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Search for the end of a path in the
d-dimensional grid and in other graphs
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Abstract

We consider the worst-case query complexity of some variants of certain
PPAD-complete search problems. Suppose we are given a graph G and
a vertex s € V(G). We denote the directed graph obtained from G by
directing all edges in both directions by G’. D is a directed subgraph of G’
which is unknown to us, except that it consists of vertex-disjoint directed
paths and cycles and one of the paths originates in s. Our goal is to find an
endvertex of a path by using as few queries as possible. A query specifies a
vertex v € V(G), and the answer is the set of the edges of D incident to v,
together with their directions.

We also show lower bounds for the special case when D consists of a
single path. Our proofs use the theory of graph separators. Finally, we
consider the case when the graph G is a grid graph. In this case, using
the connection with separators, we give asymptotically tight bounds as a
function of the size of the grid, if the dimension of the grid is considered as
fixed. In order to do this, we prove a separator theorem about grid graphs,
which is interesting on its own right.
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1 Introduction

This paper deals with the following search problem. We are given a simple, undi-
rected, connected graph G and a vertex s € V(G). We denote the directed graph
obtained from G by directing all edges in both directions by G’. Let D be a directed
subgraph of G/, which is the vertex-disjoint union of a directed path starting at s
and possibly some other directed paths and cycles. D is unknown to us, and our
goal is to identify an endvertex of a directed path. We may query a vertex v, and
as an answer, we learn the edges of D incident to v together with their directions.
In particular, if the answer is only one incoming edge then we know that v is an
endvertex. We analyze the minimum number of queries that are necessary in the
worst case.

We give lower bounds in the more restrictive model where we know D is one
directed path. Note that if instead of looking for an endvertex, we look for an
ending or a starting vertex of a path (different from s), then this model still gives
a lower bound for this easier problem. In section 4| we mention some additional
models.

Denote by h(G) the minimum number of queries needed to find an endvertex
in the worst case for any s € G. If we know that D is one directed path, denote
this quantity by hp(G).

To state some of our results we need to define separators of graphs. This notion
can be defined in two different ways and both definitions are widely used. Here
we distinguish between the two definitions.

Definition 1.1. 1. Given a graph G = (V, E), a subset S C V s called an
a-biseparator of G if V'\'S can be divided into two parts, A and B, such that
there are no edges between A and B, and both have cardinality at most a|V'|.

2. Given a graph G = (V, E), a subset S CV is called an a-multiseparator of
G if every connected component of V' \ S has cardinality at most a|V'|.

Note that A or B in the definition of a biseparator can be empty: we do not
require V' \ S to be disconnected.

Given these definitions, when we write separator, it can mean either a bisepara-
tor or a multiseparator, as in many cases it makes no difference. In the literature,
the notation f(n)-separator can also be found, where f(n) is an upper bound on
the cardinality of S in terms of the number n of vertices. In this paper it is more
straightforward to fix a and then look for the smallest a-separator. Therefore, we
let sP(G) be the minimum cardinality of an a-biseparator in G and s™(G) be the
minimum cardinality of an a-multiseparator in G.

It follows from the definitions that every a-biseparator is an a-multisepara-
tor, and thus s®(G) > s™(G). In many cases they are of the same order of
magnitude. In particular, a bound s7'(G) < O(n°) for some 0 < ¢ < 1 for a class
of graphs which is closed under taking subgraphs leads to the same asymptotic
bound on sP(@), by iteratively separating the smallest component. However, there
are cases when multiseparators are much smaller than biseparators. For example,
if G consists of three disjoint cliques of equal size, all connected to a degree-three
vertex, then sy7,(G) = 1 but 51131/2((;) = [n/6]. For any tree, s{),(G) = 1 but
it is not hard to show that for a complete ternary tree, s'fi/Q(G) = O(logn), see
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Appendix[A] Finally, if we consider a class of graphs closed under taking subgraphs,
by repeatedly refining the separation, it is obvious that then s'(G) and s (G) have
the same order of magnitude for any two constants o and «’.

Our main result establishes a connection between the biseparators and the
search complexity for general graphs.

Theorem 1.2. For any connected graph G with at least 2 vertices, we have
$5,(G) < hp(G) < h(G).

In fact, we can prove a slightly stronger version, for which we need the following
more refined variant of biseparators.

