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Analysis of classical and first-order shear
deformable cracked orthotropic plates

András Szekrényes

Abstract

The Kirchhoff and Mindlin plate theories are applied in this study to calculate the stresses and the energy release rates in

delaminated orthotropic composite plates. A novel double-plate system is developed with the imposition of the kine-

matic continuity constraints in the interface plane. The governing equations of the system were derived in both cases. As

a demonstrative example a simply-supported plate subjected to a point force was analyzed using Lévy plate formulation

and the problem was solved by a state-space model. The distribution of the stress resultants and the interlaminar

stresses in the uncracked part were also determined. Moreover, the distributions of the mode-II and mode-III energy

release rates along the crack front were calculated by the J-integral. The 3D finite element model of the plate was

created providing reference data for the analytical model. The results show that the displacement and stress fields

obtained from the Kirchhoff and Mindlin theories are quite similar, but in the case of the energy release rates, transverse

shear effect is necessary to consider to obtain reasonably good agreement between the analytical and numerical results.
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Introduction

Linear plate theories play important role in the design
of composite,1,2 steel3 and sandwich structures4 in the
engineering life. The interlaminar fracture is one of the
primary failure modes in composite and sandwich
structures during transverse and sudden impact load-
ing, as well. The fracture behavior of laminated mater-
ials is characterized by the energy release rate (ERR).5

The critical value of this global parameter (critical
energy release rate – CERR) is the limit value to pro-
portionate the structures against delamination failure.
Within the scope of linear elastic fracture mechanics,5

the basic failure modes include mode-I (opening mode),
mode-II (in-plane shear) and mode-III (anti-plane
shear), respectively. The fracture resistance under
these modes is determined through standard or non-
standard tests. The significant part of the literature
deals with mode-I,6,7 mode-II8–10 and mixed-mode
I/II10–12 cases. However, in the last decades, more and
more emphasis was put on the investigation of mode-
III.13–20 fracture, later even the combined mode
II/III,21–29 I/III30,31 and I/II/III32–34 conditions were
taken into account. The latest developments for

possible acceptable tests under mode-III,16–18 mixed-
mode II/III22 and mixed-mode I/III30 equally involve
plate-type specimens with rectangular delamination
surface.

In general, an analytical solution can be easily devel-
oped for beam-type specimens; in contrast, for plate-
type samples the analytical solutions – mainly because
of the complex boundary conditions – are not available.
Therefore, without any exception, the data reduction is
always made by the finite element method (FEM)
incorporating the virtual-crack closure technique
(VCCT)19 and cohesive zone model (CZM)30 applica-
tions. For delaminated plates, Davidson et al.35 applied
shell elements with interface constraints to calculate the
ERRs, Sankar and Sonik36 performed similar
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computations. The crack tip force method (CTFM)37 is
a similar solution to the VCCT, utilizing the crack tip
forces to calculate and separate the ERRs. However, its
result does not differ from that of a VCCT analysis.
The main problem of the FE models is that a 3D
model is necessary to construct and the VCCT is avail-
able only in few FE packages (e.g. in ABAQUS and
NASTRAN, but not available in ANSYS and
COSMOS/M) as a built-in command. In accordance
with this overview, we can also conclude that there
are no analytical solutions available for delaminated
composite plate specimens as possible data reduction
schemes.

The aim of this paper is to present the application of
classical laminated plate theory (Kirchhoff plate theory
or CLPT)2,38–40 and first-order shear deformable plate
theory (Mindlin plate theory or FSDT)2–4 to calculate
the stresses and ERRs in delaminated plates with sym-
metrical lay-up and straight delamination front under
mixed-mode II/III condition. First, the displacement
field is formulated by imposing the interface con-
straints. Second, the basic equations of linear elasticity
are applied to derive the strain and stress fields in elastic
orthotropic composite plates. The present formulation
does not incorporate arbitrarily defined parameters
(e.g. shear compliances,41–46) and it is shown that the
developed model is physically consistent with the equa-
tions of linear elasticity. As an example, a simply-sup-
ported plate subjected to a point force is analyzed
applying the state-space model.2 The distribution of
the interlaminar stresses is calculated, moreover, the
J-integral47,48 is utilized to determine the distribution
of the mode-II and mode-III ERRs along the crack
front. An FE model is also created and the numerical
results are compared to those obtained by analysis. The
relatively good agreement obtained shows the useful-
ness of plate theories in delamination analysis.

FSDT- Mindlin plate theory, general
formulation

We assume that a delaminated plate with straight crack
front lies in the x-y plane and the crack front is parallel
to the y axis. The plate theory presented in this section
is utilized to capture the displacement and stress fields
in the delaminated portion of an elastic laminated
orthotropic plate with symmetric lay-up presented in
Figure 1. The thickness of the top and bottom plates
is t. The assumed displacement field based on FSDT for
elastic plates can be written as:2

u�ðx, y, zÞ ¼ �u0ðx, yÞ þ �xðx, yÞ � z,

v�ðx, y, zÞ ¼ �v0ðx, yÞ þ �yðx, yÞ � z,
ð1Þ

where � takes ‘‘top’’ and the upper sign for the top
plate element in Figure 1(a) and � takes ‘‘bot’’ and
the lower sign for the bottom plate element of the dela-
minated portion in Figure 1(b). Moreover, u0 and v0 are
the constant parts of the displacements, �x and �y are
the rotations of the cross section about the y and x
axes, respectively. In this paper, only mixed-mode
II/III problems are considered, i.e. the crack opening
is zero.

