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Natural vibration-induced parametric
excitation in delaminated Kirchhoff plates

András Szekrényes

Abstract

This paper revisits the problem of free vibration of delaminated composite plates with Lévy type boundary conditions.

The governing equations are derived for laminated Kirchhoff plates including through-width delamination. The plate is

divided into two subplates in the plane of the delamination. The kinematic continuity of the undelaminated part is

established by using the system of exact kinematic conditions. The free vibration analysis of orthotropic simply sup-

ported Lévy plates reveals that the delaminated parts are subjected to periodic normal and in-plane shear forces. This

effect induces parametric excitation leading to the susceptibility of the plates to dynamic delamination buckling during the

vibration. An important aspect is that depending on the vibration mode the internal forces have a two-dimensional

distribution in the plane of the delamination. To solve the dynamic stability problem the finite element matrices of the

delaminated parts are developed. The distribution of the internal forces in the direction of the delamination front was

considered. The mode shapes including a half-wave along the width of the plate accompanied by delamination buckling

are shown based on the subsequent superimposition of the buckling eigenshapes. The analysis reveals that the vibration

phenomenon is amplitude dependent. Also, the phase plane portraits are created for some chosen cases showing some

special trajectories.
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Introduction

Delaminations are typical defects in composite and
sandwich structures induced by indentations (e.g.
local loading by spherical indentors),1,2 low-velocity
impact and free edge effects (normal and shear stress
concentration between layers at free edges),3–6 finally
by fabrication defects.7,8 The cracks and delaminations
reduce significantly the strength and stiffness of com-
posite laminates.9–11 The material defects also influence
the dynamic behavior of the structures.12–20 One of the
widely known dynamic phenomena is parametric exci-
tation, which takes place in machine tools,21,22 milling
processes,23 spinning shafts,24 railway wheelsets,25,26

beams, plates and shells with base excitation,27–30

axial31,32 or electromagnetic excitation,33 beams with
piezoelectric absorber,29 towers, bridges subjected to
different loads,34,35 wheel systems36 and also typical in
different type of oscillators37 and pendulums.38

This paper was inspired by the really huge literature
related to the vibration analysis of delaminated

composite beams including dynamic stiffness
method,39 traditional methods40–43 and application
even to multiple delaminated beams,44–47 finite element
(FE) analysis,48,49 postbuckled plates,50 and solution
relative to buckled state.51 Moreover, many papers
deal with the vibration of delaminated beams with
finite element method (FEM),52–55 application of
Timoshenko beams with delamination56,57 including
moving loads and masses58–63 and elastic foundation.64

The solution of the problems is also possible by the
differential quadrature method.65 The contact between
the delamination faces was captured by FEM in
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Perel66–68 recently. Finally, but not least, there are
papers analyzing delaminated beams with piezoelectric
actuators69,70 and investigating damping and dispersion
characteristics.71,72 For delaminated beams many para-
metric studies have been published, including effect of
delaminations on the mode shapes in composite73–78

and sandwich beams.79 In Burlayenko and
Sadowski,80 the foam/core debonding in sandwich
plates was investigated during free vibration.
However, the existence of the parametric excitation
was not revealed in any of the former papers.

To the best of the author’s knowledge, the existence
of the parametric excitation in the course of free vibra-
tion of delaminated composite beams was first revealed
in Szekrényes81 and was solved effectively by the FE
and harmonic balance methods in Szekrényes.82 It
was also shown that the delamination buckling takes
place only if the free vibration amplitude exceeds the
so-called critical amplitude at a specified point of the
beam. The existence of the critical amplitude was also
proved experimentally. The parametric excitation in
delaminated plates is possible to appear, as well.
Similarly to the theory of laminated and composite
beams83–90 the literature is very rich in the different
theories to model laminated composite plates and
shells. Thin flat plates can be modeled by the classical
or Kirchhoff plate theory,91,92 while for relatively thick
plates the first-order shear deformation theory (FSDT
or Mindlin),93–100 second-order shear deformation
theory (SSDT),101–105 general third-order theory
(TSDT),106–108 Reddy third-order theory,109–112 other
higher-order shear deformation theories
(HSDT),113–115 layerwise theories,116–121 and the 3D
elasticity solutions122,123 are developed. These theories
have been utilized to model curved shells124–126 and
delaminated and cracked laminates9,10,127–129 subse-
quently in the near past.

In this paper, it is shown that the phenomenon of
parametric excitation can take place in free vibrating
delaminated plates. Since—to the best of the author’s
knowledge—there is not available publication for the
solution of this problem, the classical (or Kirchhoff)
laminated plate theory (CLPT) is applied in this
paper. The plate is divided into two parts in the plane
of the delamination and the double-plate system is
modeled by equivalent single layers (ESLs). The kine-
matic continuity is established by the system of exact
kinematic conditions (SEKC) published in previous
papers by Szekrényes.96,110 The governing equations
are presented and plate problems with Lévy type
boundary conditions are solved as examples by the
state-space approach.130 It is shown that the delami-
nated part of the plate is subjected to periodic in-
plane loads leading to parametric excitation and the
possibility of delamination buckling during the

vibration. The critical loads are determined by a
FE model and even the mode shapes are presented
for some particular cases. An important finding com-
pared to previous results82 is that by increasing the
vibration amplitude the subsequent appearance of
the first four buckling modes is possible during the
vibration.

Governing equations of laminated

Kirchhoff plates with delamination

The basic problem is shown in Figure 1, which is a plate
containing a through-width delamination. The
through-thickness position of the delamination is asym-
metric, i.e. it can be placed between any neighboring
plies. Five different regions are indicated in Figure 1:
(1) and (5) represent the undelaminated regions, (3)
shows the delaminated part, and finally (2) and (4) indi-
cate the left and right delamination fronts. The problem
is solved by modeling separately the different parts of
the plate. Similar problems under static load have
already been solved and published in various litera-
tures.91,96,104,106,109,110 Therefore, wherever it is possible
the reader will be referred to previous papers. In this
paper we investigate the natural vibration of the plate
including delamination opening. It is assumed that
during the vibration there is no delamination growth.
We also assume that the friction between the top and
bottom delaminated plates is negligible, the opening
and closure of the top and bottom plates take place
at the same time in each point and there is no partial
opening/closure. Finally, we disregard the oscillatory
nature of the stresses, which is typical in interfacial
cracks.131

Undelaminated part

The plate is divided into two ESLs132 in the plane of the
delamination. The thicknesses are tt and tb. The in-
plane displacement components in Kirchhoff plates
can be written as132

u�ðx, y, z
ð�Þ, tÞ ¼ u0ðx, y, tÞ þ u0�ðx, y, tÞ

�
@w

@x
ðx, y, tÞ � zð�Þ

v�ðx, y, z
ð�Þ, tÞ ¼ v0ðx, y, tÞ þ v0�ðx, y, tÞ

�
@w

@y
ðx, y, tÞ � zð�Þ ð1Þ

where u0, v0 are the global, u0� and v0� are the local
membrane displacements, w(x, y) is the transverse
deflection and zð�Þ is the local through-thickness coord-
inate, � ¼ t for the top, and b for the bottom plate. The
kinematic continuity of the top and bottom plates is
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established by the SEKC96,110 through the following
equations

utjzðtÞ¼�tt
2
¼ ubjzðbÞ¼tb

2
, vtjzðtÞ¼�tt

2
¼ vbjzðbÞ¼tb

2
, wtjzðtÞ¼�tt

2

¼ wbjzðbÞ¼tb
2

ð2Þ

The second set of conditions means that on the
global mid-plane of the uncracked part the in-plane
displacements are equal to the global membrane dis-
placement components,110 i.e.

