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composite plates using
second-order shear
deformation theory
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Abstract

The second-order shear deformation theory is used in this study to calculate the stresses and the energy

release rates in orthotropic composite plates. A novel double-plate system is utilized with the imposition

of the proper kinematic constraints in the interface plane of a double-plate system. The governing equa-

tions of the system were derived and as a demonstrative example a simply-supported plate subjected to a

point force was analyzed. Using Lévy plate formulation, the plate problem was solved by a state-space

model, incorporating four different regions. The distribution of the stress resultants and the interlaminar

stresses in the uncracked part were also determined. Moreover, the distributions of the mode-II and

mode-III energy release rates along the crack front were calculated by the J-integral. The 3D finite element

model of the plate was created providing reference data for the analytical model. The results show

reasonably good agreement between the analytical and numerical results. Also, the present model elim-

inates the physical inconsistency of previous models and reveals that under mixed-mode II/III condition,

the energy release rate is not contributed by the bending, twisting moments and shear forces at all.

Keywords

Laminated plate, delamination, J-integral, mixed-mode II/III fracture, second-order plate theory, interface

constraint

Introduction

Nowadays laminated composite materials play a very significant role in the industrial practice as
well as in the scientific life. The numerous application fields (e.g.: bodywork construction, cars,
airplanes and aircrafts) show that the development of these heterogeneous materials continues
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András Szekrényes, Department of Applied Mechanics, Budapest University of Technology and Economics, Budapest, Mu
00

egyetem

rkp 5., Building MM, H-1111, Hungary.

Email: szeki@mm.bme.hu



probably very intensively in the future. One of the many damage modes of composites (Oskay
and Pal, 2010) is interlaminar fracture or delamination (Anderson, 2005; Lundmark and Varna,
2011; Nagarajan et al., 2012). The resistance against the delamination under static and cyclic
(e.g., Gornet and Ijaz, 2011) loading is characterized by the energy release rate (ERR). The
basic concept of the linear elastic fracture mechanics (LEFM) is that the crack initiates/propa-
gates if the critical energy release rate (CERR) is reached in the material (Anderson, 2005).
The three basic fracture modes are the mode-I (opening), mode-II (in-plane shear) and mode-
III (anti-plane shear). Under these fracture modes, the CERR is determined through standard
or nonstandard test methods. Apparently, the major part of the literature deals with mode-I
(e.g., Jumel et al., 2011; Peng et al., 2011), mode-II (e.g., Argüelles et al., 2011; Plain and
Tong, 2011; Wang and Qiao, 2004a) and mixed-mode I/II (e.g., Davidson and Sundararaman,
1996; Plain and Tong, 2011; Reeder and Crews, 1990) fractures. However, during the last
decades more and more attention was favored to the mode-III fracture (Browning et al.,
2010, 2011; Lee, 1993; Li and O’Brien, 1996; Mehrabadi and Khosravan, 2013; Szekrényes,
2009a). In contrast, the investigation of the mixed-mode I/III (Pereira and de Morais, 2009;
Szekrényes, 2009b), II/III (de Morais and Pereira, 2008; Kondo et al., 2010, 2011; Mehrabadi,
2012; Miura et al., 2012; Suemasu et al., 2009, 2010; Szekrényes, 2007, 2012a) and I/II/III
(Davidson and Sediles, 2011; Davidson et al., 2010; Szekrényes, 2011) delamination fracture of
composite materials is related only to the 21st century. The first attempts include beam and
plate specimens. These tests work more or less fine, however, much more effort is necessary to
develop so simple and effective test methods like those for mode-I and mode-II. Compared to
mode-I and mode-II, the mode-III fracture involves significant difficulties: pure mode-III frac-
ture does not exist; the geometry of the samples is also a critical point. Beam specimens are in
general very stiff, plate-like specimens are much more difficult to manufacture.

Independently of the fact whether we use beam or plate-like specimens, an analytical solution – in
general – makes the data reduction relatively simple. For beam-like specimens many improved
models have been developed (e.g., Jumel et al., 2011; Wang and Qiao, 2004b; Yazdi and
Rezaeepazhand, 2012) based on elastic foundation beams, crack tip shear deformation and similar
considerations. For plates the analytical solution is much more difficult to obtain (Sriram and
Armanios, 1993; Tian and Fu, 2010): such solutions exist only for some relatively simple systems,
like the edge crack torsion (ECT) specimen that involves simple loading conditions and analytical
solution (de Moura et al., 2009; Lee, 1993). In the last few years, several plate-like specimens were
developed for the mode-III (de Morais and Pereira, 2009), mixed-mode I/III (Pereira and de Morais,
2009) and II/III (de Morais and Pereira, 2008) fracture testing of laminated composite materials.
Without any exception the data reduction is always made by the finite element (FE) method incor-
porating the virtual-crack closure technique (VCCT) and cohesive zone model (CZM) applications
(e.g., Omiya and Kishimoto, 2010). For delaminated plates, Davidson et al. (2000) applied shell
elements to calculate the ERRs in plate-like structures, Sankar and Sonik (1995) performed similar
computations. The crack tip force method (CTFM; Park and Sankar, 2002) is a similar solution to
the VCCT, utilizing the crack tip forces to calculate and separate the ERRs. However, its result does
not differ from that of a VCCT analysis. The main problem of the FE models is that a 3D model
is necessary to construct and the VCCT is not available as a built-in command in most of the
FE packages.

