertices u and v.

We define an auxiliary tree Y on the vertex set X in which the paths
of T between the vertices of X are replaced by ‘shortcut’ edges. Vertices
u, v ∈ X form an edge of Y if u and v are the only vertices of X of the path
Pu,v in T with endpoints u and v. Let euv = arg mine∈Pu,v c(e) (the edge
of Pu,v with minimal cost) and cY (uv) = c(euv). Let Z =

⋃
uv∈E(Y ) euv.

By Proposition 2, we can compute an optimal decision tree DY for Y in
time O(22tt) which is polynomial in n.

Let DX be obtained from DY by changing the label of every internal
node from uv to euv, for each uv ∈ E(Y ). The tree DX is not a decision
tree for S, however, leaves of DX correspond to components of S − Z.
Notice that cost(DX) = cost(DY ) = OPT (Y, cY ).

Since every component C of S − Z contains at most one vertex of
degree at least three, every such component is a spider. By Lemma 3, a
decision tree DC for each such component C ∈ S − Z can be computed
in O(n2) time with approximation ratio 2.
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We can now obtain the decision tree DS for S by replacing each leaf
in DX with the decision tree for the corresponding component in S − Z.
We have

cost(DS)

OPT (S, c)
≤ cost(DX) + maxC∈S−Z cost(DC)

OPT (S, c)

≤ cost(DX)

OPT (Y, cY )
+ max

C∈S−Z

cost(DC)

OPT (C, c)
≤ 3, (1)

where the second inequality holds because a repeated application of
Proposition 1 implies OPT (Y, cY ) ≤ OPT (S, c) and Lemma 1 implies
OPT (C, c) ≤ OPT (S, c).

Assembling the pieces in the Decision Tree for T . Let v be a vertex
in S with a neighbor not in S, let Sv be the star induced by v and its
neighbors outside V (S).

Let Dv be a decision tree for Sv (notice that they all have the same
cost). For every neighbor w 6∈ V (S) of v we compute recursively the
decision tree Dw for the component Hw of T−S containing w and replace
the leaf node of Dv associated to w with the root of Dw. The result is a
decision tree D′v for the subtree of T including Sv and all the components
of T − S including some neighbor w of v.

In order to obtain a decision tree DT for T we now modify DS as
follows: for each vertex v in S with a neighbor not in S, replace the leaf
in DS associated with v with the decision tree D′v computed above.
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Fig. 2. An example of the tree S, the important set of vertices X and the auxiliary
tree Y in the construction of Section 3
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Algorithm TS Tree Search Algorithm
1: function Main(tree T , cost c)
2: t← 2blog log |T |c+2

3: Output D ←TreeSearch(T, c, t)
4: end function
5: function TreeSearch(tree T , costs c, t)
6: if |T | ≤ t then return optimal decision tree DX for T computed by Proposi-

tion 2
7: S0 ← ∅
8: for all i = 1, . . . , t do
9: xi ← centroid of a maximum size component of T − Si−1

10: Si ← smallest subtree containing xi and Si−1

11: end for
12: S ← St

13: X ← {xi| i = 1, . . . , t} ∪ {v ∈ V (S)| degS(v) ≥ 3}
14: Y ← tree on vertex set X, uv ∈ E(Y ) iff X ∩ Pu,v = {u, v}
15: for all uv ∈ E(Y ) do
16: cY (uv)← mine∈Pu,v c(e)
17: euv ← edge of Pu,v with minimum cost
18: end for
19: Z ←

⋃
uv∈E(Y ) euv

20: Compute optimal decision tree DY for (Y, cY ) by Proposition 2
21: for all uv ∈ E(Y ) do
22: Replace label of uv in DY by euv
23: end for
24: for all components H of Y − Z do
25: . H contains at most one vertex of degree 3 or more, i.e., H is a spider
26: Compute 2-approximate decision tree DH for H by Lemma 3
27: replace the leaf k ∈ DY corresponding to H by the root of DH