tt þ tb
2

� tb : ubjzðbÞ¼tt
2
�u0 ¼ 0, vbjzðbÞ¼tt

2
�v0 ¼ 0

� tb : utjzðtÞ¼�tb
2
�u0 ¼ 0, vtjzðtÞ¼tb

2
�v0 ¼ 0

(
ð3Þ

Using equations (1) to (3) and eliminating the local
membrane displacement parameters leads to the
following

utðx, y, z
ðtÞ, tÞ ¼ u0 �

@w

@x
�

tb
2
þ zðtÞ

� �
,

vtðx, y, z
ðtÞ, tÞ ¼ v0 �

@w

@y
�

tb
2
þ zðtÞ

� �
ubðx, y, z

ðbÞ, tÞ ¼ u0 þ
@w

@x
�

tt
2
� zðbÞ

� �
,

vbðx, y, z
ðbÞ, tÞ ¼ v0 þ

@w

@y
�

tt
2
� zðbÞ

� �
ð4Þ

namely, the displacement field in the uncracked region
depends only upon u0, v0 and w. The strain field can be
calculated by the geometric equation assuming small
displacements (or amplitudes)133

"ij ¼
1

2
ui,j þ uj,i
� �

ð5Þ

The stresses can be determined by using the consti-
tutive law of orthotropic thin plates in the form of
�ki ¼

�C
ðkÞ
ij �j, where �C

ðkÞ
ij is the stiffness matrix of the

kth layer in the laminate.134 The integration of the
stresses in the through-thickness coordinates of both
the top and bottom plates results in the matrix equation
of laminated thin-walled structures135

N

M

� �
ð�Þ

¼
A B

B D

� �
ð�Þ

"ð0Þ

"ð1Þ

 !
ð�Þ

ð6Þ

where "ð0Þ and "ð1Þ represent the vector of constant and
linear strains, N and M are the vectors of normal forces
and bending moments

N ¼ Nx Ny Nxy

� �T
, M ¼ Mx My Mxy

� �T
ð7Þ

where the vector components are calculated as

Nx

Ny

Nxy

0B@
1CA ¼XN

k¼1

Z zkþ1

zk

�x

�y

�xy

0B@
1CAdz, Mx

My

Mxy

0B@
1CA

¼
XN
k¼1

Z zkþ1

zk

�x

�y

�xy

0B@
1CAzdz ð8Þ

In equation (6), the matrices of extensional, coupling
and bending stiffnesses are defined below134

A ¼
XN
k¼1

C
ðkÞ
ðzkþ1 � zkÞ,

B ¼
1

2

XN
k¼1

C
ðkÞ
ðz2kþ1 � z2kÞ,

D ¼
1

3

XN
k¼1

C
ðkÞ
ðz3kþ1 � z3kÞ ð9Þ

Figure 1. Layered composite plate with Lévy-type boundary conditions and through-width delamination.
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Note that the stiffness matrices are calculated separ-
ately for the top and bottom plates with respect to the
local mid-planes.96,110 Formulating the total potential
energy of the system using equations (4) to (8) and
applying the principle of virtual work132 it is possible
to obtain the following equations of motion

�u0 :
X
�¼t,b

ðNx�,x þNxy�,yÞ � Î0 €u0 þ Î1 €w,x ¼ 0

�v0 :
X
�¼t,b

ðNxy�,x þNy�,yÞ � Î0 €v0 þ Î1 €w,y ¼ 0

�w :
X
�¼t,b

ðM̂x�,xx þ 2M̂xy�,xy þ M̂y�,yyÞ

� Î0 €w� Î1ð €u0,x þ €v0,yÞ þ Î2� €w ¼ 0 ð10Þ

where the first two of equation (10) govern the in-
plane vibration of the plate, while the last of equa-
tion (10) is related to the transverse motion of the
structure. The dot in the equations above means
the time derivative. In both cases the coupling
between extensional-bending deformation and motion
is included. The constants in equation (10) are given
below

Î0 ¼ I0t þ I0b, Î1 ¼ I1t þ I1b þ I0t
tb
2
� I0b

tt
2

Î2 ¼ I2t þ I2b þ I1ttb � I1btt þ I0t
t2b
4
þ I0b

t2t
4
ð11Þ

where the mass moments of inertia are132

I0 ¼
XN
k¼1

�ðkÞðzkþ1 � zkÞ,

I1 ¼
1

2

XN
k¼1

�ðkÞðz2kþ1 � z2kÞ,

I2 ¼
1

3

XN
k¼1

�ðkÞðz3kþ1 � z3kÞ ð12Þ

where �ðkÞ is the mass density of the kth
layer. Apparently, equation (12) is calculated with
respect to the local mid-planes. The equivalent
bending and twisting moments denoted by the hat in
equation (10); moreover, the effective (Kirchhoff) shear
force are

M̂x�

M̂y�

M̂xy�

0B@
1CA ¼ Mx�

My�

Mxy�

0B@
1CAþ t��

Nx�

Ny�

Nxy�

0B@
1CA,

V̂x� ¼
@M̂x�

@x
þ 2

@M̂xy�

@y
ð13Þ

where t�� ¼ �tb=2 for the top and tt=2 for the bottom
plate.

Delaminated part

In the delaminated part (3) of the plate in Figure 1 the
displacement functions are defined as91

u�ðx, y, z
ð�Þ, tÞ ¼ u0�ðx, y, tÞ �

@w

@x
ðx, y, tÞ � zð�Þ

v�ðx, y, z
ð�Þ, tÞ ¼ v0�ðx, y, tÞ �

@w

@y
ðx, y, tÞ � zð�Þ ð14Þ

The deflection of the top and bottom plates in the
delaminated part are equal to each other, i.e.
wt ¼ wb ¼ wðx, yÞ. In other words we apply the con-
strained mode model.81,136 The governing equations
of the plate can be derived based on the book by
Reddy132

�u0� : Nx�,x þNxy�,y � I0� €u0� þ I1� €w,x ¼ 0

�v0� : Nxy�,x þNy�,y � I0� €v0 � I1� €w,y ¼ 0

�w :
X
�¼t,b

ðMx�,xx þ 2Mxy�,xy þMy�,yy

� I0� €w� I1�ð €u0�,x þ €v0�,yÞ þ I2�� €wÞ ¼ 0 ð15Þ

where we have five equations altogether, because � ¼ t
or b for the top and bottom plates respectively. In the
next section, the solution of the equations of motion for
delaminated orthotropic plates with Lévy-type bound-
ary conditions is presented.