The main aim of this paper is to present the application of second-order plate theory (SSDT) to
analyze delaminated plates and to eliminate the physical inconsistency of previous beam and plate
solutions. Wang and Qiao (2004a, 2004b), Qiao and Wang (2004), Qiao and Chen (2011) and Chen
(2011) applied several flexible joint models mainly for beams. The continuity of the displacement
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along the interface of a double beam system was ensured by considering the interface peel and shear
stresses. This model was successfully applied to fracture and vibration problems too (Qiao and
Chen, 2012), although its physical inconsistency is evident. First, the interface shear compliance is
defined arbitrarily to obtain acceptable results. Moreover, the basic equations of Euler-Bernoulli or
Timoshenko beams are utilized, but in the displacement field a second-order term is assumed apart
from the constant and linear one. This model does not conform to the basic equations of the Euler-
Bernoulli and Timoshenko beams; furthermore, a contradiction takes place when we apply the
equations of linear elasticity. The flexible joint model was later extended to analyze delaminated
plates (Szekrényes, 2012b, 2013), although its extension to asymmetrically delaminated plates
is limited.

In this work, the SSDT (Khdeir and Reddy, 1999) is utilized to develop a mechanical model for
the fracture of delaminated orthotropic composite plates with symmetrical lay-up and straight
delamination front. First, the displacement field is formulated by imposing the interface constraints.
Second, the basic equations of linear elasticity are applied to derive the strain and stress fields in
elastic orthotropic composite plates. The present formulation does not incorporate arbitrarily
defined parameters and it is shown that the developed model is physically consistent with the
equations of linear elasticity. As an example a simply-supported plate subjected to a point force
is analyzed applying the state-space model (Reddy, 2004). The distribution of the interlaminar
stresses is calculated, moreover, the J-integral (Cherepanov, 1997; Rice, 1968) is utilized to deter-
mine the distribution of the mode-II and mode-III ERRs along the crack front. A FE model is also
created and the numerical results are compared to those obtained from the analytical model. The
good agreement obtained shows the usefulness of plate theories with convenient interface constraints
in the delamination analysis.

Second-order plate theory – general formulation

The plate theory presented in this section is utilized to capture the displacement and stress fields in
the delaminated portion of an elastic laminated orthotropic plate with symmetric lay-up
presented in Figure 1. The thickness of the top and bottom plates is t. The assumed displacement

(a) (b)

Figure 1. Deformations of the top and bottom plate elements.
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field based on SSDT for elastic plates can be written as (Khdeir and Reddy, 1999; Shahrjerdi and
Mustapha, 2011):

utopðx, y, zÞ ¼ u0ðx, yÞ þ �xðx, yÞ � zþ �xðx, yÞ � z
2

vtopðx, y, zÞ ¼ v0ðx, yÞ þ �yðx, yÞ � zþ �yðx, yÞ � z
2

ð1Þ

for the top plate element of the delaminated portion in Figure 1(b), and:

ubotðx, y, zÞ ¼ �u0ðx, yÞ þ �xðx, yÞ � z� �xðx, yÞ � z
2

vbotðx, y, zÞ ¼ �v0ðx, yÞ þ �yðx, yÞ � z� �yðx, yÞ � z
2

ð2Þ

for the bottom plate element of the delaminated portion in Figure 1(b). It should be mentioned
that the SSDT applies unsymmetrical distribution for the in-plane displacements u and v over
the plate thickness of the delaminated plate portions. In this paper, only mixed-mode II/III prob-
lems are considered, i.e. the crack opening is zero. Therefore, the transverse deflection, w¼w(x,y),
is the same for both the top and bottom plates. Applying the basic equations of linear elasticity
(Chou and Pagano, 1967) for an orthotropic plate we obtain the strain and stress fields, then by
integrating the stresses over the thickness the stress resultants in terms of strains and shear strains
become:

Nf g

Mf g

Lf g

8>><
>>:

9>>=
>>; ¼

½A� ½0� ½D�

½0� ½D� ½0�

½D� ½0� ½F�

2
664

3
775
f"ð0Þg

f"ð1Þg

f"ð2Þg

8>><
>>:

9>>=
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Q
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( )
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" #
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( )
ð3Þ

where {N}T¼ {Nx, Ny, Nxy} is the vector of in-plane normal and shear forces, {M}T¼ {Mx, My,
Mxy} is the vector of bending and twisting moments, {Q}T¼ {Qx, Qy} is the vector of shear forces,
furthermore {L}T¼ {Lx, Ly, Lxy} and {R}T¼ {Rx, Ry} are the vectors of higher order stress result-
ants (Khdeir and Reddy, 1999; Shahrjerdi and Mustapha, 2011). The stress resultants can be
calculated from the integration of the stresses in the through-thickness direction (Reddy, 2004):

N��

M��

L��

8><
>:

9>=
>; ¼

Z t=2
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���

1

z

z2

8><
>:

9>=
>;dz,
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��z
1

z

( )
dz ð4Þ

where � and � take the symbols x and y. The stiffness parameters are defined as (Kollár and
Springer, 2003; Reddy, 2004):

Aij,Dij,Fij ¼
XNl

k¼1

Z zkþ1

zk

C
ðkÞ

ij ð1, z
2, z4Þdz ð5Þ
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where the coordinates zk and zkþ1 give the position of the kth layer. In Figure 1, the relevant
coordinates are indicated. The vectors of strains including constant, linear and quadratic terms
are written as (Reddy, 2004):
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�xy
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where:
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and:
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Formulating the total potential energy for the elastic plate subjected to transverse load and deriving
the Euler-Lagrange equations, we obtain the equilibrium equations of the second-order plate in the
following form (Shahrjerdi and Mustapha, 2011):
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where Aij, Dij and Fij are stiffness parameters and q¼ q(x,y) is the external load of the plate.