Therefore, the transverse deflection, w¼w(x,y) is the
same for both the top and bottom plates. Applying the
basic equations of linear elasticity49 for an ortho-
tropic plate we obtain the strain and stress fields,
then by integrating the stresses over the thickness, the
stress resultants in terms of strains and shear strains
become:2

fNg

fMg

� �
¼
½A� ½0�

½0� ½D�

� �
f"ð0Þg

f"ð1Þg

( )
,

Qx ¼ kA55�xz, Qy ¼ kA44�yz, ð2Þ

where {N}T¼ {Nx, Ny, Nxy} is the vector of in-plane
normal and shear forces, {M}T¼ {Mx, My, Mxy} is
the vector of bending and twisting moments, Qx, Qy

are the shear forces and k¼ 5/6 is the shear correction
factor.2,3 Moreover, {"(0)} and {"(1)} are the vectors of
constant and linear strains, finally �xz and �yz are the
shear strains. The stress resultants can be calculated
from the integration of the stresses in the through-
thickness direction:2

N��

M��

� �
¼

Zt=2
�t=2

���
1
z

� �
dz, Q� ¼

Zt=2
�t=2

��zdz, ð3Þ

where � and � take the symbols x and y. The stiffness
parameters are defined as:1,2

Aij,Dij ¼
XNl

k¼1

Zzkþ1
zk

C
ðkÞ

ij ð1, z
2Þdz, ð4Þ

where the reference plane is the local midplane of the
top and bottom plates, respectively (refer to Figure 1).
The vectors of strains are written as:

"x

"y

�xy

8><
>:

9>=
>; ¼

"ð0Þx

"ð0Þy

�ð0Þxy

8>><
>>:

9>>=
>>;þ z

"ð1Þx

"ð1Þy

�ð1Þxy

8>><
>>:

9>>=
>>;,

�xz

�yz

( )
¼

�ð0Þxz

�ð0Þyz

( )
, ð5Þ
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where

Formulating the total potential energy for the elastic
plate subjected to transverse load and deriving the
Euler-Lagrange equations, we obtain the equilibrium
equations in the following forms:2,3

@Nx

@x
þ
@Nxy

@y
¼ 0,

@Nxy

@x
þ
@Ny

@y
¼ 0, ð7Þ

@Mx

@x
þ
@Mxy

@y
�Qx ¼ 0,

@Mxy

@x
þ
@My

@y
�Qy ¼ 0,

@Qx

@x
þ
@Qy

@y
þ q ¼ 0 ð8Þ

Taking the stress resultants back into equation (7)
and (8), we obtain:

A11
@2u0
@x2
þ A66

@2u0
@y2
þ ðA12 þ A66Þ

@2v0
@x@y

¼ 0, ð9Þ

A22
@2v0
@y2
þ A66

@2v0
@x2
þ ðA12 þ A66Þ

@2u0
@x@y

¼ 0, ð10Þ

D11
@2�x
@x2
þD66

@2�x
@y2
þ ðD12 þD66Þ

@2�y
@x@y

� kA55 �x þ
@w

@x

� �
¼ 0, ð11Þ

D22
@2�y
@y2
þD66

@2�y
@x2
þ ðD12 þD66Þ

@2�x
@x@y

� kA44 �y þ
@w

@y

� �
¼ 0, ð12Þ

kA55
@�x
@x
þ
@2w

@x2

� �
þ kA44

@�y
@y
þ
@2w

@y2

� �
¼ �q ð13Þ

where Aij and Dij are stiffness parameters and q¼ q(x,y)
is the external load of the plate.

FSDT with interface constraint

The FSDT utilized in this section is based on an
assumed displacement field including interface con-
straints to formulate the model of the uncracked
region of a delaminated orthotropic composite plate.
The mathematical form of in-plane displacement com-
ponents are the same as those given by equations (1);
however, we have to ensure the displacement continuity
between the top and bottom plate elements shown by
Figure 1. The interface constraint equations of the
uncracked portion are

utop
��
z¼�t

2
¼ ubotjz¼t

2
, vtop

��
z¼�t

2
¼ vbotjz¼t

2
ð14Þ
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vbot (x,y,z) ubot (x,y,z)

Figure 1. Deformations of the top and bottom plate elements.
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These conditions make it possible to express u0 and
v0 in terms of the rotation parameters:

u0 ¼
t

2
�x, v0 ¼

t

2
�y ð15Þ

Taking these back into equation (1), we obtain the
displacement field satisfying the interface constraint
conditions:

utopðx, y, zÞ ¼ �x
t

2
þ z

	 

, vtopðx, y, zÞ ¼ �y

t

2
þ z

	 

ð16Þ

For the bottom plate, similar expressions can be
derived. Due to the symmetric lay-up with respect to
the x-y plane, we analyze only the top plate in the
sequel. Based on equation (6), the strains and shear
strains become:

In this case, the system of equilibrium equations con-
sists of three equations only:

@Mx

@x
þ
@Mxy

@y
þ

t

2

@Nx

@x
þ
@Nxy

@y

� �
�Qx ¼ 0, ð18Þ

@Mxy

@x
þ
@My

@y
þ

t

2

@Nxy

@x
þ
@Ny

@y

� �
�Qy ¼ 0, ð19Þ

@Qx

@x
þ
@Qy

@y
þ q ¼ 0 ð20Þ

Calculating the stress resultants (equation (2)) in
terms of the displacement parameters and taking them
back into the equilibrium equations (equations (18)–
(20)), the following system of equations is obtained:

â1
@2�x
@x2
þ â2

@2�x
@y2
þ â3�x þ â4

@2�y
@x@y
þ â5

@w

@x
¼ 0, ð21Þ

b̂1
@2�x
@x@y
þ b̂2

@2�y
@x2
þ b̂3

@2�y
@y2
þ b̂4�y þ b̂5

@w

@y
¼ 0, ð22Þ

ĉ1
@�x
@x
þ ĉ2

@�y
@y
þ ĉ3

@2w

@x2
þ ĉ4

@2w

@y2
þ ĉ5q ¼ 0 ð23Þ

where the coefficients depend on the stiffness param-
eters and the thickness of the plate, and are collected
in Appendix 1. It is important to highlight that the
reference planes of the top and bottom plates of the

uncracked portion are the local midplanes (see
Figure 1), and consequently the stiffness parameters
in equation (4) for the delaminated and uncracked
plate portions are the same. The different deformations
of the two portions are included through the interface
constraint conditions in equation (14).