Orthotropic Lévy plates with closed
delamination

In accordance with Lévy plate formulation,137,138 the
following solutions satisfy the simply supported condi-
tions if y 2 ½0, b�

u0ðx, y, tÞ

v0ðx, y, tÞ

wðx, y, tÞ

0BBB@
1CCCA ¼

U0nðxÞ sin�y

V0nðxÞ cos�y

WnðxÞ sin �y

0BBB@
1CCCA sin�t ð16Þ

where � ¼ n	=b (b is the width of the plate, refer to
Figure 1) and � is the free vibration frequency.

Undelaminated part

Taking equation (16) into equation (10) and sim-
plifying the resulting equations it is possible to
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reduce the system of PDEs into system of ODEs in the
form of

Z0 ¼ TZ ð17Þ

which is the state-space model139 of the undelaminated
regions. The system matrix T in equation (17) is

T ¼

0 1 0 0 0 0 0 0

ĥ1 0 0 ĥ2 0 ĥ3 0 ĥ4

0 0 0 1 0 0 0 0

0 ĵ1 ĵ2 0 ĵ3 0 ĵ4 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 n̂1 n̂2 0 n̂3 0 n̂4 0

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
ð18Þ

where the constants are collected in Appendix 1. The
state vector, Z is

ZðxÞ ¼ U0n U00n V0n V00n Wn W0n W
0 0
n W

0 00

n

� �T
ð19Þ

The solution of equation (17) can be given in the
following form (matrix exponential140)

ZðxÞ ¼ AeTx ð20Þ

where A is the vector of constants. The model devel-
oped in this section is applied to regions (1) and (5) in
Figure 1.

Delaminated part

In the delaminated part, the solution by equation (16)
can be used as well. Based on the previous section, the
state-space model of delaminated part (region (3) in
Figure 1) can be constructed similarly using equation
(15), the results are documented in Reddy132 and Ye,139

therefore the details are omitted here.

Boundary and continuity conditions

The boundary conditions (B.C.s) of the plate with
simply supported edges at x¼ 0 and x¼L shown in
Figure 1 are

Wð1Þn ð0Þ ¼ 0, V
ð1Þ
0n ð0Þ ¼ 0,

N
ð1Þ
xt þN

ð1Þ
xb

���
x¼0
¼ 0, M̂

ð1Þ
xt þ M̂

ð1Þ
xb

���
x¼0
¼ 0 ð21Þ

Wð5Þn ðLÞ ¼ 0, V
ð5Þ
0n ðLÞ ¼ 0,

N
ð5Þ
xt þN

ð5Þ
xb

���
x¼L
¼ 0, M̂

ð5Þ
xt þ M̂

ð5Þ
xb

���
x¼L
¼ 0 ð22Þ

For built-in edges at x¼ 0 and x¼L the B.C.s
modify to

Wð1Þn ð0Þ ¼ 0, W
0ð1Þ
n ð0Þ ¼ 0, V

ð1Þ
0n ð0Þ ¼ 0,

N
ð1Þ
xt þN

ð1Þ
xb

���
x¼0
¼ 0 ð23Þ

Wð5Þn ðLÞ ¼ 0, W
0ð5Þ
n ðLÞ ¼ 0, V

ð5Þ
0n ðLÞ ¼ 0,

N
ð5Þ
xt þN

ð5Þ
xb

���
x¼L
¼ 0 ð24Þ

If the edges at x¼ 0 and x¼L are free, then the
B.C.s become

N
ð1Þ
xt þN

ð1Þ
xb

���
x¼0
¼ 0, N

ð1Þ
xyt þN

ð1Þ
xyb

���
x¼0
¼ 0,

M
ð1Þ
xt þM

ð1Þ
xb

���
x¼0
¼ 0, V̂

ð1Þ
xt þ V̂

ð1Þ
xb

���
x¼0
¼ 0 ð25Þ

N
ð5Þ
xt þN

ð5Þ
xb

���
x¼L
¼ 0, N

ð5Þ
xt þN

ð5Þ
xb

���
x¼L
¼ 0,

M
ð5Þ
xt þM

ð5Þ
xb

���
x¼L
¼ 0, V̂

ð5Þ
xt þ V̂

ð5Þ
xb

���
x¼L
¼ 0 ð26Þ

where V̂x is given by equation (13).
Independently of the B.C.s, the continuity of the

membrane displacements in the top and bottom plates
of the undelaminated (1) and delaminated (3) regions
based on the SEKC requirements become110

U
ð3Þ
0ntðL1Þ ¼ U

ð1Þ
0n �

tb
2
W0nð1Þ

���
x¼L1

,

U
ð3Þ
0nbðL1Þ ¼ U

ð1Þ
0n þ

tt
2
W0nð1Þ

���
x¼L1

V
ð3Þ
0ntðL1Þ ¼ V

ð1Þ
0n �

tb
2
�Wð1Þn

���
x¼L1

,

V
ð3Þ
0nbðL1Þ ¼ U

ð1Þ
0n þ

tt
2
�Wð1Þn

���
x¼L1

ð27Þ

The transverse deflections and the derivatives have
to be continuous, as well

Wð1Þn ðL1Þ ¼Wð3Þn ðL1Þ, W0nð1ÞðL1Þ ¼W0nð3ÞðL1Þ ð28Þ

Finally the sum of the in-plane normal forces, in-
plane shear forces, effective bending moments and
effective Kirchhoff shear forces have to be continuous
at x¼ c leading to the conditions below

N
ð1Þ
xt þN

ð1Þ
xb

���
x¼L1

¼ N
ð3Þ
xt þN

ð3Þ
xb

���
x¼L1

,

N
ð1Þ
xyt þN

ð1Þ
xyb

���
x¼L1

¼ N
ð3Þ
xyt þN

ð3Þ
xyb

���
x¼L1

M̂
ð1Þ
xt þ M̂

ð1Þ
xb

���
x¼L1

¼ M̂
ð3Þ
xt þ M̂

ð3Þ
xb

���
x¼L1

,

V̂
ð1Þ
xt þ V̂

ð1Þ
xb

���
x¼L1

¼ V̂
ð3Þ
xt þ V̂

ð3Þ
xb

���
x¼L1

ð29Þ
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where in the continuity of equivalent moments and shear
forces the conditions suggested in Erdelyi and Hashemi39

and Mujumdar and Suryanarayan136 have been used, i.e.
the moments of the normal and in-plane shear forces are
taken into account in the delaminated portion, so M̂x�

and V̂x� are calculated in accordance with equation
(13). The conditions between portions (5) and (3) can be
derived based on equations (27) to (29). The total number
of conditions is 28. The equations can be given in matrix
form, where the determinant of the coefficient matrix is
set to zero to get the nontrivial solution

MA ¼ 0, Mj j ¼ 0 ð30Þ

It has to be mentioned that the elements of M con-
tain the vibration frequency (�) explicitly, so the eigen-
values can be obtained by a numerical solution
technique (e.g. the bisection method45) by defining an
interval that contains a frequency within. If the fre-
quencies of the plate are determined then even the
eigenshapes (transverse deflections) and the strains,
stresses, and stress resultants can be calculated.