Second-order plate theory with interface constraint

The second-order plate theory utilized in this section is based on an assumed displacement field
including an interface constraint to formulate the model of the uncracked region of a delaminated
orthotropic composite plate. The mathematical form of in-plane displacement components are the
same as those given by equations (1) and (2), however we have to ensure the displacement continuity
between the top and bottom plate elements, as it is shown by Figure 1. The interface constraint
equations of the uncracked portion are:

utop
��
z¼�t

2

¼ ubotjz¼t
2
, vtop

��
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2
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2

ð16Þ

These conditions make it possible to express �x and �y in terms of the remaining parameters:
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Taking these back into equations (1) and (2), we obtain the displacement field satisfying the
interface constraint conditions:

utopðx, y, zÞ ¼ u0 þ �x � z�
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For the bottom plate, similar expressions can be derived. Due to the symmetric lay-up with
respect to the x � y plane, we analyze only the top plate in the sequel. Based on equation (18),
the strains and shear strains become:
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and:
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moreover:
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where c1¼ 4/t2. The system of equilibrium equations consists of only five equations in this case:
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Calculating the stress resultants (given by equation (3)) in terms of the basic parameters of the
displacement field and taking them back into the equilibrium equations (equations (22)–(26)), the
following system of equations is obtained:
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c1
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where the coefficients depend on the stiffness parameters and the thickness of the plate, and are
collected in Appendix 1. It is important to highlight that the reference plane of the top and bottom
plates of the uncracked portion are the individual midplanes (see Figure 1), and consequently the
stiffness parameters in equation (5) for the delaminated and uncracked plate portions are the same.
The different deformation of the two portions is included through the interface constraint conditions
in equation (16).

In the next section, we solve a simply-supported plate subjected to a point force by the state-space
model. The displacement and stress fields are calculated and the J-integral is utilized to calculate the
energy release rate distributions along the crack front.

Example – simply-supported plate, Lévy plate formulation

In this section, we apply the state-space model (Reddy, 2004) to solve the system of equations for a
delaminated plate subjected to a point force, shown by Figure 2. The governing partial differential
equation (PDE) system is different for the delaminated and uncracked parts; therefore, the state-
space models are developed separately.

Figure 2. Simply supported plate subjected to point force.
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Delaminated portion

In accordance with Lévy plate formulation, the displacement components and the external load for
simply-supported second-order plates (Khdeir and Reddy, 1999) can be written as:

u0ðx, yÞ

v0ðx, yÞ

�xðx, yÞ

�yðx, yÞ

�xðx, yÞ

�yðx, yÞ
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, q ¼
X1
n¼1

Qn sin �y ð32Þ

Taking these solutions back into the system of governing equations of the delaminated portion
(equations (9)–(15)), we can derive the state-space model, in general form it becomes:

Z0ðd Þ ¼ Tðd ÞZðd Þ þ F ðd Þ ð33Þ

where the superscript ‘‘(d)’’ refers to the delaminated plate portion and Z is the state vector:

Zðd Þ ¼ U0n U00n V0n V00n Xn X0n Yn Y0n Txn T0xn Tyn T0yn Wn W0n
	 
T

ð34Þ

moreover, T is the system matrix, F contains the inhomogeneity of the governing PDE system,
respectively. In an expanded form equation (33) becomes:
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T00xn
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6666666666666666666666664

3
7777777777777777777777775

¼

0 1 0 0 0 0 0 0 0 0 0 0 0 0

k1 0 0 k2 0 0 0 0 k3 0 0 k4 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 m1 m2 0 0 0 0 0 0 m3 m4 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 n1 0 0 n2 0 0 0 0 0 n3
0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 p1 p2 0 0 0 0 0 p3 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

r1 0 0 r1 0 0 0 0 r3 0 0 r4 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 s1 s2 0 0 0 0 0 0 s3 s4 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 t1 t2 0 0 0 0 0 t3 0

2
6666666666666666666666664

3
7777777777777777777777775
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Xn

X0n
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3
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þ

0

0

0

0

0

0

0

0

0

0

0

0

0
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2
6666666666666666666666664

3
7777777777777777777777775
ð35Þ
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where the coefficients in the 14� 14 system matrix T are collected in Appendix 2. The general
solution of equation (33) is (Reddy, 2004):

Zðd ÞðxÞ ¼ e
Tðd Þx

Kðd Þ þ

Zx
x0

e
�Tðd Þ�

F ðd Þð�Þd�

2
4

3
5 ¼ Gðd ÞðxÞKðd Þ þHðd ÞðxÞ ð36Þ

where K is the vector of constants (14), H is the vector of particular solutions.