Definition 1.3. Given a graph G = (V, E) and a set of its vertices, T C V, a
subset S C V' is called an a-biseparator of T if T'\ S can be divided into two parts,
A and B, such that there are no edges between A and B, and |ANT| < a|T| and
IBNT| < o|T)|.

Denote the minimum cardinality of an a-biseparator of T in G by s%(G,T).
Denote by A(G,T) the minimum number of queries needed to find an endvertex
in the worst case for any s € GG if we know that the endvertex is in 7'. If we know
that D is one directed path, denote this quantity by hp(G,T).

Theorem 1.4. For any connected graph G and a set of its vertices, T with at least
2 vertices, we have s7),(G,T) < hp(G,T) < h(G,T).

We can prove an upper bound of the same order of magnitude, if every subgraph
has small multiseparators. Note that when bounding h(G), s”(G), the larger of
the separators, gives the lower bound and s (), the smaller one, gives the almost
matching upper bound, which implies that indeed for a large class of graphs s”(Q)
and s"(G) have the same order of magnitude.

Theorem 1.5. Let 0 < «, B < 1 be constants, let f be a monotone function, and

let G be a graph such that any subgraph H of G has an a-multiseparator of size at
most f(|V(H)|). If f(ax) < Bf(x) for all x > 0, then

(G < i) < L0V @D
1-p
The condition on f could be interpreted as having “at least polynomial growth”.
The condition is fulfilled by the function f(z) = const-z¢ if and only if ¢ > log,, 5.
To put it differently, if @ and ¢ > 0 are given, the theorem applies with g := a°.
We also study the search problem for the special case of grid graphs.

Definition 1.6. Let d be a positive integer and (nq,...nq) a sequence of posi-
tive integers. The d-dimensional grid graph of side length (nq,...ng), denoted by
Ga(ny,...ng), has vertex set XZ.{O, 1,2,...,n; — 1}, and there is an edge between
two vertices if and only if they differ in exactly one coordinate and the difference
is 1. If ny = ng = - -+ = ng, then we simply write G4(n).

We estimate the search complexity of grid graphs as follows.

Theorem 1.7. Q(n®'/v/d) < hp(Ga(n)) < h(Ga(n)) < O(nd).

3
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As a tool, we will prove a bound on the cardinality of separators of grid graphs,
using classic results from the theory of vertex isoperimetric problems and cube
slicing.

Theorem 1.8. The smallest 1/2-biseparator of the grid graph Gq(n) has cardinal-

ity s (Ga(n)) = O /Vd).

We note that when considering grid graphs, one could also study the related
problem that the path starting at s is monotone, i.e., if u and v are on the path and
u < v (according to the usual partial order of the vectors), then the edge between
uw and v (if it exists) is directed towards v. In this case the needed number of
queries reduces dramatically. Indeed, the trivial algorithm which follows the path
uses at most dn queries. In two dimensions we could improve slightly this upper
bound, yet there is a more significant improvement by Xiaoming Sun (personal
communication), who proved that 8n/5 queries are enough in two dimensions.
From below, at least n — 2 queries are needed regardless of d [6, Lemma 6]. This
problem resembles the pyramid-path search problem (but it is not exactly the
same), where also a lower bound of n is proved for the two-dimensional case [4].

Motivation

Hirsch, Papadimitriou and Vavasis [6] proved worst-case lower bounds for finding
Brouwer fixed points for algorithms using only function evaluation. They showed
a lower bound that is exponential in the dimension, disproving the conjecture that
Scarf’s algorithm is polynomial. In our language, they proved that if the path
in G4(n) is monotone from the bottom-left corner (with other vertices isolated),
then we need at least n — 2 questions (Lemma 6 in [6]). Furthermore, they have
implicitly proved a lower bound of Q(n9=2) for the general problem (Theorem 5
in [6]). Our paper is an improvement of their result, although we do not use the
continuous setting but rather focus only on the discretization of the problem.

Later, Papadimitriou [I0] considered similar complexity search problems in
great detail and defined corresponding complexity classes PPA, PPAD, etc. In
his model, an exponential-size graph is given by a succinct representation, i.e., by
the description of a Turing-machine T'. The vertices of the graph correspond to
binary sequences of length n and if we input such a sequence to T, it outputs all
the neighbors of the corresponding vertex in polynomial time (thus the degrees are
bounded by a polynomial). Therefore in his model instead of considering query-
cost, one can work with the classical running time of the algorithm that gets T" as
input. If the algorithm uses T as a black box, we get back the query-cost model.