28: end for
29: for all v ∈ V (S) with a neighbor not in S do
30: Sv ← star induced by v and its neighbors outside of V (S)
31: Construct decision tree Dv for (Sv, c)
32: for all w ∈ Sv \ {v} do
33: U ← component of T − S containing w
34: Dw ← TreeSearch(U, c, t)
35: leaf of Dv corresponding to w ← root of Dw

36: end for
37: replace the leaf of DY associated to v by the root of Dv

38: end for
39: return DY

40: end function
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The Approximation guarantee for DT . Let APP(T ) = cost(DT )
OPT (T,c) de-

note the approximation ratio obtained by Algorithm TS on the instance
(T, c). Let APP(k) = max|T |≤k APP(T ).

Lemma 5. For any tree T on n vertices and any cost assignment c, we
have APP(T ) ≤ 4 log n/ log logn.

Proof. For every 1 ≤ k ≤ n let f(k) = max{1, 4 log k/ log logn}. We
shall prove by induction on k that APP (k) ≤ f(k), which implies the
statement of the lemma.

If |T | ≤ t, then our algorithm builds an optimal decision tree, thus
APP (k) = 1 ≤ f(k) for k ≤ t. This establishes the induction base.

Choose a tree T as in the statement of the lemma such that APP (T ) =
APP (n). Let S and Y be the substructures of T built by the algorithm as
described above. Let Ṽ be the set of vertices of S with some neighbor not
in S. For each w 6∈ V (S) let Hw be the component of T − S containing
w. Let H be the set of components of T − S. Then, by construction, we
have

APP(T ) =
ALG(T )

OPT (T )
(2)

≤
cost(DS) + maxv∈Ṽ cost(Dv) + maxw 6∈V (S) cost(Dw)

OPT (T, c)
(3)

≤ cost(DS)

OPT (S, c)
+ max

v∈Ṽ

cost(Dv)

OPT (Sv, c)
+ max

w 6∈V (S)

cost(Dw)

OPT (Hw, c)
(4)

≤ 4 + max
H∈H

ALG(H)

OPT (H, c)
= 4 + max

H∈H
{APP(H)} (5)

≤ 4 + max
H∈H

f(|H|) ≤ 4 + f(|T |/ log n) (6)

= 4 + f(n/ log n) = 4 +
4 log n

logn

log log n
=

4 log n

log logn
, (7)

where

– (4) follows from (3) because of OPT (S, c), OPT (Sv, c), OPT (Hw, c) ≤
OPT (T, c) (Lemma 1)

– (5) follows from (4) because of (1) we have cost(DS)
OPT (S,c) ≤ 3 and because

any decision tree for a star Sv has the same cost, hence also equal to
OPT (Sv, c)

– in (6) the first inequality follows by induction and the second inequal-
ity by Lemma 4
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– (7) follows from (6) because of |T | = n and the definition of f(·). ut

Lemma 6. For a tree T on n vertices, the Algorithm TS builds the de-
cision tree DT in time polynomial in n.

Proof. If |T | ≤ t, then the algorithm builds an optimal decision tree for
T in time O(2t · t) = O(n4) using the construction from Proposition 2.
Otherwise, every iteration needed to build the subtree S (lines 7–11 of the
algorithm) introduces one new vertex xi and at most one other vertex of
degree at least three, thus |X| ≤ 2t−1. Proposition 2 then implies that an
optimal decision tree DY for Y can be computed in time O(22t ·2t) which
is polynomial in n. By Lemma 3, the 2-approximation decision tree DH

for H can be computed in O(n2) time. Building the decision tree Dv for
the stars Sv takes O(|Sv|) time (line 30). The rest of the algorithm, not
counting the recursion on line 34, needs time O(n2). As the recursion is
for a graph whose size is at most half of the original, the overall algorithm
running time is polynomial in n. ut

Lemma 6 and Lemma 5 now imply Theorem 1.

4 Tree search with non-uniform costs is NP-hard on
spider graphs

In this section we provide a new hardness result which contributes to
refining the separation between hard and polynomial instances of the
tree search problem with non-uniform costs. We show that the problem
of finding a minimum cost decision tree is hard even for instances where
the input graph is a spider and the length of every leg is three.