It will be shown that the top and bottom plates of
the delaminated part are subjected to periodic forces
(normal and in-plane shear). It means that the stiffness
of the delaminated parts is time dependent and the
problem is the special case of parametrically excited
systems, where the frequency of parametric excitation
is equal to one of the free vibration frequencies. This
aspect of the problem has been shown in Szekrényes.82

It has also been shown that the reason for the delam-
ination opening is the dynamic buckling. The main aim
of this work is to carry out the dynamic stability ana-
lysis of the delaminated parts. In this respect the top
and bottom delaminated plates involve clamped–
clamped edge conditions at the delamination fronts.
Since this problem has no analytical solution, the prob-
lem is solved by the FEM. In the subsequent sections,
the stiffness, mass, and geometric stiffness matrices of
the top and bottom plates of the delaminated part are
presented.

Semi-finite element discretization of

laminated Lévy plates

Since the delamination goes across the whole width of
the plate we can keep the continuous (Lévy type) solu-
tion in the y direction. Therefore, the system should be
discretized only in the x direction. The model presented
in the sequel is essentially related to the delaminated
part and can be used to analyze the top and bottom
plates equally. The FE formulation is based on the min-
imum principle of Hamilton132,139

�

Z t2

t1

I dt ¼ 0 ð31Þ

where I ¼ T�U is the Hamiltonian; moreover, T is the
kinetic energy, U is the strain energy of the system. For
a single element these quantities take the form of141

Ue ¼
1

2

Z
�e

�ij"ij dV ¼
1

2
uTeKeue,

Te ¼
1

2

Z
�e

� _ui _ui dV ¼
1

2
_uTeMe _ue ð32Þ

where Ke, Me are the element mass and stiffness matri-
ces, ue is the vector of nodal displacements. The total
strain and kinetic energy of the system is obtained by
adding the element quantities

U ¼
X
Ne

Ue, T ¼
X
Ne

Te ð33Þ

The primary parameters in the standard FE discret-
ization are the displacements and rotations. Figure 2
shows the main parameters of the applied FE type.
Due to the continuous solution in the y direction the
element is the extension of a simple beam. In accord-
ance with Figure 2 a single FE involves 8 DOFs

uTe ¼ u01 v01 w1 
1 u02 v02 w2 
2
� �

ð34Þ

Figure 2. Finite element and nodal parameters for the semi-discretization of Lévy plates.
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where

u0i

v0i

wi


i

0BBB@
1CCCA ¼

U0i sin�y

V0i cos�y

Wi sin �y

#i sin�y

0BBB@
1CCCA, i ¼ 1, 2 ð35Þ

is the vector of the semi-discrete displacement param-
eters. Similarly to some in-plane beam elements the
transverse deflection is interpolated by cubic functions,
while a linear (Lagrange type) interpolation is applied
to the in-plane displacement functions141

wð�Þ ¼ a0 þ a1� þ a2�
2 þ a3�

3 ¼
X8
i¼1

Nwiuei ¼ Nw � ue

ð36Þ

where � is the dimensionless local coordinate. The angle
of rotation of the cross sections about axis y is equal to
the derivative of the deflection


ð�Þ ¼
1

Le

dwð�Þ

d�
¼

1

Le
ða1 þ 2a2� þ 3a3�

2Þ ð37Þ

where Le is the element length. The in-plane displace-
ments are interpolated as

u0ð�Þ ¼ b0 þ b1� ¼
X8
i¼1

Nuiuei ¼ Nu � ue

v0ð�Þ ¼ c0 þ c1� ¼
X8
i¼1

Nviuei ¼ Nv � ue ð38Þ

The nodal conditions to determine the coefficients of
the interpolation functions are

wð0Þ ¼ w1, wð1Þ ¼ w2, 
ð0Þ ¼ 
1, 
ð1Þ ¼ 
2

u0ð0Þ ¼ u01, u0ð1Þ ¼ u02, v0ð0Þ ¼ v01, v0ð1Þ ¼ v02

ð39Þ

Using equations (36) to (39) it is possible to derive
the following interpolation functions

Nw3,Nw4,Nw7,Nw8f g ¼ 1� 3�2 þ 2�3,Leð� � 2�2 þ �3Þ,
	
3�2 � 2�3,Leð�

2 þ �3Þ



ð40Þ

where we obtain the Hermitian shape functions;141

moreover, Nw1,Nw2,Nw5,Nw6f g ¼ 0. The interpolation
functions of the in-plane displacements are

Nu1,Nu5f g ¼ 1� �, �f g, Nv2,Nv5f g ¼ 1� �, �f g ð41Þ

and Nu2,Nu3,Nu4,Nu6,Nu7,Nu8,Nv1,Nv3,Nv4,Nv6,Nv7,f

Nv8g ¼ 0.

Element stiffness matrices

Using equation (5) and equations (36) to (39) we can
derive the strain components and stress resultants, then
by taking these back into equation (32) we obtain the
strain energy of the plate as

U� ¼
1

2

Z
ðl Þ

Nx�"
ð0Þ
x� þNy�"

ð0Þ
y� þNxy��

ð0Þ
xy�

�
þMx�"

ð1Þ
x� þMy�"

ð1Þ
y� þMxy��

ð1Þ
xy�

�
dx ð42Þ

By using the interpolated form of the displacement
field variables it is possible to transform equation (42)
into

Ue� ¼
1

2
uTe K�e,nx þ K�e,ny þ K�e,nxy þ K�e,mx

�
þ K�e,my þ K�e,mxy

�
ue ¼

1

2
uTeK

�
eue ð43Þ

where the matrix terms denoted by K are stiffness
matrices related to the stress resultants of the
plate. The stiffness matrices related to the membrane
forces are

K�e,nx ¼

Z 1

0

ðA11�Bu� � Bu� � B11�Bu� �̂Bw

þ A12�Bv� �̂Bu� þ B12�Bw �̂Bu�ÞLed� ð44Þ

K�e,ny ¼

Z 1

0

�ð�A12�Bu� �̂Nv� þ B12�Nv� �̂bBw

þ A22��Nv� �Nv� � B12��
2Nw �̂Nv�ÞLed� ð45Þ

K�e,nxy ¼

Z 1

0

A66�

�
�2Nu� �Nu� þ �Nu� �̂Bv�

þ�Nv� �̂Bu� þ Bv� � Bv�

�
� B66��ð�Nu� �̂Bw þ Bv� �̂BwÞLed� ð46Þ

where

B ¼
1

Le

dN

d�
, bB ¼ 1

L2
e

d2N

d�2
ð47Þ

Moreover, the stiffness matrices by the bending and
twisting moments are

K�e,mx ¼

Z 1

0

�
� B11�Bu� �̂bBw þD11�

bBw �bBw

þ B12��Nv� �̂cBw �D12��
2Nw �̂bBw

�
Led� ð48Þ
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K�e,my ¼

Z 1

0

�2
�
B12�Bu� �̂Nw �D12�Nw �̂bBw

� B22��Nv� �̂Nw þD22��
2Nw �Nw

�
Led� ð49Þ

K�e,mxy ¼

Z 1

0

�ð�2B66�ð�Nu� �̂Bw � Bv� �̂BwÞ

þ 4D66��Bw � BwÞLed� ð50Þ

where the special dyadic product is defined below to
obtain symmetric matrices

Bu� �̂Bw ¼
1

2
ðBu� � Bw þ Bw � Bu�Þ ð51Þ

Element mass matrix

The mass matrix of the top and bottom plates is derived
based on the kinetic energy of the system141