CLPT – Kirchhoff plate theory

The Kirchhoff plate theory (CLPT) can be considered
as a special case of FSDT, when the rotations become:2

�x ¼ �
@w

@x
, �y ¼ �

@w

@y
ð24Þ

i.e., in accordance with the Kirchhoff hypothesis, the
normal of the cross section is parallel to the derivative
of the deflection.

Delaminated portion

For the delaminated portion, the constant strains
are the same as those in equation (6), the linear
strains are

"ð1Þx
"ð1Þy
�xyð1Þ

8<
:

9=
; ¼ �

@2w

@x2
�
@2w

@y2
�2

@2w

@x@y

� �T

ð25Þ

The shear strains �xz and �yz are apparently zero.
The resulting equilibrium equations are given by equa-
tion (7); moreover, the three equations in equation (8)
reduce to the one below:

@2Mx

@x2
þ 2

@2Mxy

@x@y
þ
@2My

@y2
¼ �q ð26Þ

Taking the displacement parameters back into equa-
tions (6) and (26) we obtain:

D11
@4w

@x4
þ 2ðD12 þD66Þ

@4w

@x2@y2
þD22

@4w

@y4
¼ q ð27Þ

Along with equations (9) and (10) (these still hold in
the case of CLPT) in this case, we have a three-para-
meter displacement field, while the system consists of
three PDEs.
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>>:
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>>; ð17Þ
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Undelaminated portion

The substitution of equation (24) into equation (16)
yields the following displacement field for the undela-
minated portion:

utopðx, y, zÞ ¼ �
@w

@x

t

2
þ z

	 

, vtopðx, y, zÞ ¼ �

@w

@y

t

2
þ z

	 

ð28Þ

In this case, the strain field can be obtained by equa-
tion (25) and the second of (17), and consequently the
displacement field involves a single parameter, the
deflection of the plate, w(x,y). The equilibrium equa-
tions by equations (18)–(20) reduce to a single equation:

@2Mx

@x2
þ 2

@2Mxy

@x@y
þ
@2My

@y2
þ

t

2

@2Nx

@x2
þ 2

@2Nxy

@x@y
þ
@2Ny

@y2

� �
¼ �q ð29Þ

Finally, by calculating the stress resultants from
equations (2) and (3) we obtain the governing PDE of
the deflection of undelaminated portion:

ðD11 þ
A11t

2

4
Þ
@4w

@x4
þ 2 D12 þD66 þ

ðA12 þ A66Þt
2

4

� �
@4w

@x2@y2
þ D22 þ

A22t
2

4

� �
@4w

@y4
¼ q ð30Þ

As it can be seen from equation (30), the transform-
ation of the local bending stiffness is involved with t/2
distance from the local reference plane.1 In the next
section, we solve a simply-supported plate subjected
to a point force by the state-space model.2 The displace-
ment and stress fields are calculated and the J-integral
is utilized to calculate the ERR distributions along the
delamination front.

Example – simply-supported plate, Lévy
plate formulation

In this section, we apply the state-space model2 to solve
the system of equations for a delaminated plate sub-
jected to a point force, shown in Figure 2. The govern-
ing PDE system is different for the delaminated and
uncracked parts; therefore, the state-space models are
developed separately. In accordance with Lévy plate
formulation, the displacement components and the
external load for simply-supported (Mindlin and
Kirchhoff) plates1–3 can be written as:

u0ðx, yÞ
v0ðx, yÞ
�xðx, yÞ
�yðx, yÞ
wðx, yÞ

8>>>><
>>>>:

9>>>>=
>>>>;
¼
X1
n¼1

U0nðxÞ sin �y
V0nðxÞ cos �y
XnðxÞ sin �y
YnðxÞ cos �y
WnðxÞ sin �y

8>>>><
>>>>:

9>>>>=
>>>>;
, q ¼

X1
n¼1

Qn sin �y

ð31Þ

where �¼ n�/b. Apparently, in the case of Kirchhoff
plate theory �x and �y are not applicable.

FSDT- Mindlin plate theory

Delaminated portion. Taking the solutions above back
into the system of governing equations of the delami-
nated portion (equations (9)–(13)), we can derive the
state-space model, in a general form it becomes:

Z0
ðd Þ
¼ Tðd ÞZðd Þ þ F ðd Þ ð32Þ

where the superscript ‘‘(d)’’ refers to the delaminated
plate portion and Z is the state vector:

Zðd Þ ¼ U0n U00n V0n V00n Xn X0n Yn Y0n Wn W0n
� �T

ð33Þ

xQ
yQ

2d0

Q0

X Y

Z

2t

t
b

a

c

Delamination

1
1q

1a

2

Simply-supported

Simply-supported
Simply-supported

Simply-supported

Simply-supported

Figure 2. Simply-supported plate subjected to point force.
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moreover, T is the system matrix, F contains the
inhomogeneity of the governing PDE system. In an
expanded form equation (32) becomes:

where the coefficients in the 10� 10 system matrix T are
collected in Appendix 2. The general solution of equa-
tion (32) is2

Zðd ÞðxÞ ¼ e
Tðd Þx

Kðd Þ þ

Zx
x0

e
�Tðd Þ	

F ðd Þð	Þd	

2
4

3
5

¼ Gðd ÞðxÞKðd Þ þHðd ÞðxÞ ð35Þ

where K is the vector of constants, H is the vector of
particular solutions.