Our reduction is from the NP-complete Balanced Partition problem, a
special case of the Partition problem. The input of the Partition problem
is given by a set of numbers, {ai | i ∈ [m]}, and our goal is to find an index
set I such that

∑
i∈I ai =

∑
i/∈I ai. In the Balanced Partition problem it

is further required that |I| = m/2, i.e., there are the same number of
numbers in both parts of the partition. (This implies that for a non-
trivial input m has to be even.) Because of this, we can also suppose that
all the numbers have roughly the same size as adding a contant to each
will not affect the set of solutions. This implies that we can suppose that
ai < 2aj and

∑
i∈I ai <

∑
i/∈I ai for any |I| < m/2.

From a set of numbers {ai | i ∈ [m]} with the above properties, we
construct an instance (S, c) for the tree search problem with non-uniform
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costs, where S is a spider. Each leg will correspond to a number. There-
fore, we will speak of the ith leg as the leg corresponding to the ith
number. For each i ∈ [m], the ith leg will consist of three edges: the one
closest to the head will be called femur (and referred to as fi), the middle
edge will be called tibia (and referred to as ti), the end will be called
the tarsus (and referred to as si). The cost function is defined as follows:
For each i ∈ [m], we set c(fi) = 2ai; c(ti) = ai and c(si) = N , with
N =

∑
i∈[m] ai.

It is easy to see that in an optimal strategy, for each i ∈ [m] the tarsus
is always queried last among the edges on the ith leg. Given a decision
tree D, we denote by F the set of indices of the legs for which, in D,
the node associated with the query to the tibia is an ancestor9 of the
node associated with the query to the femur. Then, we have the following
proposition.

Proposition 3. There is an optimal decision tree D with F 6= ∅ and
such that:

(i) for any i ∈ F and j ∈ [m] \ F the node of D associated with the
jth femur is an ancestor of the node associated with the ith tibia.

(ii) for any i, j ∈ F the node of D associated with the ith tibia is an
ancestor of the node associated with the jth femur.

Proof. We first show that there is an optimal decision tree with F 6= ∅.
Recall that in an optimal decision tree, for each i ∈ [m] the tarsus is
always queried last among the edges on the ith leg, and thus the query
before tarsus si can only be the tibia ti.

Let D∗ be a decision tree where each femur is queried before the
corresponding tibia, i.e., suppose F ∗ = ∅. Let i be the index of the last
femur queried. Therefore, one of the two children of the node querying fi
is a leaf associated to the root r, while in the subtree rooted at the other
child the leaves are associated to the vertices in the ith leg. Let zi, yi, xi,
denote the vertices on the ith leg in order of increasing distance from r.
As we might have to query both ti and si after fi, we have

max
v∈{zi,yi,xi,r}

costD
∗
(v) = K + c(fi) + c(ti) + c(si),

where K is the cost of the queries on the path from the root of D∗ to the
parent of the node associated with the query to fi.

9 A node ν is an ancestor of another node ν′ if ν lies on the path connecting ν′ to the
head.
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Fig. 3. The structure of the optimal decision tree in Proposition 3. The cost of this
decision tree can be obtained as the max of the costs provided by the leaf associated
to xik and the leaf associated with r.
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Now consider the decision tree obtained from D∗ by replacing the
query to fi with a query to ti, then one child of this node queries fi
and the other child queries si. Let D′ be the resulting decision tree with
F ′ = {i}. Now we only have to query either fi or si after ti, so

max
v∈{zi,yi,xi,r}

costD
′
(v) = max{K + c(ti) + c(si),K + c(ti) + c(fi)}

≤ max
v∈{zi,yi,xi,r}

costD
∗
(v)

and costD
′
(v) = costD

∗
(v) for any v 6∈ {zi, yi, xi, r}. Hence cost(D′) ≤

cost(D∗) with F ′ 6= ∅ for D′.
Now, assuming that F 6= ∅, we can show (i) and (ii). First we observe

that if at least one of (i) and (ii) does not hold, then at least one of the
following conditions holds:

(i’) there exist i ∈ F and j ∈ [m] \ F such that the node νj associated
with fj is a child of the node νi associated with ti;

(ii’) there exist i, j ∈ F such that the node νi associated with ti is a child
of the node νj associated with fj ;

(iii’) there exist i ∈ F and j ∈ [m] \ F such that the node νj associated
with fj is a child of the node νi associated with fi.