Te� ¼
1

2

Z
ðl Þ

I0�ð _u
2
0� þ _v20� þ _w2Þ

�
� 2I1� _u0�

@ _w

@x
þ _v0�

@ _w

@y

� �
þI2�

@ _w

@x

� �2

þ
@ _w

@y

� �2
( )!

dx ð52Þ

or simply we have: Te� ¼ 1=2 � uTeM
�
eue. Taking back the

interpolated displacement variables in equations (36) to
(38) leads to

M�
e ¼

Z 1

0

ðI0�ðNu� �Nu� þNv� �Nv� þNw� �Nw�Þ

� 2I1�ðNu� �̂Bw þ �Nv� �̂NwÞ

þ I2�ðBw � Bw þ �
2Nw �NwÞÞLed� ð53Þ

The free vibration analysis of the system can be per-
formed by solving the ðK� �2MÞU ¼ 0 structural equa-
tion for the frequencies and mode shapes.141

Element geometric stiffness matrices

The stability analysis is carried out using the geometric
stiffness matrix. The strain energy from the change of
stiffness due to the initial stress state can be calculated
using the product of the initial stress vector and the
vector of large (or von Kármán)124,125 strains

UGe� ¼
1

2

Z
ðl Þ

Nx
@w

@x

� �2

þ2Nxy
@w

@x

� �
@w

@y

� �( )

dx ¼
1

2
uTe ðK

�
Gex þ K�GexyÞue ð54Þ

where KGe is the geometric stiffness (or stability) matrix
of the plate. Using the interpolated form of the field
parameters we obtain

K�Gex ¼

Z 1

0

NxBw � BwLed�,

K�Gexy ¼ 2Nxy�Le Bw �̂Nw

� �
�¼1=2

ð55Þ

where the geometric stiffness matrix from the in-plane
shear force is calculated by reduced (one-point Gauss)
integration141 because the exact integration leads to
erroneous result. In the sequel the equations for static
and dynamic stability analysis are given briefly.

Static stability analysis

The traditional eigenequation for static stability is142

ðK� þ K�GÞU� ¼ 0 ð56Þ

where  is the load control parameter. By setting the
determinant of the matrix term to be equal to zero pro-
vides the critical load as Nx,cr ¼ Nx or Nxy,cr ¼ Nxy.
The mode shapes are calculated by taking back the load
control parameters (eigenvalues) into equation (56). It
will be assumed that the eigenshape vectors for static
and dynamic buckling are essentially the same.

Static stability with trigonometric widthwise
distribution

It will be shown later that for Lévy plates the distribu-
tion of the normal force along the edges of the delami-
nated part is trigonometric. Figure 3 shows the normal
loads of the edges of the top delaminated plate. In the
case of the normal force Nx the widthwise distribution
is sinusoidal if y 2 ½0, b�. However, the solution
becomes more simple if we shift the plate in the y dir-
ection by b=2, and so the load becomes cosinusoidal
(and equivalent to the one in Figure 3) and the problem
is solved in the interval of y 2 ½�b=2, b=2�. Therefore,
equation (52) should be modified as

ðK� þ K�G � cos�yÞU� ¼ 0 ð57Þ

The solution of equation (57) for a plate loaded with
cosinusoidal Nx stationery normal force shown by
Figure 3 with y 2 ½�b=2, b=2� can be written as

U� ¼ b0 þ
X1
k¼1

bk cos
k	y

b
ð58Þ
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If the delaminated part is loaded by a cosinusoidal
Nxy stationery in-plane shear force along the edges then
the solution of equation (57) for y 2 ½0, b� becomes

U� ¼
X1
k¼1

bk sin
k	y

b
ð59Þ

The eigenvalues of equation (57) in both cases can be
obtained by using Bolotin’s harmonic balance
method143,144 by taking back equation (58) or equation
(59) into equation (57) and by expanding the series solu-
tion. The collection of the terms producted by the same
trigonometric expression leads to a system of algebraic
equations that can be arranged to obtain the following
matrix equation in both cases (Nx and Nxy)

K� 1
2FdK

�
G0 0 0 0 � � �

FdK
�
G0 K� 1

2FdK
�
G0 0 0 � � �

0 1
2FdK

�
G0 K� 1

2FdK
�
G0 0 � � �

0 0 1
2FdK

�
G0 K� 1

2FdK
�
G0 � � �

0 0 0 1
2FdK

�
G0 K� � � �

..

. ..
. ..

. ..
. ..

. . .
.

0BBBBBBBBBB@

1CCCCCCCCCCA
b0

b1

b2

b3

b4

..

.

0BBBBBBBBB@

1CCCCCCCCCA
¼

0

0

0

0

0

..

.

0BBBBBBBBB@

1CCCCCCCCCA
ð60Þ

where K�G0 is the structural geometric stiffness matrix
by setting the Nx and Nxy forces to unity in equation
(55). Moreover, Fd¼Nx in the first of equation (55)
and Fd ¼ Nxy in the second of equation (55). The crit-
ical forces are calculated separately for Nx and Nxy

by taking the determinant of matrix on the left
side of equation (60) to zero. It is important to note
that the effect of the sinusoidal distribution of Nx

and Nxy along the edges on the eigenshape is signifi-
cant compared to that of the uniformly distributed
forces. The determinant becomes divergent if higher
than second-order determinant is calculated. It can
be seen (refer to equation (58)) that second-order
determinant provides the first kinematically possible
solution. The ratio of the critical static loads is calcu-
lated as: � ¼ N�

cr=Ncr, where Ncr is the critical
load with uniform distribution of Nx or Nxy in y, N�

cr

is the critical load with sinusoidal or cosinusoidal dis-
tribution of the forces. The trigonometric load multi-
plicator � will be utilized in the dynamic stability
analysis.