Uncracked portion. It has been shown that because of
the kinematic constraints, two of the five displacement
parameters can be eliminated. Utilizing equations
(21)–(23), the state-space model can be derived as:

Z0
ðud Þ
¼ Tðud ÞZðud Þ þ F ðud Þ ð36Þ

where the superscript ‘‘(ud)’’ refers to the undelami-
nated region. The state vector in this case is

Zðud Þ ¼ Xn X0n Yn Y0n Wn W0n
� �T

ð37Þ

The expanded state-space model becomes:

X0n

X00n

Y0n

Y00n

W0n

W00n

2
6666666664

3
7777777775
¼

0 1 0 0 0 0

d̂1 0 0 d̂2 0 d̂3

0 0 0 1 0 0

0 ê1 ê2 0 ê3 0

0 0 0 0 0 1

0 f̂1 f̂2 0 f̂3 0

2
6666666664

3
7777777775

Xn

X0n

Yn

Y0n

Wn

W0n

2
6666666664

3
7777777775
þ

0

0

0

0

0

f̂4Qn

2
6666666664

3
7777777775

ð38Þ

which involves a 6� 6 system matrix with coefficients
defined in Appendix 1. Considering the fact that there is
no external load at the uncracked plate portion the
solution of equation (38) is

Zðud ÞðxÞ ¼ e
Tðud Þx

Kðud Þ ¼ Gðud ÞðxÞKðud Þ ð39Þ

Kirchhoff plate theory

Delaminated portion. In this case, the system matrix is an
8� 8 matrix. Without going into details, based on
equations (9), (10) and (27), the state-space model
takes the form of:

where the coefficients are defined in Appendix 2.

U00n

U000n

V00n

V000n

X0n

X00n

Y0n

Y00n

W0n

W00n

2
666666666666666666664

3
777777777777777777775

¼

0 1 0 0 0 0 0 0 0 0

f1 0 0 f2 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 g1 g2 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 h1 0 0 h2 0 h3

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 j1 j2 0 j3 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 k1 k2 0 k3 0

2
666666666666666666664

3
777777777777777777775

U0n

U00n

V0n

V00n

Xn

X0n

Yn

Y0n

Wn

W0n

2
666666666666666666664

3
777777777777777777775

þ

0

0

0

0

0

0

0

0

0

k4Qn

2
666666666666666666664

3
777777777777777777775

ð34Þ

U00n

U000n

V00n

V000n
W0n

W00n

W000n

WIV
n

2
66666666666664

3
77777777777775
¼

0 1 0 0 0 0 0 0

f1 0 0 f2 0 0 0 0

0 0 0 1 0 0 0 0

0 g1 g2 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 ��4 d3
c1

0 2�2 c4
c1

0

2
66666666666664

3
77777777777775

U0n

U00n

V0n

V00n
Wn

W0n

W00n

W000n

2
66666666666664

3
77777777777775
þ

0

0

0

0

0

0

0
Qn

c1

2
6666666666666664

3
7777777777777775

ð40Þ
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Undelaminated portion. From equations (30) and (31), we
obtain the following state-space model:

W0n
W00n
W000n
WIV

n

2
664

3
775 ¼

0 1 0 0
0 0 1 0
0 0 0 1

��4
b̂3
â1

0 2�2
â4
â1

0

2
66664

3
77775

Wn

W0n
W00n
W000n

2
664

3
775þ

0
0
0

1
â1
Qn

2
664

3
775

ð41Þ

where the coefficients are defined in Appendix 1.

Boundary and continuity conditions

The elements of the state vectors in equations (36) and
(41) can be referred to as:

Z
ðd Þ
i ¼

X
j

G
ðd Þ
ij K

ðd Þ
j þH

ðd Þ
j , Z

ðud Þ
i ¼

X
j

G
ðud Þ
ij K

ðud Þ
j þH

ðud Þ
j

ð42Þ

In accordance with Figure 2, we have four different
plate portions. The point force causes singularity in the
PDEs, therefore a plate portion loaded by a constant
line force was applied, the length d0 was a very small
value compared to the plate dimensions. In this case,
Qn¼ 2q0/b � sin(�y0) [2]. Thus, the four parts are
denoted by ‘‘1a’’, ‘‘1q’’, ‘‘1’’ for the delaminated por-
tion and ‘‘2’’ for the undelaminated region.
Consequently, the state-space models for the delami-
nated portion are utilized for the ‘‘1a’’, ‘‘1q’’ and ‘‘1’’
portions, while the model for the undelaminated por-
tion was used to capture region ‘‘2’’. The boundary
conditions (B.C.s) are formulated through the displace-
ment parameters and the stress resultants. The latter
ones can be expressed in the following forms:

Nx

Ny

Mx

My

Qx

8>>>><
>>>>:

9>>>>=
>>>>;
¼
X1
n¼1

nxn
nyn
mxn

myn

qxn

8>>>><
>>>>:

9>>>>=
>>>>;
sin�y,

Nxy

Mxy

Qy

8<
:

9=
;¼

X1
n¼1

nxyn
mxyn

qyn

8<
:

9=
;cos�y

ð43Þ

i.e. nxn is the function coefficient in the Fourier series of
Nx, etc. To define the B.C.s we start with CLPT, and

then by highlighting the differences between the two
theories we continue with FSDT.

Kirchhoff plate theory. For the present problem, 28 con-
ditions need to be formulated. The B.C.s for simply-
supported edges are (6 conditions)

Wð1aÞn ðaÞ ¼ 0, V
ð1aÞ
0n ðaÞ ¼ 0, nð1aÞxn ðaÞ ¼ 0, mð1aÞxn ðaÞ ¼ 0

Wð2Þn ð�cÞ ¼ 0, mð2Þxn ð�cÞ þ
t

2
nð2Þxn ð�cÞ ¼ 0 ð44Þ

The continuity conditions between regions ‘‘1’’ and
‘‘2’’ are (6 conditions)

U
ð1Þ
0n ð0Þ ¼ �

t

2
W0ð2Þn ð0Þ, V

ð1Þ
0n ð0Þ ¼ �

t

2
�Wð2Þn ð0Þ

Wð1Þn ð0Þ ¼Wð2Þn ð0Þ, W
0ð1Þ
n ð0Þ ¼W0ð2Þn ð0Þ,

mð1Þxn ð0Þ ¼ mð2Þxn ð0Þ þ
t

2
nð2Þxn ð0Þ

qð1Þxn ð0Þ � �m
ð1Þ
xynð0Þ ¼ m0ð2Þxn ð0Þ þ

t

2
n0ð2Þxn ð0Þ

� 2� mð2Þxynð0Þ þ
t

2
nð2Þxynð0Þ

	 