Papadimitriou considered the special problem when the maximum degree of
the graph is 2, i.e., it consists of vertex disjoint paths and cycles and we are also
given, as part of the input, a degree-one vertex, s. In this case, our goal is to
output another degree one vertex. This search problem is denoted by LEAF and
is complete for the complexity class PPA (defined this way).

Another introduced variant is when the underlying graph is directed (7" outputs
both the in- and out-neighbors of its input in this case) and the in- and out-degree
of every vertex is at most one and we are given a starting vertex s with in-degree
zero and out-degree one. Here our goal can be either to output an in-degree
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one, out-degree zero vertex (called LEAFDS problem) or an in-degree plus out-
degree equals one vertex (called LEAFD problem). These problems are complete,
respectively, for the complexity classes PPADS and PPAD (defined this way).
It is easy to see that PPAD is contained in both PPA and PPADS, while an
oracle separation is known for the two latter classes [1].

Lately PPAD enjoys huge popularity, as several problems, among them find-
ing an e-approximate Nash-equilibrium turned out to be PPAD-complete. An
extensive list of PPAD-complete problems can be found on Wikipedia.

2 Upper bounds

Observation 2.1. Suppose that the connected components of G\ S are Y1,..., Y.
If every vertex of S has been queried, we know a Y; which contains an endvertex
(or that an endvertez is in S, hence already identified).

Proof. The answers clearly show how many times we enter and leave S from each
component Y;. If we enter a component Y; more times than we leave it, then
Y; must contain an endvertex. If there is no such component, the component
containing s must contain an endvertex. 0

This simple observation is crucial for our upper bounds and it does not hold
if the answers would contain only the edges leaving the queried vertex. However,
we mention that a similar observation also holds for the undirected version of the
problem, briefly discussed in Section sec:conclusion In this case, the endvertex is
in the component Y; which is connected to S by an odd number of edges, counting
an extra edge for the component of s.

Proof of Theorem 1.5 Let us choose an a-multiseparator Sy with [S1]| < f(|V(G)|)
which cuts G into parts Yi,...,Y%, and query all vertices of S;. By Observation
2.1l we know a part Y; which contains an endvertex. Let Gy be G restricted to Y
and choose an a-multiseparator Sy of size at most f(|V(G1)|), which cuts Gy into
parts Zy,..., 2.

Then S; U S, is a separator of G, which cuts it into parts Yi,..., Y, 1, Y41,
e, Y, 2y, ..., Z;. Thus, by again using Observation after asking every vertex
of S; U Sy we know which part Z; contains an endvertex.

After this we can continue the same way, defining G5 and asking S3, defining
(3 and asking Sy and so on, until an endvertex is in some S;. As |V(G;)| <
a|V(G;-1)| for any j, one can easily see that [V (G,)| < o?|V|. By the assumptions
on f, f(IS;]) < f(IV(G-)]) < f(@?HV]) < p77Hf(|V]). Altogether at most
S VD) < F(IVI)/(1 = B) questions were asked. O

A celebrated theorem of Lipton and Tarjan [7] states that planar graphs have
2/3-separators of size at most v/8 - \/|V]. Thus we have the following corollary.

Corollary 2.2. If G is planar, then h(G) = O(\/|V).

Now, let us look at d-dimensional grid graphs. Miller, Teng and Vavasis [§]
introduced the so-called overlap graphs for every d and proved that every member
G of the class has separator of size O(|V (G)|(4=1)/4). They mention that any subset
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of the d-dimensional infinite grid graph belongs to the class of overlap graphs.
The polynomial function f(z) = ca(@1/? satisfies the assumption of Theorem .
Since |V (G4(n))| = n?, this implies that h(G) = O(n®"!). Here we show that the
multiplicative constant is less than 3.

Theorem 2.3. h(G4(n)) < (24 z=—)n" .