Uncracked portion

It has been shown that because of the kinematic constraints, two of the displacement parameters can
be eliminated, therefore for the uncracked part we have:

u0ðx, yÞ

v0ðx, yÞ

�xðx, yÞ

�yðx, yÞ

wðx, yÞ

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼
X1
n¼1

U0nðxÞ sin �y

V0nðxÞ cos�y

XnðxÞ sin�y

YnðxÞ cos�y

WnðxÞ sin �y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
, q ¼

X1
n¼1

Qn sin�y ð37Þ

Utilizing equations (27)–(31), the state space model can be derived as:

Z0ðud Þ ¼ Tðud ÞZðud Þ þ F ðud Þ ð38Þ

where the superscript ‘‘(ud)’’ refers to the undelaminated region. The state vector in this case is:

Zðud Þ ¼ U0n U00n V0n V00n Xn X0n Yn Y0n W W0n
	 
T

ð39Þ

The expanded state space model becomes:

U00n

U000n

V00n

V000n

X0n

X00n

Y0n

Y00n

W0n

W00n

2
6666666666666666666664

3
7777777777777777777775

¼

0 1 0 0 0 0 0 0 0 0

f1 0 0 f2 f3 0 0 f4 0 f5

0 0 0 1 0 0 0 0 0 0

0 g1 g2 0 0 g3 g4 0 g5 0

0 0 0 0 0 1 0 0 0 0

h1 0 0 h2 h3 0 0 h4 0 h5

0 0 0 0 0 0 0 1 0 0

0 j1 j2 0 0 j3 j4 0 j5 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 �
e1
e3

�e2
e3

0
�2e4
e3

0

2
666666666666666666666664

3
777777777777777777777775

U0n

U00n

V0n

V00n

Xn

X0n

Yn

Y0n

Wn

W0n

2
6666666666666666666664

3
7777777777777777777775

þ

0

0

0

0

0

0

0

0

0

�Qn=e3

2
6666666666666666666664

3
7777777777777777777775

ð40Þ
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which involves a 10� 10 system matrix with coefficients defined in Appendix 3. Considering the fact
that there is no external load at the uncracked plate portion, the solution of equation (38) is:

Zðud ÞðxÞ ¼ e
Tðud Þx

Kðud Þ ¼ Gðud ÞðxÞKðud Þ ð41Þ

Boundary and continuity conditions

The elements of the state vectors in equations (36) and (41) can be referred to as:

Z
ðd Þ
i ¼

X14
j¼1

G
ðd Þ
ij K

ðd Þ
j þH

ðd Þ
j , Z

ðud Þ
i ¼

X10
j¼1

G
ðud Þ
ij K

ðud Þ
j þH

ðud Þ
j ð42Þ

In accordance with Figure 2, we have four different plate portions. The point force causes sin-
gularity in the PDEs, therefore a plate portion loaded by a constant line force was applied, the length
d0 was a very small value compared to the plate dimensions. In this case, Qn¼ 2q0/b�sin(�y0) (Reddy,
2004). Thus, the four parts are denoted by ‘‘1a’’, ‘‘1q’’, ‘‘1’’ for the delaminated portion and ‘‘2’’ for
the undelaminated region. Consequently, the state-space model in section ‘Delaminated portion’ is
utilized for the ‘‘1a’’, ‘‘1q’’ and ‘‘1’’ portions, while the one in section ‘Uncracked portion’ was used
to model the undelaminated ‘‘2’’ region. The boundary conditions (B.C.s) are formulated through
the displacement parameters and the stress resultants. The latter ones can be expressed in the fol-
lowing forms:

Nx

Ny

Mx

My

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼
X1
n¼1

nxn

nyn

mxn

myn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
sin �y,

Lx

Ly

Qx

Rx

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼
X1
n¼1

lxn

lyn

qxn

rxn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
sin �y,

Nxy

Mxy

Qy

Ry

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼
X1
n¼1

nxyn

mxyn

qyn

ryn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
cos�y

ð43Þ

i.e. nxn is the function coefficient in the Fourier series of Nx, etc. For the present problem,
54 conditions need be formulated. The B.C.s are:

Wð1aÞn ðaÞ ¼ 0, V
ð1aÞ
0n ðaÞ ¼ 0, Yð1aÞn ðaÞ ¼ 0, Tð1aÞyn ðaÞ ¼ 0,

nð1aÞxn ðaÞ ¼ 0, mð1aÞxn ðaÞ ¼ 0, lð1aÞxn ðaÞ ¼ 0, Wð2Þn ð�cÞ ¼ 0,

V
ð2Þ
0n ðaÞ ¼ 0, Yð2Þn ð�cÞ ¼ 0, nð2Þxn ðaÞ ¼ 0, mð2Þxn ð�cÞ ¼ 0

ð44Þ
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The continuity conditions between regions ‘‘1’’ and ‘‘2’’ are:

U
ð1Þ
0n ð0Þ ¼ U

ð2Þ
0n ð0Þ, Xð1Þn ð0Þ ¼ Xð2Þn ð0Þ, Tð1Þxn ð0Þ ¼ �

4

t2
ðU
ð2Þ
0n �

t

2
Xð2Þn Þ

����
x¼0

V
ð1Þ
0n ð0Þ ¼ V

ð2Þ
0n ð0Þ, Yð1Þn ð0Þ ¼ Yð2Þn ð0Þ, Tð1Þyn ð0Þ ¼ �

4

t2
ðV
ð2Þ
0n �

t

2
Yð2Þn Þ

����
x¼0

Wð1Þn ð0Þ ¼Wð2Þn ð0Þ, W0ð1Þn ð0Þ ¼W0ð2Þn ð0Þ

nð1Þxn ð0Þ ¼ nð2Þxn ð0Þ, nð1Þxynð0Þ ¼ nð2Þxynð0Þ, mð1Þxn ð0Þ ¼ mð2Þxn ð0Þ, mð1Þxynð0Þ ¼ mð2Þxynð0Þ

ð45Þ

The continuity conditions between regions ‘‘1q’’ and ‘‘1’’ are:

U
ð1qÞ
0n ðx01Þ ¼ U

ð1Þ
0n ðx01Þ, Xð1qÞn ðx01Þ ¼ Xð1Þn ðx01Þ, Tð1qÞxn ðx01Þ ¼ Tð1Þxn ðx01Þ

V
ð1qÞ
0n ð0Þ ¼ V

ð1Þ
0n ð0Þ, Yð1qÞn ð0Þ ¼ Yð1Þn ð0Þ, Tð1qÞyn ðx01Þ ¼ Tð1Þyn ðx01Þ

Wð1qÞn ðx01Þ ¼Wð1Þn ðx01Þ, W0ð1qÞn ðx01Þ ¼W0ð1Þn ðx01Þ

nð1qÞxn ðx01Þ ¼ nð1Þxn ðx01Þ, nð1qÞxyn ðx01Þ ¼ nð1Þxynðx01Þ, mð1qÞxn ðx01Þ ¼ mð1Þxn ðx01Þ,

mð1qÞxyn ðx01Þ ¼ mð1Þxynðx01Þ, lð1qÞxn ðx01Þ ¼ lð1Þxn ðx01Þ, lð1qÞxyn ðx01Þ ¼ lð1Þxynðx01Þ

ð46Þ

where x01¼ xQ � d0. Moreover, 14 continuity conditions can be formulated between regions ‘‘1a’’
and ‘‘1q’’ at x02¼ xQþ d0, but these are similar to those in equation (46), therefore they are not
necessary to present. Totally, the system involves 54 equations, which is equal to the number of
unknowns. The problem was solved in the code MAPLE 12. Based on the continuity conditions, the
following stress resultants are continuous across the delamination front: Mx, My, Mxy, Qx, Qy,
Rx and Ry.

Calculation of the J-integral

In the general 3D case, the J-integral is defined as (Rigby and Aliabadi, 1998; Shivakumar
and Raju, 1992):

Jk ¼

Z
C

ðWnk � �ijui,knj Þds�

Z
A

ð�i3ui,kÞ,3dA, k ¼ 1, 2, 3 ð47Þ

where W is the strain energy density:

W ¼

Z "ij

0

�ijd"ij ¼
1

2
ð�x"x þ �y"y þ 	xy�xy þ 	xz�xz þ 	yz�yzÞ ð48Þ

Moreover, based on Figure 3, nk is the outward normal vector of the contour C, �ij is the stress
tensor, ui is the displacement vector, A is the area enclosed by the contour C. The separation of the
modes is possible by using a direct method (Rigby and Aliabadi, 1998; Shivakumar and Raju, 1992):

J1 ¼ JI þ JII þ JIII, J2 ¼ �2
ffiffiffiffiffiffiffiffiffiffi
JIJII

p
, J3 ¼ JIII ð49Þ
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In our problem, x1¼ x, x2¼ z and x3¼ y. For the calculation, we apply a zero-area path around
the crack tip (Szekrényes, 2012a). This way the surface integral in equation (47) becomes zero. The
layerwise stress–strain relations in laminated composite plates are (Kollár and Springer, 2003):

�x
�x
	xy

2
4

3
5
ðkÞ

¼

C11 C12 0
C21 C22 0
0 0 C66

2
4

3
5
ðkÞ

"x
"y
�xy

2
4

3
5, 	xz

	yz

� 
ðkÞ
¼

C55 0
0 C44

� 
ðkÞ
�xz
�yz

� 

ð50Þ

where {Cij} is the stiffness matrix of the kth layer. Taking the stresses and strains back into J1
in equation (47), we obtain an expression including the product of stress resultants and strain
components in the form of:

J1 ¼
1

2
Nx1"

ð0Þ
x1

���x¼�
þ0

�Nx2"
ð0Þ
x2

���
x¼�0

� �
�
1

2
Ny1"

ð0Þ
y1

���
x¼þ0
�Ny2"

ð0Þ
y2

���
x¼�0

� �

þ
1

2
Mx1"

ð2Þ
x1

���
x¼þ0
�Mx2"

ð1Þ
x2

���
x¼�0

� �
�
1

2
My1"

ð1Þ
y1

���
x¼þ0
�My2"

ð1Þ
y2

���
x¼�0

� �
þ
1

2
Lx1"

ð2Þ
x1

���
x¼þ0
�Lx2"

ð2Þ
x2

���
x¼�0

� �
�
1

2
Ly1"

ð2Þ
y1

���
x¼þ0
�Ly2"

ð2Þ
y2

���
x¼�0

� �
�
1

2
Nxy1�̂

ð0Þ
xy1

���
x¼þ0
�Nxy2�̂

ð0Þ
xy2

���
x¼�0

� �
�
1

2
Mxy1�̂

ð1Þ
xy1

���
x¼þ0
�Mxy2�̂

ð1Þ
xy2

���
x¼�0

� �
�
1

2
Lxy1�̂

ð2Þ
xy1

���
x¼þ0
�Lxy2�̂

ð2Þ
xy2

���
x¼�0

� �
þ Qx1

1

2
�ð0Þxz1 �

@w1

@x

� �����
x¼þ0

�Qx2
1

2
�ð0Þxz2 �

@w2

@x

� �����
x¼�0

� �

þ
1

2
Qy1�

ð0Þ
yz1

���
x¼þ0
�Qy2�

ð0Þ
yz2

���
x¼�0

� �
þ
1

2
Rx1�

ð1Þ
xz1

���
x¼þ0
�Rx2�

ð1Þ
xz2

���
x¼�0

� �
þ
1

2
Ry1�

ð1Þ
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���
x¼þ0
�Ry2�

ð1Þ
yz2

���
x¼�0

� �
ð51Þ

Figure 3. Reference system for the J-integral.
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where e.g. Nx1 is the in-plane normal force for the delaminated portion, "ð0Þx1 is the constant part of
the strain in the x direction as it is defined in equation (6), etc. Moreover, the shear strains including
the hat are