ð45Þ

The continuity and boundary conditions for the Mx

bending moment and Vx¼Qxþ qMxy/qy (effective or
Kirchhoff shear force3), respectively, must consider
the fact that the in-plane normal and shear forces pro-
duce concentrated moments about the global X and Y
axes of the uncracked plate portion. This effect – which
is included also in equations (18) and (19) – is demon-
strated in Figure 3 and was considered in the continuity
conditions. Thus, the continuity conditions between
regions ‘‘1q’’ and ‘‘1’’ are (8 conditions)

U
ð1qÞ
0n ðx01Þ ¼ U

ð1Þ
0n ðx01Þ, V

ð1qÞ
0n ð0Þ ¼ V

ð1Þ
0n ð0Þ,

Wð1qÞn ðx01Þ ¼Wð1Þn ðx01Þ,

W0ð1qÞn ðx01Þ ¼W0ð1Þn ðx01Þ, n
ð1qÞ
xn ðx01Þ ¼ nð1Þxn ðx01Þ,

nð1qÞxyn ðx01Þ ¼ nð1Þxynðx01Þ,

mð1qÞxn ðx01Þ ¼ mð1Þxn ðx01Þ, q
ð1qÞ
xn ðx01Þ � �m

ð1qÞ
xyn ðx01Þ

¼ qð1Þxn ðx01Þ � �m
ð1Þ
xynðx01Þ, ð46Þ
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Figure 3. The effect of in-plane normal and shear forces of the top (a) and bottom (b) plates on the global moment equilibrium of

the system.
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where x01¼ xQ – d0. Moreover, 8 continuity conditions
can be formulated between regions ‘‘1a’’ and ‘‘1q’’ at
x02¼ xQþ d0, these are similar to those in equation
(46), therefore they are not presented. Totally, the
system involves 28 equations and the same number of
unknowns.

Mindlin plate theory. The B.C.s given by equation (44) are
complemented with further two conditions (resulting in
8 conditions):

Yð1aÞn ðaÞ ¼ 0, V
ð2Þ
0n ðaÞ ¼ 0 ð47Þ

The continuity conditions between regions ‘‘1’’ and
‘‘2’’ are (8 conditions):

U
ð1Þ
0n ð0Þ¼

t

2
Xð2Þn ð0Þ, X

ð1Þ
n ð0Þ¼Xð2Þn ð0Þ, V

ð1Þ
0n ð0Þ¼

t

2
Yð2Þn ð0Þ,

Yð1Þn ð0Þ¼Yð2Þn ð0Þ,W
ð1Þ
n ð0Þ¼Wð2Þn ð0Þ,W

0
nð1Þð0Þ¼W0nð2Þð0Þ,

mð1Þxn ð0Þ¼mð2Þxn ð0Þþ
t

2
nð2Þxn ð0Þ,m

ð1Þ
xynð0Þ¼mð2Þxynð0Þþ

t

2
nð2Þxynð0Þ

ð48Þ

The latter two ones consider the effect presented in
Figure 4. The continuity conditions between regions
‘‘1q’’ and ‘‘1’’ are (10 conditions)

U
ð1qÞ
0n ðx01Þ ¼ U

ð1Þ
0n ðx01Þ, X

ð1qÞ
n ðx01Þ ¼ Xð1Þn ðx01Þ,

V
ð1qÞ
0n ðx01Þ ¼ V

ð1Þ
0n ðx01Þ

Yð1qÞn ðx01Þ ¼ Yð1Þn ðx01Þ, W
ð1qÞ
n ðx01Þ ¼Wð1Þn ðx01Þ,

W0ð1qÞn ðx01Þ ¼W0ð1Þn ðx01Þ

nð1qÞxn ðx01Þ ¼ nð1Þxn ðx01Þ, n
ð1qÞ
xyn ðx01Þ ¼ nð1Þxynðx01Þ,

mð1qÞxn ðx01Þ ¼ mð1Þxn ðx01Þ, m
ð1qÞ
xyn ðx01Þ ¼ mð1Þxynðx01Þ ð49Þ

Further, 10 continuity conditions can be formulated
between regions ‘‘1a’’ and ‘‘1q’’ at x02¼ xQþ d0, and so
totally the system involves 36 equations. Based on the
continuity conditions, the shear forces Qx, Qy are con-
tinuous across the delamination front.

Calculation of the j-integral

In the general 3D case, the J-integral is defined as:50,51

Jk ¼

Z
C

ðWnk � �ijui, knjÞds�

Z
A

ð�i3ui,kÞ,3dA, k¼1, 2, 3

ð50Þ

where W is the strain energy density:

W ¼

Z"ij
0

�ijd"ij ¼
1

2
ð�x"x þ �y"y þ �xy�xy þ �xz�xz þ �yz�yzÞ

ð51Þ

Moreover, based on Figure 4, nk is the outward
normal vector of the contour C, �ij is the stress
tensor, ui is the displacement vector, A is the area
enclosed by the contour C. The separation of the
modes is possible by using a direct method50,51:

J1 ¼ JI þ JII þ JIII, J2 ¼ �2
ffiffiffiffiffiffiffiffiffiffi
JIJII

p
, J3 ¼ JIII ð52Þ

In our problem, x1¼x, x2¼ z and x3¼ y, respect-
ively. For the calculation, we apply a zero-area path
around the crack tip.36 This way the surface integral
in equation (50) becomes zero. The layerwise stress–
strain relations in laminated composite plates are1,2