Proof. We follow the proof of Theorem but the cuts we use are always axis-
aligned hyperplanes, which cut the current part into two smaller grid graphs.
More precisely, for any ¢ let 7 =imod d, 0 < 57 < d — 1; now §; is a hyperplane
perpendicular to the j** coordinate axis, and it cuts G;_; into two parts of size
at most |V (G;-1)|/2. One can easily see that this is possible and |S;41] < [5;|/2,
except if j = 0, in which case |S;;1| < |9;]. This means that there are at most

n 14+ 1/241/4+ . 4 1/29D (1 + 1720 172200 )

1 1
d—1 -1 _ d-1
<n"H(2-1/2 )1_1/2d_1—n (2+2d_1_1)

queries. O

3 Lower bounds

Before proving Theorem which claims that any 1/2-separator in the grid graph
Gg4(n) has cardinality Q(n?!/v/d), we present a slightly weaker result, as it has a
short proof not using results from the theory of isoperimetric problems.

Claim 3.1. Any a-multiseparator in the grid graph G4(n) has cardinality at least
(1 —a)n®t/d for a > 1/2.

Proof. We use induction on d. The claim is trivial for d = 1. Let us denote by S
an a-multiseparator.

Let us choose an arbitrary axis, and denote by £ the n¢~! parallel lines in
the grid which go in that direction. Let £ C L be the set of those lines which
intersect S. Note that every other element of £ contains vertices only from one
component of G\ S. If [£/| > (1 — a)n?!/d, then we are done. Hence we can
suppose |£'| < (1 — a)n?~1/d.

Elements of £’ cover less than (1 — a)n?/d points, hence for any component C'
of G'\ S, the other components together contain at least ((1—a)d — (1 — a))n?/d
vertices, which are not covered by elements of £'. This means that there are at
least (1 — a)(d — 1)n?"!/d elements of £ which contain only vertices not in C.
Now consider a hyperplane in the grid, orthogonal to the direction of the lines of
L, and denote by H the vertices of G4(n) that belong to the hyperplane. Clearly,
H contains at least (1 — «)(d — 1)n?"!/d elements not in C, hence S NH is an
o/-multiseparator of H (with o/ :== 1 — (1 — a)(d — 1)/d) and so we can apply
induction on each of these (d — 1)-dimensional hyperplanes.

By induction, there are at least (1 — a)(d — 1)n®2/d(d — 1) elements of S
in every such hyperplane, which gives at least n(1 — a)n¢=2/d = (1 — a)n?1/d
elements in total. O
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Before proving the stronger version of this result, we need to introduce some
notations and results.

Let A be an arbitrary set of vertices. The set of vertices that are not in A,
but are connected to some vertex of A is called the boundary of A, denoted by
0A. Following the notations of Bollobds and Leader [2], we define an order on the
vertices, the simplicial order, by setting = < y if > x; < D>y, or dox; = >y,
and for some j we have z; > y; and x; = y; for all ¢ < j. This coincides with the
lexicographic order according to the vector (> x;, —x1, =2, ..., —x,).

Theorem 3.2 (Bollobds and Leader [2]). In G4(n), among sets of vertices of a
given size, the initial segment of the simplicial order has the smallest boundary.

The special case n = 2, i.e., the hypercube, was previously treated by Harper
[5], while the unbounded case of n = oo was solved by Wang and Wang [13].
We note that in the paper of Bollobas and Leader the definition of boundary is
different: they also include A in 0A.

We will also need some results about the volume of slices of a cube, i.e., inter-
sections of the cube with specific hyperplanes. For a contemporary approach to
this area we refer to [I4]. In the next theorem H?(t) denotes the following set in
the d-dimensional unit cube I%: H(t) = {z € I? | S x; = t}; Vol; denotes the
i-dimensional volume of some set of dimension .

Theorem 3.3 ([12, [14]). limg_,o Volg_1 (H4(d/2 + sVd)) = \/56_682, for each
fized s.

Let Ly denote the k-th layer of G4(n): the set of all vertices in G4(n) whose
coordinates sum to k. The layer range from 0 to (n — 1)d. We define the size of
the “middle-most” layers Z,, ; by

A | L(n-1ya-1)/2] = |L(n-1)a+1)/2l; for (n —1)d odd,
" min{| Lo —1ya/2—1]s [ Ln—1)a/2|, | Ln-1)ds2+1|}, for (n —1)d even.

max . {|L((n—1)d—1)/2| = |L((n-1)a+1)/2| = Zn,a, for (n—1)d odd,
nd T

| L(n—1)d/2]; for (n — 1)d even.