Dynamic stability with uniform widthwise distribution

During the vibration of the plate the Nx and Nxy

normal and in-plane shear forces change periodic-
ally in the delaminated part inducing parametric
excitation and time-dependent stiffness.145–147 The
model of the dynamic stability analysis was presented
in Szekrényes82 by adding a small displacement per-
turbation in the top or bottom plates to the global
equation of motion. Because of the fact that the
system performs harmonic motion in time, the global
terms vanish if the vibration frequency is one of the
natural frequencies. It was shown that the dynamic sta-
bility analysis has to be carried out only locally and
separately for the top and bottom plates of the delami-
nated part with clamped-clamped conditions.82 The
equation of motion for the top or bottom plate can
be written as

M� €U� þ K�U� þ K�G � cos 
tU� ¼ 0 ð61Þ

where 
 is the frequency of parametric excitation
and equal to one of the free vibration frequencies, �i.
The solution of equation (61) (system of non-autono-
mous differential equations) can be written as

U� ¼ (�T̂ðtÞ ð62Þ

Figure 3. The top plate of the delaminated region loaded by sinusodial Nxt normal force.
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where ( is the local mode shape vector of the delami-
nated part relative to the free vibration mode shape of
the whole plate and T̂ is the time function in accordance
with Figure 4 and can be given as

T̂ðtÞ ¼
1

2
�d cos �tð Þ � �cr þ cos �tð Þ � �cr

�� ��� �
ð�cr � cos �tð ÞÞ2

ð63Þ

It is shown in Figure 4 that how the dynamic buck-
ling takes place. The system performs harmonic motion
and if a so-called critical amplitude (�cr1) is reached
then the first buckling mode appears. If the amplitude
is so high that it exceeds �cr2 then even the second buck-
ling eigenshape takes place and the two local eigen-
modes are superimposed to the free vibration mode
shape. The local increments �d1 and �d2 in the amplitude
can appear only in the upward direction. These aspects
show that the vibration is amplitude dependent.
Equation (61)—which is a system of Mathieu–Hill
DEs144,145,147—can be solved by using the Fourier
series of the time function in equation (63)

T̂ðtÞ ¼ a0 þ
X1

k¼1,2,3...

ak cos k�tð Þ, a0, akf g

¼ a0ðcÞ, akðcÞ
	 


, k ¼ 1, 2, 3, . . . , ð64Þ

The vector of nodal displacements and accelerations
becomes

U� ¼ a0 þ
X1

k¼1,2,3...

ak cos k�tð Þ,

a0 ¼ a0(, ak ¼ ak(, k ¼ 1, 2, 3, . . . ,

€U� ¼ ��
2
X1

k¼1,2,3...

akk
2 cos k�tð Þ, k ¼ 1, 2, 3, . . . , ð65Þ

Taking these solutions back into equation (61) it is
possible to have the following matrix equation

K� 1
2FdK

�
G0 0 0 � � �

FdK
�
G0 K�� �2iM

� 1
2FdK

�
G0 0 � � �

0 1
2FdK

�
G0 Kt� 4�2iM

� 1
2FdK

�
G0 � � �

0 0 1
2FdK

�
G0 K�� 9�2iM

� � � �

..

. ..
. ..

. ..
. . .

.

0BBBBBBBBBB@

1CCCCCCCCCCA
a0

a1

a2

a3

..

.

0BBBBBBBBB@

1CCCCCCCCCA
¼

0

0

0

0

..

.

0BBBBBBBB@

1CCCCCCCCA
ð66Þ

The critical value of the in-plane normal and shear
forces (Fd¼Nx or Nxy) can be calculated by taking
back any of the free vibration frequencies and equating
the determinant of the matrix in equation (66) to zero.
It is important to note that the associated mode shapes
are calculated from equation (56), in other words it is
assumed that the dynamic and static buckling mode
shapes are equivalent. The estimated dynamic buckling
forces under the action of trigonometric widthwise
forces are calculated by producting the critical dynamic
forces by the � trigonometric load multiplicator.

Figure 4. Time function for harmonic motion and subsequent delamination buckling in the upward direction under dynamic

conditions.
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Results and discussions

The plate with through-width delamination was
b¼ 100mm wide, the length of the uncracked portions
was L1 ¼ L3 ¼ 45 mm, the length of the delamination
was a¼ 105mm. the total thickness of the plate was
tt þ tb ¼ 4:5 mm. The plate is made of a carbon/
epoxy material, the lay-up of the plate was
½	45f=0=	 45f2=

�0�S, a single layer was 0.5mm thick.
The properties of the single laminae are given by
Table 1.134 Four different positions of the delamination
was investigated, these cases are available in
Szekrényes.110 In case I the thicknesses were: tt ¼
2:0, tb ¼ 2:5 mm, in case II: tt ¼ 1:5, tb ¼ 3:0 mm, in
case III: tt ¼ 1:0, tb ¼ 3:5 mm and finally in case IV:
tt ¼ 0:5, tb ¼ 4:0 mm. The analytical and numerical
calculations were carried out in the code MAPLE.
First, the free vibration analysis of the whole plate
was carried out using the analytical model developed
in section 2 with closed delamination. The local stabil-
ity analysis of the delaminated region was performed
using the numerical model detailed in the previous sec-
tion using 14 elements along the x axis. The solution in
the y direction is continuous, refer to equation (35).

Natural frequencies and mode shapes

The frequencies of the plate with simply supported
edges at x¼ 0 and x¼L are calculated for the case
when there is only a single half-wave in the widthwise
(y) direction, i.e. n¼ 1 in � (equation (16)). The analysis
works even for those cases when several half waves
describe the vibration along axis y. The frequencies
are collected in the first columns of Tables 2 to 5 for
cases I and II. Even the whole structure was discretized
by the FE method, the numerically computed frequen-
cies are in the second columns of Tables 2 to 5. The
agreement between the numerical and analytical values
is excellent in each case. The rest of the tables will be
discussed later. For cases III and IV the tables are pre-
sented in Appendix 2. The mode shapes of the first four
frequencies in case IV are shown in Figure 5, they are as
expected. It is important to note that in Figure 5 the
constrained mode model is applied and at this stage the
possible delamination opening is not yet considered.

The most important aspect of the problem is that the
internal forces change periodically in accordance with
the free vibration frequency. The other important prop-
erty is that the internal forces are not uniformly

Table 1. Material properties of single carbon/epoxy composite laminates.

Ex Ey Ez Gyz Gxz Gxy �yz �xz �xy �
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (–) (–) (–) (kg/m3)

	45

f 16.39 16.39 16.4 5.46 5.46 16.4 0.5 0.5 0.3 1580

0



148 9.65 9.65 4.91 4.66 3.71 0.27 0.25 0.3 1470

Table 2. Critical static and dynamic Nx� loads of a simply supported plate for the first free vibration frequency – case I.

�an
1 �FEM

1 Nstat
xt,cr N

stat,�
xt,cr � N

dyn
xt,cr N

dyn,�
xt,cr dcrit

(Hz) (Hz) (N/mm) (N/mm) (1) (N/mm) (N/mm) (mm)

753 753 92.5 130.8 1.414 109.8 155.3 5.59

132.4 187.3 1.414 120.9 171.0 6.16

225.3 318.7 1.414 194.5 275.1 9.92

317.5 449.0 1.414 282.3 399.2 14.4

�an
1 �FEM

1 Nstat
xb,cr N

stat,�
xb,cr � N

dyn
xb,cr N

dyn,�
xb,cr �crit

(Hz) (Hz) (N/mm) (N/mm) (1) (N/mm) (N/mm) (mm)

753 753 366.4 518.1 1.414 422.7 597.7 22.0

�an
i : free vibration frequency by analytical solution.

�FEM
i : free vibration frequency by finite element solution.

Nstat
x�,cr : critical load under static condition and uniform widthwise distribution.