�̂ð0Þxy ¼
@u0
@y
�
@v0
@x

, �̂ð1Þxy ¼
@�x
@y
�
@�y
@x

, �̂ð2Þxy ¼
@�x
@y
�
@�y
@x

ð52Þ

Considering the fact that Mx, My, Mxy, Qx, Qy, Rx, Ry and the corresponding strains are con-
tinuous across portions ‘‘1’’ and ‘‘2,’’ a significant part of the J-integral vanishes. The remaining part
can be separated based on the direct method (refer to equation (49)) or by simply separating the
terms including the sin (mode-II) and cos (mode-III) functions, leading to:

JII ¼
1

2
Nx1"

ð0Þ
x1

���
x¼þ0
�Nx2"

ð0Þ
x2

���
x¼�0

� �
�
1

2
Ny1"

ð0Þ
y1

���
x¼þ0
�Ny2"

ð0Þ
y2

���
x¼�0

� �
þ
1

2
Lx1"

ð2Þ
x1

���
x¼þ0
�Lx2"

ð2Þ
x2

���
x¼�0

� �
�
1

2
Ly1"

ð2Þ
y1

���
x¼þ0
�Ly2"

ð2Þ
y2

���
x¼�0

� � ð53Þ

JIII ¼
1

2
Nxy1�̂

ð0Þ
xy1

���
x¼þ0
�Nxy2�̂

ð0Þ
xy2

���
x¼�0

� �
�
1

2
Lxy1�̂

ð2Þ
xy1

���
x¼þ0
�Lxy2�̂

ð2Þ
xy2

���
x¼�0

� �
ð54Þ

Consequently, under mixed-mode II/III fracture condition, the ERR is not contributed by the
bending and twisting moments, shear forces, as well as Lxy, Rx, Ry (higher order stress resultants) at
all. Also, the present formulation does not incorporate any physically inconsistent parameters (e.g.
shear compliances like in Qiao and Wang, 2004; Szekrényes, 2012a; Wang and Qiao, 2004b), it is
based on an entirely exact formulation including the material law of orthotropic solids.

Results and discussion

The properties of the analyzed simply-supported plate were (refer to Figure 2): a¼ 105 mm (crack
length), c¼ 45mm (uncracked length), b¼ 100mm (plate width), t¼ 2mm (half plate thickness),
Q0¼ 1000N (point force magnitude), xQ¼ 31mm, yQ¼ 50mm (point of action coordinates of Q0,
d0¼ 0.1mm and q0¼Q0/2d0. The plate is made of a carbon/epoxy material, the lay-up of the plate
was [�45f2; 012; �45

f
2] for the delaminated and [�45f2; 012;�45

f
2]s for the uncracked part. The super-

script ‘‘f’’ refers to the fact that the cross-ply laminate is a woven fabric panel. The properties of the
individual laminae are given by Table 1 (Kollár and Springer, 2003). The computation was per-
formed in the code MAPLE 12 (Garvan, 2002) in accordance with the following points. The stiffness
matrices of each single layer, the stiffness matrices ({A}, {D} and {F}) of the plate, were determined
based on the elastic properties of the laminates given in Table 1. The problem in Figure 3 was solved
varying the number of Fourier series terms (N) by creating a for-do cycle. Based on the displacement

Table 1. Elastic properties of single carbon/epoxy laminates.

Ex (Gpa) Ey (Gpa) Ez (Gpa) Gyz (Gpa) Gxz (Gpa) Gxy (Gpa) 
yz 
xz 
xy

�45�F 16.39 16.39 16.4 5.46 16.4 5.46 0.5 0.3 0.5

0� 148 9.65 9.65 4.91 3.71 4.66 0.27 0.3 0.25
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parameters, the stress resultants and the stresses were calculated, while the ERRs were
calculated using the J-integral. The convergence of the results was analyzed and it was found that
after the 13th Fourier term there was no change in the displacement field, stresses, stress resultants
and ERRs.

Finite element model

In order to verify the analytical results, a FE analysis was carried out. The 3D FE model of the plate
was created in the code ANSYS 12 using 8-node solid elements. Similar 3D models are documented
by de Morais and Pereira (2008) and Pereira and de Morais (2009), therefore the model is not shown
here: 50, 78 and 10 elements were applied along the plate width (y), length (x) and thickness (z),
respectively. The global element size was 2mm� 2mm� 0.4mm. In the vicinity of the crack tip, a
refined mesh was constructed including trapezoid shape elements (Davidson and Sundararaman,
1996). The displacements in the z direction of the contact nodes over the delaminated surface were
imposed to be the same. The mode-II and mode-III ERRs were calculated by the VCCT (e.g., de
Morais and Pereira, 2008), the size of the crack tip elements were �x¼ 0.2mm, �y¼ 0.2mm and
�z¼ 2mm. For the determination of GII and GIII along the delamination front, a so-called MACRO
was written in the ANSYS Design and Parametric Language (ADPL). The MACRO gets the nodal
forces and displacements at the crack tip and at each pair of nodes, respectively, then by defining the
size of crack tip elements it determines and plots the ERRs at each node along the crack front.