In the even case, we actually know that the middle level L,_1)4/2 is the largest
of the three levels in the definition of Z,, 4, as the levels decrease symmetrically in
size from the middle to the ends [3]. From discretizing the above theorem, one can
obtain the following bound on Z, 4. Its proof can be found in Appendix @

Corollary 3.4. For every d, there exists a constant Cy such that

Zpg=Cq/Vd-nt +0(n??) and
mX = Cy/Vd 0" £ 0(n?).

Cq — \/6/7 as d — oc.

Now we are ready to prove Theorem [1.§
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Proof of Theorem[1.8 We start with the lower bound. Let us denote by S a 1/2-
biseparator which separates the vertex set A and B (such that V.= AUBUYS). If
|S| > Z,,.4 we are done. Thus we suppose that |S| < Z, 4. Denote by A’ the vertex
set of size |A| which is an initial segment of the simplicial order. By Theorem
we know that |S| > [0A] > |0A].

By the definition of the simplicial order, A’ is contained in the union of two
successive layers k and k+ 1: 0A" = PyU Py, where P C Ly and Py C Ly,,. First
we claim that k£ must be very close to the middlemost layer. More precisely, if nd
is odd, we can assume k = "dQ_l, and if nd is even, we can assume k = %1 —1or
k=nd

V\?e treat only the odd case, the even case being similar. First, we show that

A’ must reach at least level k = %. If A’ were disjoint from L, we would get

Al + 18] = [A] 4 1S] < A + Zua = |A'U L] <n?/2,

since the last set contains only vertices in the lower half of the levels. This con-
tradicts the requirement fact that A U .S must cover at least half of the vertices.
Secondly, if A" would contain vertices of level k+1, it would contain more than the
levels 0,1, ...,k which make up half of all vertices. This is again a contradiction
to the 1/2-biseparator property.

By the definition of Z, 4, we have now established that each of the two central
layers Ly and Ly, contains at least Z, 4 points. To conclude the proof, we show
that the separator A’ which is contained in the two layers L and L1 must have
size at least Z, 4 — O(n%2). If a vertex v = (x1,...,24) of Ly, is not in P, then
the adjacent vertex v~ defined by v~ = (z1,... 241,24 — 1) must be in P; unless
it is not a point of the grid G(n,d) (i.e., x4 = 0):

(L1 \ P2)” NG(n,d) C Py
Since the number of vertices of Ly, for which 24 = 0 is O(n¢2), we obtain
|Lia| = [Po] = O(n"2) < [Py,

from which the bound |0A'| = |Py| + | Py| > Z,.a — O(n?™?) follows.
For the upper bound, we simply take the central layer L|,—1)q/2) of size ZJ7*
as a biseparator. O

Now we are ready to prove Theorem H, that s",(G,T) < hp(G,T).

/2
Proof of Theorem[1.] Let @ denote the vertices that have been queried so far
in the algorithm. We will show that the adversary can achieve that after the
other end of the path is found, @ becomes a 1/2-biseparator of T'. The adversary
maintains a component C' of V — @, see Figure [l C is the set of vertices which
can possibly be the endvertex of the path. The greedy strategy of the adversary
is to always answer in a way to keep C' as large as possible. In addition to C, the
adversary maintains a path P between s and some vertex p € C', which will be
part of the final path and for which P N C' = {p}. The remaining components of
V — @ are partitioned into two sets V' \ (Q U C') = AU B such that there are no
edges between A and B, and |[ANT| < |T|/2 and |[BNT| < |T|/2. The adversary
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Figure 1: A schematic drawing of the situation maintained by the adversary. The
queried vertices, (), are marked by squares.

Figure 2: Updating the set C' after a query ¢

can reveal all these data as free additional information. Initially, C' =V, p = s
and Q =A=DB=1.

The strategy is the following. We can suppose that the queried vertex, ¢, is not
in @, as that would give no new information. If ¢ € P\ {p}, the adversary answers
by reporting the ingoing and outgoing edge of P at that vertex. If ¢ ¢ C'U P, then
the answer is that “the path does not pass through this vertex.” In these cases,
no new information is gained. The vertex p, the set C', and the path P remain
unchanged, the only change is that ¢ is moved from AU B to Q.