N
stat,�
x�,cr : critical load under static condition and sinusoidal widthwise distribution.

�: trigonometric load multiplicator.

N
dyn
x�,cr : critical load under dynamic condition and uniform widthwise distribution.

N
dyn,�
x�,cr : estimated critical load under dynamic condition and sinusoidal widthwise distribution.

dcrit: critical amplitude.
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distributed in the delaminated part of the plate, neither
along x nor y. The major part of the literature deals
with cases including uniform force distributions; how-
ever, it can be seen in Figure 6(a) that the Nxt normal
force (in case IV, first natural frequency) is nonuni-
formly distributed in the delaminated part. For the

second frequency Figure 6(a) demonstrates the whole
distribution. It has to be highlighted that the normal
force is compressive in the first half of the delaminated
area and tensile for the other. To the best of the
author’s knowledge this feature of the problem has
not yet been discovered.

Table 5. Critical static and dynamic Nx� loads of a simply supported plate for the second free vibration frequency – case II (refer to

Table 2 for the notations).

�an
1 �FEM

1 Nstat
xt,cr N

stat,�
xt,cr � N

dyn
xt,cr N

dyn,�
xt,cr �crit

(Hz) (Hz) (N/mm) (N/mm) (1) (N/mm) (N/mm) (mm)

1420 1420 66.2 93.7 1.414 47.8 67.6 30.4

89.9 127.2 1.414 82.1 116.1 52.2

283.8 401.4 1.414 109.9 155.4 69.9

340.9 482.1 1.414 142.3 201.2 90.5

�an
1 �FEM

1 Nstat
xb,cr N

stat,�
xb,cr � N

dyn
xb,cr N

dyn,�
xb,cr �crit

(Hz) (Hz) (N/mm) (N/mm) (1) (N/mm) (N/mm) (mm)

1420 1420 1955 2764 1.414 1649 2332 1042

Table 3. Critical static and dynamic Nx� loads of a simply supported plate for the second free vibration frequency – case I (refer to

Table 2 for the notations).

�an
1 �FEM

1 Nstat
xt,cr N

stat,�
xt,cr � N

dyn
xt,cr N

dyn,�
xt,cr �crit

(Hz) (Hz) (N/mm) (N/mm) (1) (N/mm) (N/mm) (mm)

1355 1355 34.9 49.3 1.414 36.2 51.2 106.1

46.1 65.0 1.414 52.5 74.1 153.6

158.1 223.6 1.414 114.6 162.0 335.9

183.2 259.0 1.414 162.3 229.4 475.8

�an
1 �FEM

1 Nstat
xb,cr N

stat,�
xb,cr � N

dyn
xb,cr N

dyn,�
xb,cr �crit

(Hz) (Hz) (N/mm) (N/mm) (1) (N/mm) (N/mm) (mm)

1355 1355 1853 2620 1.414 1554 2197 516

Table 4. Critical static and dynamic Nx� loads of a simply supported plate for the first free vibration frequency – case II (refer to

Table 2 for the notations).

�an
1 �FEM

1 Nstat
xt,cr N

stat,�
xt,cr � N

dyn
xt,cr N

dyn,�
xt,cr �crit

(Hz) (Hz) (N/mm) (N/mm) (1) (N/mm) (N/mm) (mm)

792 792 40.6 57.4 1.41 53.5 75.6 2.49

58.3 82.4 1.414 98.6 139.4 4.61

98.1 138.7 1.414 148.2 209.6 6.93

137.5 194.0 1.414 202.1 285.7 9.44

�an
1 �FEM

1 Nstat
xb,cr N

stat,�
xb,cr � N

dyn
xb,cr N

dyn,�
xb,cr �crit

(Hz) (Hz) (N/mm) (N/mm) (1) (N/mm) (N/mm) (mm)

792 792 500.3 708.3 1.414 565.7 800.0 12.7
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Apart from the in-plane normal force even the in-
plane shear force Nxy acts in the plate at the same time.
In case IV, Figures 8(a) and 9(a) depict the distribution
of the in-plane shear force in the top plate of the

delaminated part for the first and second vibration fre-
quencies. The widthwise distribution is given by cosine
functions, the distribution in x is even nonuniform. The
change of the forces along x has to be considered in the

(a) (b)

(c) (d)

Figure 5. Eigenshapes for the first four natural frequencies of a simply supported delaminated plate with n¼ 1, a1¼ 886 Hz,

�2¼ 1829 Hz, �3¼ 3411 Hz and �4 ¼ 5639 Hz.

(a) (b)

Figure 6. Distribution of the normal force, Nxt in the top plate of the delaminated part of a simply supported plate in case IV, first

vibration frequency (a). Piecewise constant approximation of the distribution for FE stability analysis (b).
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stability analysis by a piecewise constant description of
the geometric stiffness. The approximated distributions
along the delaminated part (3) are shown in Figures
6(b), 7(b), 8(b), and 9(b).

Static and dynamic stability analysis

It has to be noted that the eigenshapes are calculated
from equation (56) considering static buckling with
uniformly distributed forces in the y direction. In
other words the critical forces are calculated from
dynamic stability analysis and the corresponding
eigenshapes are associated to these eigenvalues by

static stability calculation. First, equation (56) was
solved using the piecewise constant distributions in
Figures 6(b), 7(b), 8(b), and 9(b) in x and uniform
distribution in y. The critical forces of these computa-
tions are collected in the third columns of Tables 2 to 5
for cases I and II using the first two free vibration
frequencies. Also, the top and bottom plates of the
delaminated portion (3) were investigated separately
in this respect. It can be seen that without any excep-
tion the first critical force of the bottom plate is always
higher than the fourth critical force in the top plate.
The second step was that the trigonometric distribu-
tion of the forces was considered using equation (57),

(a) (b)

Figure 8. Distribution of the in-plane shear force, Nxyt in the top plate of the delaminated part of a simply supported plate in case IV,

first vibration frequency (a). Piecewise constant approximation of the distribution for FE stability analysis (b).

(a)

(b)

Figure 7. Distribution of the normal force, Nxt in the top plate of the delaminated part of a simply supported plate in case IV, second

vibration frequency (a). Piecewise constant approximation of the distribution for FE stability analysis (b).
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the critical forces are calculated again and collected in
the fourth columns of Tables 2 to 5. The trigonometric
load multiplicator (�) was calculated as the ratio of
the two static loads and in each case �¼ 1.414 was
obtained (refer to Tables 2 to 5). Thus, 41.4% higher
critical loads are required if the widthwise distribution
is trigonometric compared to the uniform loads. The
third step was the solution of equation (61) to obtain
the critical dynamic loads width uniform distribution
in y, the results are in Tables 2 to 5. In the fourth step
the critical dynamic loads with trigonometric

distribution in y were estimated by producting those
by step three with the multiplicator, �. That was the
way how the seventh column in Tables 2 to 5 was
obtained. In the final stage the critical amplitudes
were calculated for each buckling mode by comparing
the critical loads to the distributions depicted in
Figures 6, 7, 8, and 9 if the maximum amplitude of
free vibration was 1mm. The reference value was the
force in the left delamination tip in Figure 1. The crit-
ical amplitude means the amplitude at the point of the
maximum deflection.