Analytical and numerical results

Figure 4 shows the in-plane displacements at two points of the plate: u(0,b/2,z) and v(0,b,z), i.e. each
point lies in the crack front. It is seen that the analytical solution agrees excellently with the FE

Figure 4. Distribution of the in-plane displacements over the plate thickness.
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results. Although the nonlinearity of in-plane displacements is not so significant, the SSDT captures
this change in the through-thickness direction very well.

The distribution of the normal stresses, �x and �y at x¼ 0, y¼ b/2, are demonstrated in
Figure 5. The distributions were determined layerwise using the stress–strain relations given by
equation (50). Although there are some differences compared to the FE results, the overall agree-
ment is reasonable, especially in the case of �y. It has to be mentioned that in the FE model the
displacement and stress continuity is ensured, but in the analytical model only the continuity of
displacement parameters and some of the stress resultants (Nx, Mx, My, Mxy, Qx, Qy) can be
realized. Consequently the stresses are not continuous in accordance with the SSDT, however, the
discrepancies in stresses in the transition between the delaminated and undelaminated plate por-
tions are not so significant.

The distributions of transverse shear stresses are plotted in Figure 6. The FE solution, the solu-
tion by SSDT (piecewise linear, red line) as well as the solution calculated by the 3D equilibrium
equations are equally presented. The latter ones were calculated by the �r ¼ 0 equation (Reddy,
2004). The mismatch of the FE and analytical solutions are somewhat higher than in the case of the
normal stresses, however the overall agreement is acceptable. From another point of view, the SSDT
and 3D equilibrium solutions agree well. The distribution of the in-plane normal force, Nx(x,y) and
the shear force Nxy(x,y) are plotted in Figure 7.

Although these stress resultants could be calculated by the FE model too (by integrating the
normal and in-plane shear stresses in the through thickness direction), this would be a very long
process, therefore, in this case only analytical results are presented. It is seen that near the delam-
ination front (x¼ 0) these stress resultants change suddenly and significantly. Moreover, Nx involves
the sin, while Nxy involves the cos function (refer to Equation (43)) leading to the completely dif-
ferent nature of these stress resultants. One of the advantages of plate theory over the FE model is
that these plots can be obtained very simply in the analytical way.

Figure 5. Distribution of the normal stresses over the plate thickness.

1176 International Journal of Damage Mechanics 22(8)



The interlaminar shear stress (¼transverse shear in accordance with the duality of shear stresses)
distributions along the global midplane of the undelaminated plate portion (top plate, refer to
Figure 1) can be calculated as:

	xzjz¼�t
2
¼ G�4513 �xz

��
z¼�t

2

¼ G�4513

4

t
u02 � �x2 þ

@w2

@x

� �
,

	yz
��
z¼�t

2
¼ G�4523 �yz

��
z¼�t

2
¼ G�4523

4

t
v02 � �y2 þ

@w2

@y

� � ð55Þ

Figure 7. Distribution of the in-plane normal and shear forces over the uncracked (top) plate portions.

Figure 6. Distributions of shear stresses over the plate thickness.
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where the shear moduli are defined in Table 1. The function plots are given by Figure 8. Both
stresses change significantly near the delamination front and decays suddenly by getting far from it.
It is important to note that 	xz does not vanish at the x¼�c boundary, on the other hand 	yz
vanishes entirely at the same location.

The mode-II, mode-III ERRs and the mode ratios along the delamination front are plotted in
Figure 9. The symbols show the results of the VCCT, while the curves represent the results by SSDT.
The main conclusion is that except for the relatively small regions at the edges of the plate, the SSDT
agrees excellently with the results by VCCT. Also, it is clear that near the edges the agreement
becomes not so good. In Figure 9, the dashed blue line shows that after this line towards the plate
edge, the difference between the SDDT and the VCCT in the case of GIII becomes higher than 10%.
The corresponding distance from the edge of the plate is again approximately 10% of the plate
width. In Figure 9(b) GT¼GIIþGIII is the total ERR. In the case of the ratios of GII/GT and GIII/GT,
the agreement is excellent, however at the edges some discrepancies appear again. These differences
are attributed to the distinctions in the boundary conditions. The plate theory assumes that the
midplane of both the top and bottom plates is simply-supported. On the other hand, in the FE
model – relating to practical conditions – only the contour lines of the bottom plates are supported
in the z direction. In spite of the distinctions in the stress distributions by FEM and analyses in
Figures 5 and 6, it is seen that the energy release rates agree well. From equations (53)–(54) it is clear
that the ERRs depend on the product of stress resultants and strain components. The stress result-
ants are calculated as the integration of the stress distributions over the thickness, and in Figures 5
and 6 the area under the curves are approximately the same for the FE and plate theory solutions.
That is why the two solutions match well in the case of the ERRs.

The overall agreement between the SSDT and VCCT is fairly good. It is important to mention
that the VCCT method is mesh-sensitive to a certain degree and the investigation of the effect of
mesh refinement was outside the scope of this paper. It has to be also mentioned that the present
model does not take the effect of possible nonlinearites into account, like fiber-bridgings (e.g.,
Tamuzs et al., 2001) in the delaminated area and the effect of the so-called fracture process zone
(FPZ; e.g., Amrutharaja et al., 1995; Tsouvalis and Anyfantis, 2012).