�x

�x

�xy

2
64

3
75
ðkÞ

¼

C11 C12 0

C21 C22 0

0 0 C66

2
64

3
75
ðkÞ

"x

"y

�xy

2
64

3
75,

�xz

�yz

� �ðkÞ
¼

C55 0

0 C44

" #ðkÞ
�xz

�yz

� �
ð53Þ

where {Cij} is the stiffness matrix of the kth laminate.
Taking the stresses and strains calculated by FSDT
back into J1 in equation (52), we obtain an expression

x2 x2

x3

P
A

C

Cγ

n

Crack tip
Crack front

Figure 4. Reference system for the J-integral.
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including the product of stress resultants and strain
components in the form of

J1 ¼
1

2
Nx1"

ð0Þ
x1

���
x¼þ0
�Nx2"

ð0Þ
x2

���
x¼�0

	 

�
1

2
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���
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���
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þ
1

2
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�
1

2
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1
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�
1

2
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xy1

���
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�Mxy2�̂

ð1Þ
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���
x¼�0

	 

þQx1

1
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�ð0Þxz1 �

@w1

@x

� �����
x¼þ0

�Qx2
1

2
�ð0Þxz2 �

@w2

@x

� �����
x¼�0

þ
1

2
Qy1�

ð0Þ
yz1

���
x¼þ0
�Qy2�

ð0Þ
yz2

���
x¼�0

	 

ð54Þ

where e.g. Nx1 is the in-plane normal force for the dela-
minated portion, "x1

ð0Þ is the constant part of the strain
in the x direction as it is defined in equation (6) etc.
Moreover, the shear strains with the hat are

�̂ð0Þxy ¼
@u0
@y
�
@v0
@x

, �̂ð1Þxy ¼
@�x
@y
�
@�y
@x

ð55Þ

for the FSDT theory and

�̂ð0Þxy ¼
@u0
@y
�
@v0
@x

, �̂ð1Þxy ¼ 0 ð56Þ

for the CLPT. The latter is not surprising after substi-
tuting equation (24) into equation (55). Considering the
fact that Qx, Qy and the corresponding strains are con-
tinuous across portions ‘‘1’’ and ‘‘2’’, the relevant part
of the J-integral vanishes. In the case of Kirchhoff plate
theory, the corresponding terms are apparently zero.
The remaining part can be separated based on the
direct method (refer to equation (52)) or by simply
separating the terms including the sin (mode-II) and
cos (mode-III) functions, leading to

JII ¼ 2
1

2
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ð0Þ
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���
x¼þ0
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���
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þ
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�
1

2
My1"
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y1

���
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���
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�
ð57Þ

JIII ¼ 2 �
1

2
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�Nxy2�̂

ð0Þ
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���
x¼�0
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�
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2
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ð1Þ
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�Mxy2�̂

ð1Þ
xy2

���
x¼�0

	 
�
ð58Þ

which is valid for both theories. The production by 2 is
necessary because we have top and bottom plates and
only the top plate was analyzed. For the CLPT, the
stress resultants are calculated by the first of equation
(2), the strains are calculated by equations (6), (25) and
from the second of (17). In the case of FSDT, the stress
resultants are obtained from equation (2), the strains
are determined from equations (6) and (17). Also, the
present formulation does not incorporate any physic-
ally inconsistent parameters (e.g. shear compliances, see
e.g. [8,41,45,46]), it is based on an entirely exact formu-
lation including the material law of orthotropic solids.

Results and discussion

The properties of the analyzed simply-supported plate
were (refer to Figure 3): a¼ 105 mm (crack length),
c¼ 45mm (uncracked length), b¼ 100mm (plate
width), t¼ 2mm (half plate thickness), Q0¼ 1000N
(point force magnitude), xQ¼ 31mm, yQ¼ 50mm
(point of action coordinates of Q0), d0¼ 0.1mm and
q0¼Q0/2d0. The plate is made of a carbon/epoxy
material, the lay-up of the plate was [� 45f2;
012;� 45f2] for the delaminated and [� 45f2; 012;� 45f2]s
for the uncracked part. The superscript ‘‘f’’ refers to the
fact that the cross-ply laminate is a woven fabric panel.
The properties of the individual laminae are given in
Table 1.1 The computation was performed in the code
MAPLE 1252 in accordance with the following points.
The stiffness matrices of each single layer, the stiffness
matrices ([A] and [D]) of the plate, were determined
based on the elastic properties of the laminates as
given in Table 1. The problem in Figure 2 was solved
varying the number of Fourier series terms (N) by
creating a for-do cycle. Based on the displacement
parameters, the stress resultants and the stresses were
calculated, while the ERRs were computed using the
J-integral. The convergence of the results was analyzed
and it was found that after the 13th Fourier term there
was no change in the displacement field, stresses, stress
resultants and ERRs.

FE model

In order to verify the analytical results, FE analysis was
carried out. The 3D FE model of the plate was created
in the code ANSYS 12 using 8-node solid elements.
Similar 3D models are documented by de Morais and
Pereira22 and Pereira and de Morais,30 therefore the
model is not shown here; 50, 78 and 10 elements were
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applied along the plate width (y), length (x) and thick-
ness (z), respectively. The global element size was
2mm� 2mm� 0.4mm. In the vicinity of the crack
tip, a refined mesh was constructed including trapezoid
shape elements.12 The z displacements of the contact
nodes over the delaminated surface were imposed to
be the same. The mode-II and mode-III ERRs were
calculated by the VCCT; the size of the crack tip elem-
ents were �x¼ 0.2mm, �y¼ 0.2mm and �z¼ 2mm.
For the determination of GII and GIII along the delam-
ination front a so-called MACRO was written in the
ANSYS Design and Parametric Language (ADPL).
The MACRO gets the nodal forces and displacements
at the crack tip at each pair of nodes, respectively,
then by defining the size of crack tip elements it deter-
mines and plots the ERRs at each node along the crack
front.

Analytical and numerical results

Figure 5 shows the in-plane displacements in the vicinity of
two points of the plate: u(0,b/2,z) and v(0,b,z), i.e. each
point lies in the crack front. It is seen that the CLPTunder-
predicts the FE solution; on the other hand, the FSDT

agrees excellentlywith theFE results. This canbe explained
by the fact that CLPT does not consider the transverse (or
interlaminar) shear effect. Only a small amount of nonli-
nearity can be observed in the numerical results.