Let us now look at the case g € C. Let C'\ {¢q} = Dy U Dy U---U D,, be the
partition of C'\ {¢} into m > 1 connected components. The adversary chooses the
component whose index is argmax; |D; N 7|, and will answer in such a way that
the new set C' becomes C™*V = D).

Therefore, if C™V contains p, the answer is again “the path does not pass
through this vertex,” see Figure [2h. The current endpoint p and the path P are
unchanged. If C™" does not contain p (including the case ¢ = p) then choose
p"™ € C™" to be a neighbor of ¢, see Figure 2p. As ¢ was a possible endpoint of
the path before this step, there is a path P™" from p to ¢ which lies in C'\ C™*".
The adversary uses P*" and the edge ¢gp™" to extend the path P to a longer path
PV (This is the only case when the path is updated.) The adversary reports
the last arc of P™" as the ingoing arc at ¢ and ¢p™®" as the outgoing arc.

To maintain the invariant that [ANT| < |T]/2 and |[BNT| < |T|/2, we go
through the components D; # C™" and add them either to A or to B (to eventually
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obtain A" and B"*V), depending on whether |[ANT| or |BNT| is smaller. If, for
example, |[ANT| < |BNT|, then |[ANT |+ |D;NT| < |BNT|+|C"*NT| < |T|/2
as A, D;, B, C™" are disjoint. Therefore, the invariant is maintained.

The algorithm can only identify ¢, the end of the path, when |C'NT'| becomes 1.
By assumption, the graph T has at least two vertices and is connected, and there-

fore Q # (). Thus, at this point,
min{[ANT][BOT} < [(VAT)\ (QUO)/2 < (T —1—1)/2 = [T]/2— 1.

We can now add the singleton set C' = {t} to whichever |[ANT| and |B N T is
smaller without exceeding the size bound |V|/2. The set @ of queried vertices
forms thus a 1/2-biseparator. O

Corollary 3.5. hp(Gy(n)) = Q(n1/Vd). O

Theorem summarizes the above results. The lower and upper bounds are
quite close. Specifically, if we consider d as fixed, then the theorem gives exact
asymptotics in n for the needed number of queries.

4 Concluding Remarks

Here we mention three more variants of the problem.

In the first variant, could consider any directed subgraph of G’ and a vertex s
with larger out-degree than in-degree. In this version there is a vertex with higher
in-degree than out-degree, our goal is to find such a vertex. All of our algorithms
work in this case, and obviously the same lower bounds hold.

In the second variant, D consists of directed paths and cycles, but we also
assume that they cover every vertex. This is a special case of our model, hence
the upper bounds hold. However, a lower bound similar to Theorem is not
plausible, as there are graphs that have only big separators, yet there are only a
few valid choices for D. For example if G contains a vertex of degree one, different
from the source, then this vertex must be the endvertex. But in case of grid graphs
we can show that the additional assumption on D does not make the problem much
easier.

Denote by hy(G) the minimum number of queries needed to find an endvertex
in the worst-case for any s € G. Now we show how to give a lower bound for
hy(Ga(n)). Let us suppose we are given an 11 X 3 X 13 X -+ - X 14 grid graph G.
Then let G** denote the 47 X 4ry X rg3 X - -+ X r4 grid graph.

Theorem 4.1. Let G be a grid graph. Then hp(G) < hy(G*Y).

The proof of this theorem can be found in Appendix [C]

One can easily see that if 4 divides n and G is the n/4 x n/4 xn x --- xXn
grid graph, then G4(n) = G**. We need a lower bound on the size of separators
in G. It is easy to see that if we replace every vertex of G by 16 vertices to get
Gq4(n), an a-separator is replaced by an a-separator, hence the same lower bound

of Q(n*'/+/d), divided by 16, holds for G.
Corollary 4.2. Q(n?'/Vd) < hy(Gy(n)) < O(nd1).

10
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In the third variant, D is undirected. Our goal is to find another endvertex
and the answer to the query is the at most two incident edges. Obviously, this
is a harder problem than the directed variant. Hence our lower bounds hold, and
one can easily modify our proofs (see comments after Observation to get the
same upper bounds as well.