Indeed, if none of these three conditions holds, then (i) and (ii) follow.
Therefore, it is enough to show that if we have an optimal tree where

one of the three conditions holds, by swapping the nodes νi and νj in-
volved, we can obtain a new decision tree whose total cost is not larger
than the cost of the original decision tree. This implies that by repeated
use of this swapping procedure, we have an optimal decision tree where
both (i) and (ii) hold.

We shall limit to explicitly show this argument for the case where in
the optimal decision tree D∗ condition (i’) holds. Therefore, we have

max
v∈{zj ,yj ,xj}

costD
∗
(v) = K + c(ti) + c(fj) + c(tj) + c(sj),

costD
∗
(xi) = costD

∗
(yi) = K + c(ti) + c(si).

Let D′ be the decision tree obtained after swapping the queries to fj
and the query to ti so that now the latter is the parent of the former.
Therefore, we have

max
v∈{zj ,yj ,xj}

costD
′
(v) = K + c(fj) + c(tj) + c(sj)
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costD
′
(xi) = costD

′
(yi) = K + c(fj) + c(ti) + c(si)

and for each v 6∈ {zj , yj , xj , yi, xi} it holds that costD
∗
(v) = costD

′
(v).

Since c(si) = c(sj) we have that

max
v∈{zj ,yj ,xj ,yi,xi}

costD
′
(v) ≤ max

v∈{zj ,yj ,xj ,yi,xi}
costD

∗
(v),

hence cost(D′) ≤ cost(D∗).
We can use an analogous argument to show that we can swap queries

in order to have an optimal decision tree where neither (ii’) nor (iii’)
holds. The resulting tree satisfies (i) and (ii) as desired. ut

By Proposition 3, we can assume that in the optimal decision tree
D for at least one leg of the spider the first edge queried is a tibia. In
addition, in D, there is a root to leaf path where first all femora not in F
are queried, then all tibiae in F , and finally all femora in F (see Fig. 3 for
a pictorial example). Then, the cost of such a decision tree is given by the
maximum of the cost of the above mentioned path (

∑
i/∈I 2ai +

∑
i∈I 3ai)

and the costs of the paths to the leaves on the legs, which either start
with a femur with index not in F (cost ≤ ∑

i/∈I 2ai + maxi/∈I ai + N)
or with a tibia with index in F (cost ≤ ∑

i/∈I 2ai +
∑

i∈I ai + N). This
last value is indeed attained for the leaf of the last leg starting with a
tibia. Using the fact that for all i, j we have ai < 2aj , this last value,∑

i/∈I 2ai +
∑

i∈I ai +N , is always greater than the cost for leaves on legs
starting with femora,

∑
i/∈I 2ai + maxi/∈I ai +N if m ≥ 4. Therefore, the

cost of the optimal solution is given by the following expression

OPT (S, c) = min
∅⊂I⊆[m]

max

{∑
i/∈I

2ai +
∑
i∈I

ai +N ;
∑
i/∈I

2ai +
∑
i∈I

3ai

}
.

Using N =
∑

i∈[m] ai, the two sums are equal if and only if
∑

i/∈I ai =∑
i∈I ai. Therefore OPT (S, c) ≥ 5

2

∑
i∈[m] ai and equality holds if and only

if
∑

i/∈I ai =
∑

i∈I ai, which is only possible if |I| = m/2 (recall that we
could suppose

∑
i∈I ai <

∑
i/∈I ai for any |I| < m/2). This is equivalent

to having a Balanced Partition of the numbers, so we have finished the
reduction.
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