The distribution of the normal stresses, �x and �y
along the same lines as in Figure 5, are demonstrated
in Figure 6. The distributions were determined layer-
wise using the stress–strain relations given by equation
(53). In the case of �x, there are significant differences
between the analytical and FE results. The reasons for
these discrepancies are the followings. First, the FE
solution is based on the nodal stresses, which are cal-
culated by taking the average of the stresses from the
eight neighboring elements in the mutual node. That is
why it is not possible to obtain piecewise continuous
distributions by the FEM. Second, it is seen that
although the FEM provides average stresses, the
linear approximation is unable to capture accurately
the strain and stress states in the vicinity of the delam-
ination front. In a recent paper,53 it has been found that
second-order plate theory gives much better predictions
for the stress state. In the case of �y, the agreement
between analytical and numerical results is better.
Finally, the difference between CLPT and FSDT is
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Figure 5. Distribution of the in-plane displacements over the plate thickness.

Table 1. Elastic properties of single carbon/epoxy laminates.

Ex (GPa] Ey (GPa) Ez (GPa) Gyz (GPa) Gxz (GPa) Gxy (GPa) 
yz 
xz 
xy

�45�f 16.39 16.39 16.4 5.46 5.46 16.4 0.5 0.5 0.3

0� 148 9.65 9.65 4.91 4.66 3.71 0.27 0.25 0.3
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not significant. It has to be mentioned that in the FE
model, the displacement and stress continuity is
ensured, but in the analytical models only the continu-
ity of displacement parameters and shear forces Qx, Qy

(FSDT) can be realized.
Consequently, the stresses are not continuous in

accordance with either the CLPT or FSDT, however,
the discrepancies in stresses are not so significant in the
transition between the delaminated and undelaminated
plate portions.

The distributions of transverse shear stresses are
plotted in Figure 7. The FE solution, the solution by

FSDT (piecewise constant, purple line) as well as the
solution calculated by the 3D equilibrium equations are
equally presented. The latter ones were calculated by
the �r ¼ 0 equation2,49 including both theories. The
mismatch between the FE and analytical solutions is
significant, especially in the interface plane of the
plate, where the FE model predicts a sharp peak.
From another point of view, the FSDT and 3D equi-
librium solutions agree well, while the CLPT predicts
negligible shear stresses. The disagreement between the
numerical and analytical models is attributed to the fact
that the assumed linear displacement field in terms of z
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Figure 6. Distribution of the normal stresses over the plate thickness.
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Figure 7. Distributions of shear stresses over the plate thickness.
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is unable to provide better results. The distributions of
the in-plane normal force Nx(x,y) and the shear force
Nxy(x,y) are plotted in Figure 8.

Although these stress resultants could be calculated
by the FE model too (by integrating the normal and in-
plane shear stresses in the through-thickness direction),
this would be a very long process, therefore, in this case
only analytical results are presented. It is seen that near
the delamination front (x¼ 0) these stress resultants
change suddenly and significantly. Moreover, Nx

involves the sin, while Nxy involves the cos function
(refer to equation (43)) leading to the completely differ-
ent nature of these stress resultants. One of the advan-
tages of plate theory over the FE model is that these
plots can be obtained very simply in the analytical way.
Considering the values, the difference between the
CLPT (Figure 8(a) and (b)) and FSDT (Figure 8(c)
and (d)) theories is significant. The FSDT theory indi-
cates that the stress resultants change more suddenly at
the crack front (x¼ 0) compared to the CLPT. The
reason for that is again the fact that transverse shear

effect is not considered by CLPT, and the absence of
the independent rotational parameters results in the
discrepancies between the stress resultants presented
in Figure 8(a)–(d). Also, the different displacement
fields of CLPT and FSDT lead to different equilibrium
equations (compare equation (18)–(20) and (29)) and so
different stress resultants.

The interlaminar shear stress (¼transverse shear in
accordance with the duality of shear stresses) distribu-
tions along the global midplane of the undelaminated
plate portion (top plate, refer to Figure 1) can be cal-
culated based on the FSDT as:

�xzjz¼�t
2
¼ G�4513 �xz ¼ G�4513 �x2 þ

@w2

@x

� �
,

�yz
��
z¼�t

2

¼ G�4523 �yz ¼ G�4523 �y2 þ
@w2

@y

� � ð59Þ

where the shear moduli are defined in Table 1. The
function plots are given by Figure 9. Both stresses
change significantly near the delamination front and
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decay suddenly by getting far from it. It is important to
note that �xz does not vanish at the x¼�c boundary, on
the other hand, �yz vanishes entirely at the same
location.

The mode-II, mode-III ERRs and the mode ratio
along the delamination front are plotted in Figure 10.
The symbols show the results of the VCCT, while the
curves represent the results by CLPT and FSDT.
According to Figure 10(a), it can be seen that the
CLPT produces some overprediction for GII compared
to the VCCT but underpredicts significantly GIII. We
note that in accordance with equations (58) and (56),
the ERR by Mxy vanishes in the case of CLPT. The
reason for that is the continuity of the derivative of
the deflections in equation (45) in the transition zone
and that both the twisting moment and twisting

curvature are proportional to this derivative.
Consequently, in the case of CLPT GIII comes from
the in-plane shear force Nxy only. Seeing the results
by FSDT, a better agreement with the numerical results
is obtained. Although the mode-II ERR compared to
the VCCT result is significantly underpredicted, the
overall agreement is acceptable. These results show
that a displacement field with at least five parameters
(three parameters with interface constraints) is neces-
sary to reach an acceptable agreement with the VCCT
results. The mode ratios are plotted in Figure 10(b).
The main conclusion is that the FSDT captures this
ratio even better than CLPT. It is important to mention
that the VCCT method is mesh-sensitive to a certain
degree and the investigation of the effect of mesh refine-
ment was outside the scope of this paper.
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Figure 9. Distribution of the interlaminar shear stresses over the uncracked (top) plate portion.
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For the sake of completeness, the ERRs and mode
ratios were also calculated for the case when the plate
width was b¼ 160mm. The results are presented in
Figure 11. Although the CLPT captures better the
mode-II ERR in the middle part of the plate, the
mode-III ERR differs significantly in comparison with
the FE results. The FSDT provides better results, espe-
cially in the case of GIII. Independent of the fact
whether the CLPT or FSDT theory is utilized, the ana-
lytical models do not capture the edge effect. More
clearly, the FE solution indicates some oscillatory
change at the plate edges; on the contrary, the analyt-
ical solutions remain smooth. The final conclusion is
that the transverse (or interlaminar) shear effect plays
an important role in the development of an accurate
plate model to analyze delaminated composite plates
even in that case when the plate is relatively thin.