Finally, a straightforward application of our proofs gives the asymptotics to a
question recently asked on MathOverflow [9], which is the following. Given a path
P, from the bottom-left vertex of an n x n grid to its top-right vertex, and another
path P, from its top-left vertex to its bottom-right vertex, how many queries are
needed to find a vertex contained in both paths? The proofs of Theorems and
can be adapted to show that ©(n) queries are necessary and sufficient.
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A Biseparators for Ternary Trees

We show that a rooted ternary tree with £+ 1 complete levels has 5'101/2((}) = O(k).
Any root-to-leaf path is a 1/2-biseparator, establishing the upper bound. Let us
turn to the lower bound. A complete ternary tree of height h has n = (3"*1 —1)/2
vertices. It is convenient to give each vertex a “weight” of 2. The total weight of
the tree becomes 2n = 3! — 1, which is very near to a power of 3. In ternary
notation, 2n = (22...2)3 with k twos, and the ideal weight for the halves of the
biseparator is 2n/2 =n = (11...1)3.

After removing a separating set, any union of components of the complement
can be represented as a sum and difference of subtrees. Here, by a subtree we
mean a node together with all its descendents. If the separator has s nodes, we
must be able to group the resulting components into a set that has between n/2—s
and n/2 nodes, i.e., weight between n — 2s and n. Each separator node creates at
most four new subtrees from which the sum and difference can be formed: its own
subtree and the three children subtrees. (These latter ones exist only if the node
was not a leaf.) So with s separating nodes, we get 1 + 4s subtrees from which to
form the sum and difference. Each tree has a weight of the form 3" — 1.

If we take a sum and difference of L < 4s + 1 subtrees we must fulfill the
inequality

L
n—2s <Y (£(3"-1)) <n,
=1

which implies

L
n—28—L§Z(:t3h")§n+L
i=1

and
L

n—6s—1< (£3") <n+4ds+ 1.
i=1
For any number p in the range n—6s—1 < p < n+4s+1, the ternary representation
starts with at least k — 1 — [logs(6s+ 1)] ones. On the other hand, one easily sees
by induction that a sum and difference of L powers of 3 has at most L ones in its
ternary representation. We thus get the relation 4s+1 > L > k—1—[log;(6s+1)],
from which s > Q(k) follows. O

12
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B Proof of Corollary

We show that for any fixed 6 > 0 (and then by symmetry for every § < 0 too),
whenever (n — 1)d/2 + § is an integer,

|L(n—1)d/2+6| = Cd/\/a pt 4 O(’nd_Q).

We define Cy = Voly_; H%(d/2), i.e., the volume of the middle slice of the unit
hypercube. Setting s = 0 in Theorem establishes the convergence of Cy; to
6/

The layer Ly, for k = (n —1)d/2 + 4, is a discrete version of a slice of a cube.
If we fix the first d — 1 coordinates then there is at most one vertex in L; that has
these first d — 1 coordinates. Thus |Lg| = |L}|, where L} is the projection of Ly
along the last axis.

To estimate the size of L) (and thus of L) take first the middle slice H%(d/2)
of the continuous unit cube and project it to the first d — 1 coordinates, yielding
the polytope H%(d/2)'. As the normal vector of the slice is (1, 1,..., 1), projecting
it to the hyperplane orthogonal to the last axis scales the volume by a factor of
1//d:

Volg_y HY(d/2)" = Volg_y HY(d/2)/Vd.

Now let H(d/2)" = nH%(d/2), i.e., we blow up H%(d/2)" by a factor n. Let
M be the set of grid points in this H%(d/2)". As for fixed d, H%(d/2)" is a factor-n
blow up of some fixed (d — 1)-dimensional convex polytope, the difference between
its volume and the number of grid points in it is O(n?"2) (this follows basically
from the definition of the volume, for details see e.g., Proposition 4.6.13 in [I1]),
thus

|M| =n%"'Volg_1 H(d/2)' + O(n®?) =
= 4 Voly_y HY(d/2)/Vd + O(n?=2) = Cy/Vd - n? + O(n®?).