(a) (b)

Figure 8. Distribution of the interlaminar shear stresses over the uncracked (top) plate portion.
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Conclusions

The second order shear deformation plate theory is utilized in this work to develop a double-plate
system for delaminated orthotropic composite plates. The model is based on the continuity of the
displacement field across the delamination front by imposing the interface constraint along the
interface. A simply-supported delaminated plate subjected to a point force was analyzed using
Lévy plate formulation, the stresses and the energy release rates were calculated. The results were
compared to those of a 3D FE model and very good agreement was obtained.

The present model eliminates the physically inconsistent shear compliance of the flexible joint
models and includes the effect of interface deformation based on the equations of linear elasticity
and the material law of orthotropic solids. It was shown that although the displacement components
are continuous across the delamination, there are stress resultants, which remain discontinuous.
Moreover, a significant amount of terms vanish in the J-integral, and the mode-II and mode-III
energy release rates are defined using the stress resultants and strains around the delamination front.
However, it must be mentioned that only mixed-mode II/III fracture problems were considered in
this study and the transverse deflection of the top and bottom plates was considered to be the same.
It has been shown that the difference between the FE and plate theory solutions differs moderately at
the edges of the plate, which can be explained by the differences in the boundary conditions.

Considering the available methods for the calculation of the ERR in plates, the first alternative is
in general the VCCT. However, for the 3D FE model the computation could be lengthy, especially if
the model has relatively large dimensions. Furthermore, in the crack tip a refined mesh should be
constructed to obtain accurate ERR values. Finally, in most of the commercial FE packages the
VCCT has not yet been implemented. The present work provides another possibility for the calcu-
lation of the ERR in plates subjected to bending. The possible application field of the presented
method is the fracture mechanics of composite materials. In the last few years, fracture test methods
including plate-like specimens have been developed to characterize the mode-III, mixed-mode II/III

Figure 9. Distribution of the energy release rates (ERRs) and the mode ratio by second order plate theory (SSDT)

and virtual-crack closure technique (VCCT).
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and mixed-mode I/III fracture behavior of laminated materials. By preparing a detailed user-friendly
worksheet in MAPLE, it is possible to provide a data reduction scheme for delaminated plates for
the experimentalists. Also, the application to asymmetrically delaminated orthotropic and angle-ply
laminated plates as well as sandwich panels need to be investigated. These tasks will be carried out in
the near future.
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Appendix 1 – coefficients for equations (27)-(31) – undelaminated portion

a1 ¼
A11t

4 � 8D11t
2 þ 16F11

t4
, a2 ¼

A66t
4 � 8D66t

2 þ 16F66

t4
, a3 ¼ �

64D55

t4

a4 ¼
ðA12 þ A66Þt

4 þ 8ðD12 þD66Þt
2 þ 16ðF12 þ F66Þ

t4
, a5 ¼

2ðD11t
2 � 4F11Þ

t3

a6 ¼
2ðD66t

2 � 4F66Þ

t3
, a7 ¼

32D55

t3
, a8 ¼

2ðD12 þD66Þt
2 � 8ðF12 þ F66Þ

t3
,

ð56Þ

b1 ¼ a4, b2 ¼ a2, b3 ¼
A22t

4 � 8D22t
2 þ 16F22

t4
, b4 ¼ �

64D44

t4
, b5 ¼ a8, b6 ¼ a6

b7 ¼
2ðD22t

2 � 4F22Þ

t3
, b8 ¼

32D44

t3

ð57Þ

c1 ¼ a5, c2 ¼ a6, c3 ¼ a7, c4 ¼ a8, c5 ¼
D11t

2 þ 4F11

t2
, c6 ¼

D66t
2 þ 4F66

t2
,

c7 ¼ �
A55t

2 þ 16D55

t2
, c8 ¼

ðD12 þD66Þt
2 þ 4ðF12 þ F66Þ

t2
, c9 ¼ �A55

ð58Þ

d1 ¼ a8, d2 ¼ a6, d3 ¼
2ðD22t

2 � 4F22Þ

t3
, d4 ¼ b8,

d5 ¼ c8, d6 ¼ c6, d7 ¼
D22t

2 þ 4F22

t2

ð59Þ

d8 ¼ �
A44t

2 þ 16D44

t2
, d9 ¼ �A44

e1 ¼ e3 ¼ A55, e2 ¼ e4 ¼ A44

ð60Þ

Appendix B – coefficient for equation (35) – delaminated portion

k1 ¼
1

�1
�2ðA66F11 �D66D11Þ, k2 ¼

1

�1
� ðA12 þ A66ÞF11 � ðD12 þD66ÞD11½ �

k3 ¼
1

�1
�2ðD66F11 �D11F66Þ � 4D11D55

	 

, k4 ¼

1

�1
�ðD12 þD66ÞF11 � ðF12 þ F66ÞD11½ �,

�1 ¼ A11F11 �D2
11

ð61Þ

m1 ¼ �
1

�2
� ðA12 þ A66ÞF66 � ðD12 þD66ÞD66½ �, m2 ¼

1

�2
�2ðA22F66 �D22D66Þ

m3 ¼ �
1

�1
�ðD12F66 �D66F12Þ½ �, m4 ¼

1

�1
�2ðD22F66 �D66F22Þ � 4D66D44

	 

,

�2 ¼ A66F66 �D2
66

ð62Þ
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n1 ¼
�2D66 þ A55Þ

D11
, n2 ¼

�ðD12 þD66Þ
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A55

D11
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Appendix 3 – coefficients for equation (40) – undelaminated portion

f1 ¼
1

!1
ða2�
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1
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where:

!1 ¼ a1c5 � a5c1
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