Conclusions

The classical laminated and first-order shear deform-
able plate theories are utilized in this work to develop
a double-plate system for delaminated orthotropic
composite plates. The models are based on the continu-
ity of the displacement field across the delamination
front by imposing the kinematic constraints along the
interface. A simply-supported delaminated plate sub-
jected to a point force was analyzed using Lévy plate
formulation, the stresses and the ERRs were calculated.
The results were compared to those of a 3D FE model
and a comparison was made among the results
obtained. The final conclusion is that transverse shear
effect and the coupling between the stress resultants
play important role in the development of an accurate
plate model for delaminated composite plates.

The present model eliminates the physically incon-
sistent shear compliance of the flexible joint models and
includes the effect of interface deformation based on the
equations of linear elasticity and the material law of
orthotropic solids. It was shown that although the dis-
placement components are continuous across the
delamination, there are stress resultants, which remain
discontinuous. Moreover, the shear forces vanish in the
J-integral, and the mode-II and mode-III ERRs are
defined in a relatively simple way. However, it must
be mentioned that only mixed-mode II/III fracture
problems were considered in this study and the trans-
verse deflection of the top and bottom plates was con-
sidered to be the same. It has been shown that the
difference between the FE and plate theory solution
becomes the largest at the edges of the plate.

Considering the available methods for the calcula-
tion of the ERR in plates, the first alternative is in
general the VCCT. However, for the 3D FE model,
the computation could be lengthy, especially if the
model size is relatively large. Furthermore, in the
crack tip a refined mesh should be constructed to
obtain accurate ERR values. Finally, in most of the
commercial FE packages, the VCCT has not yet been
implemented. The present work provides another pos-
sibility for the calculation of the ERR in plates sub-
jected to bending. The possible application field of the
presented method is the fracture mechanics of compos-
ite materials. In the last few years, fracture test methods
including plate-like specimens have been developed to
characterize the mode-III, mixed-mode II/III and
mixed-mode I/III fracture behavior of laminated mater-
ials.18,22,30 By preparing a detailed user-friendly work-
sheet in MAPLE, it is possible to provide a data
reduction scheme for the experimentalists. Also, the
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Figure 11. Distribution of the ERRs and the mode ratio by CLPT, FSDT and VCCT (b¼ 160 mm). ERRs: energy release rate; CLPT:

classical laminated plate theory; FSDT: first-order shear deformable plate theory; VCCT: virtual-crack closure technique.
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application to asymmetrically delaminated orthotropic
and angle-ply laminated plates as well as sandwich
panels needs to be investigated. The present model
can be implemented in the vibration analysis of
simply-supported composite plates too. Finally, the
analysis developed in this paper may be utilized as a
means for benchmarking fracture mechanical tools54

that are available in commercial FE packages. These
tasks will be carried out in the near future.
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Appendix 1

Coefficients for equations (21)–(23) and (38)

â1 ¼ A11t
2=4þD11, â2 ¼ A66t

2=4þD66, â3 ¼ â5

¼ �kA55, â4 ¼ ðA12 þ A66Þt
2=4þD12 þD66

b̂1 ¼ â4, b̂2 ¼ â2, b̂3 ¼ A22t
2=4þD22, b̂4 ¼ b̂5 ¼ �kA44

ĉ1 ¼ ĉ3 ¼ kA55, ĉ2 ¼ ĉ4 ¼ kA44, ĉ5 ¼ 1

d̂1 ¼ ð�
2â2 � â3Þ=â1, d̂2 ¼ �â4=â1, d̂3 ¼ �â5=â1

ê1 ¼ ��b̂1=b̂2, ê2 ¼ ð�
2b̂3 � b̂4Þ=b̂2, ê3 ¼ ��b̂5=b̂2

f̂1 ¼ �ĉ1=ĉ3, f̂2 ¼ �ĉ2=ĉ3, f̂3 ¼ �
2ĉ4=ĉ3, f̂4 ¼ �ĉ5=ĉ3

ð60Þ
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Appendix 2

Coefficients for equation (34)

a1 ¼ A11, a2 ¼ A66, a3 ¼ A12 þ A66, ð61Þ

b1 ¼ a3, b2 ¼ a2, b3 ¼ A22

c1 ¼ D11, c2 ¼ D66, c3 ¼ c5 ¼ �kA55, c4 ¼ D12 þD66

d1 ¼ c4, d2 ¼ c2, d3 ¼ D22, d4 ¼ d5 ¼ �kA44

e1 ¼ e2 ¼ kA55, e2 ¼ e4 ¼ kA44, e5 ¼ 1

f1 ¼ �
2a2=a1, f2 ¼ �a3=a1

g1 ¼ ��b1=b2, g2 ¼ �
2b3=b2

h1 ¼ ð�
2c2 � c3Þ=c1, h2 ¼ �c4=c1, h3 ¼ �c5=c1

j1 ¼ ��d1=d2, j2 ¼ ð�
2d3 � d4Þ=d2, j3 ¼ ��d5=d2

k1 ¼ �e1=e3, k2 ¼ �e2=e3, k3 ¼ �
2e4=e3, k4 ¼ �e5=e3

ð62Þ
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