Now we are left to show that |L}| = |M| + O(n¢"2). For that it is enough to
show that |L, \ M| and |M \ L} | are O(n?=2). For all of these points the sum of
the d — 1 coordinates is equal to (n — 1)d/2+1i (resp. (n—1)d/2 —n+1i) for some
0 < i < §. This is O(n92) points for every i, altogether 200(n4=2) = O(n¢=2?)
points, which finishes the proof. m

C Proof of Theorem 4.1

Suppose we are given a grid graph G and an Algorithm A which finds ¢t in G**
in case one path and some cycles cover every vertex. We show an Algorithm B
which finds the endvertex in GG in case there is only a directed path. We can
naturally identify every vertex of G with a 4 x 4 grid in G**: the vertex v =
(11, ...1q) corresponds to the axis-parallel 4 x 4 rectangle (we call it a block) B(v)
having 16 vertices, whose two opposite corners are (4i; — 3, 4iy — 3,13, ...14) and
(414,419, 13, .. .1q). We call (4iy — 3, 4io— 3,13, ...1q) and (4iy, 4ia, i3, . .. 14) the even
corners and the two other corners (4i; — 3, 4ig, i3, ...14) and (4iy, 4is — 3,13, ...1q)
the odd corners.
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Consider a directed path P in G. We call a system of a directed path and some
directed cycles in G** good if they cover every vertex and the path goes through
exactly those blocks which correspond to the vertices of P, in the same order.

Now we construct good systems. If a vertex v € V(G) is not on the path, we
cover the corresponding block by a cycle. In case of a vertex v = (iy,...,74) on
the path in G, the directed path arrives at the corresponding block B(v) in some
corner p;(v), and goes straight to a neighboring corner py(v), where it leaves. The
remaining vertices form a 4 x 3 rectangle, which can be covered by a cycle. Finally,
when v is the very last vertex on the path, we define p;(v) similarly, and cover the
remaining vertices by a path starting in p;(v).

Our good systems will satisfy an additional property. If for a vertex v =
(11,...1q) in G 2?23 i; is even, then the first vertex p;(v) of the path in the
corresponding block is an even corner, and the last vertex ps(v) is an odd corner.
In case Z;.l:3 i; is odd, it is the other way round. Note that if it is true for B(s), it
has to be true for every other block as well. Indeed, when the path leaves a block
at, for example, an odd corner, it either moves in one of the first two dimensions
(then it arrives to an even corner, and 2523 i; does not change), or in another

dimension (then it arrives to an odd corner, but the parity of 2?23 i; changes).

Note that these properties do not uniquely determine the system. We will
incrementally determine the graph as queries arrive.

Now we are ready to define Algorithm B. At every step we call Algorithm A,
and then answer such a way that at the end we get a good system. If Algorithm
A would query a vertex v in G**, Algorithm B queries the corresponding vertex v’
in G instead (i.e., the vertex v with v € B(v’)). Using the answer for this query,
we choose all the edges incident to vertices of B(v') and answer to Algorithm A
according to this. If ¢’ has been asked before, we have already determined the
edges in B(v'), and answer accordingly. Suppose that v has not been queried
before. In case the answer is that v is not on the path, choose an arbitrary cycle
covering the vertices of the corresponding block B(v') and answer according to the
edges incident to v.

In case the answer gives two arcs uv’ and v'w, we have to choose the entering
vertex pi(v') and the exit vertex po(v'). We will discuss this choice below. This
choice will define 5 edges on the path and a cycle of length 12. One edge connects
the blocks corresponding to w and v, leaving the last vertex of the path in B(u)
and arriving at the first vertex of the path in B(v'), i.e., this edge is po(u)p;(v').
Similarly we add the edge po(v")p1(w). We also add the three edges which connect
p1(v') and po(v'). Finally we cover the remaining 12 vertices with a cycle.

We still have to tell which one of the two possible first vertices we use as p;(v'),
and similarly for the possible last vertices. If po(u) has already been determined,
this fixes the choice of p;(v') as the vertex adjacent to it. If uv’ is parallel to one of
the first two axes, this also reduces the choice of the corner p;(v’) to one possibility.
Otherwise we pick p;(v’) arbitrarily among the two choices. The exiting vertex
pa(v') is determined analogously.

Even if Algorithm A would know all answers in B(v'), it does not give more
information than what Algorithm B knows after asking v'. Algorithm A does not
finish before Algorithm B finds the end vertex, thus Algorithm A needs at least
as many queries as Algorithm B (on the respective graphs), which finishes the
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