(a) (b)

Figure 9. Distribution of the in-plane shear force, Nxyt in the top plate of the delaminated part of a simply supported plate in case IV,

second vibration frequency (a). Piecewise constant approximation of the distribution for FE stability analysis (b).

(a) (b)

Figure 10. Subsequent appearance of the local buckling mode shapes and the estimated critical dynamic forces in case IV, first (a) and

second (b) free vibration frequency of a simply supported plate with delamination.
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For cases III and IV the critical forces are collected
in Tables 6 to 9 including stability analysis with respect
to Nx. The stability of the delaminated portion with
respect to the in-plane shear force Nxy was also carried
out and the critical loads are summarized in Table 10.
In cases I to III, only the static stability was performed
because it can be seen that in each case significantly
higher forces are required to the buckling than those
for the top plate. It was necessary to investigate the
critical forces in case IV. In accordance with Table 11
the critical forces (Nxy) are relatively low for the first
frequency of the top plate, however it can be seen that
the first critical amplitude for Nxy (Table 11) is less than
the fourth for Nx (Table 8). For the second frequency
the critical Nxy forces involve lower amplitudes com-
pared to those presented in Table 9; however, the top
plate always dominated the buckling phenomenon.

Figure 10 shows the first four critical load and the
corresponding buckling eigenshapes in the case of
the first and second natural vibration frequencies for

the simply supported plate in case IV. In fact there is
nothing special in the first frequency and the associated
eigenshapes, they are as expected. However, if the
second free vibration frequency is taken into account
the corresponding force distributions are compressive
for the half region and tensile in the other half region of
the delaminated part (refer to Figure 7(b)). That is the
reason for the unusual eigenshapes depicted in
Figure 10(b). Another important aspect is that because
of the compressive/tensile regions the delamination
buckling can take place in both half time periods
during the vibration. This is in contrast with the first
frequency, where the buckling is kinematically possible
only if the plate moves downwards.

Mode shapes and phase plane portraits with
delamination buckling

The basic assumptions for the approximation of mode
shapes and phase plane portraits were: the

(a)

(b)

Figure 11. Mode shape prediction with local delamination buckling for the first (a) and second (b) free vibration frequencies of case

IV, simply supported edges. Note: the mode shapes involve a half sine wave in the y direction.

16 Journal of Composite Materials 0(0)



(a)

(b)

Figure 13. Mode shape prediction with local delamination buckling for the first (�1¼ 1113 Hz) (a) and second (�2¼ 2403 Hz) (b)

free vibration frequencies of case IV, built-in edges at x¼ 0 and x¼ L. Note: the mode shapes involve a half sine wave in the y direction.

(a) (b)

Figure 12. Phase plane portraits of the motion of P1, first vibration frequency (a) and P2, second free vibration frequency (b) in case

IV, simply supported edges (refer to Figure 1 for the position of P1 and P2).
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 (a)

 (b)

Figure 15. Mode shape prediction with local delamination buckling for the first (�1¼ 611 Hz) (a) and second (�2¼ 872 Hz) (b) free

vibration frequencies of case IV, free edges at x¼ 0 and x¼ L. Note: the mode shapes involve a half sine wave in the y direction.

(a) (b)

Figure 14. Phase plane portraits of the motion of P1, first vibration frequency (�1¼ 1113 Hz) (a) and P2, second free vibration

frequency (�2¼ 2403 Hz) (b) in case IV, built-in edges at x¼ 0 and x¼ L (refer to Figure 1 for the position of P1 and P2).
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delamination buckling does not alter significantly the
free vibration frequencies; moreover, the normal and
in-plane shear force distributions can be approximated
by the analytical model even if the delamination
buckles and higher buckling modes appear locally.
Finally, the delamination opening can be approximated
by superimposing the free vibration and local buckling
mode shapes. The mass of the top delaminated plate is
6:12 % of the mass of the whole plate. Although buck-
ling involves some nonlinearity, it is assumed that a
linear superposition scheme approximates well the
reality.

Using the critical amplitudes and the static eigen-
shapes the delamination buckling during vibration
can be simulated. The buckled shape of the delamin-
ation relative to the free vibration mode shape was
calculated by using an approximate arc length criterion.
Based on the critical and the chosen maximum ampli-
tudes (chosen to have small amplitude vibration) the
arc length of the local buckling deflection, swt was prod-
ucted by a scale factor, sf. At both amplitudes the axial
displacements at the delamination tips, utðL1Þ and
utðL1 þ aÞ were calculated and the relative axial dis-
placement �U ¼ UtðL1Þ �UtðL1 þ aÞ

�� �� was determined
for both amplitudes. The scale factors were chosen in
order to satisfy the sf � swt ��U ¼ a condition with at
least two decimals accuracy for both amplitudes. Then,
the average of the two scale factors was used. For the
second buckling mode the same procedure was applied,
the arc length from the first buckling mode was calcu-
lated by the average scale factor and the scale factors
for the second buckling mode were calculated and aver-
aged again in order the arc length of the buckled shape
minus the relative axial displacements be equal to a.

For the third and fourth buckling modes the procedure
was repeated. Actually it means a linearized model to
approximate the arc lengths.

In Figure 11, the eigenshapes with delamination
buckling are presented along the midline (y ¼ b=2) of
the simply supported plate. In direction y the shapes are
given by a sine function with a half wave. The shapes
for case IV are plotted and the maximum vibration
amplitude was chosen so that the first four critical
forces and corresponding buckling eigenshapes
appear. Essentially the instability takes place after the
first critical amplitude is reached (refer to Table 8).
Then the second buckling eigenshape is superimposed
to the first one and so on. It can be stated that the first
mode is the most dominant, the effect of the second
mode is negligible and hard to recognize in the vibra-
tion eigenshape. As a consequence the higher buckling
eigenshapes are not visible at all. Figure 11(b) shows
the vibration mode shape for the second frequency. The
critical loads and amplitudes are collected in Table 9.
Although the delamination buckles in both half time
periods, the mechanism and the scheme is the same as
that for the first natural frequency. It was assumed that
because of the small mass of the top plate in case IV the
buckling does not influence essentially the global shape
compared to the constrained mode vibration (no
delamination opening) and even the node of the shape
remains in the same position for the second mode. It
has to be mentioned that although in accordance with
Table 12 even the first buckling shape from Nxy

appears, its effect is negligible compared to the buckling
shapes from Nx.

More information can be found on the motion by
creating the phase plane portraits of some points

(a) (b)

Figure 16. Phase plane portraits of the motion of P1, first vibration frequency (�1¼ 611 Hz) (a) and P2, second free vibration

frequency (�2¼ 872 Hz) (b) in case IV, free edges at x¼ 0 and x¼ L (refer to Figure 1 for the position of P1 and P2).
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located in the top plate of the delaminated region. It is
the portrait of point P1 that is displayed in Figure
12(a) for the first frequency in case IV (refer to
Figure 1 for the position of point P1). The shapes
discovered in the trajectories are ‘‘carrot’’,‘‘carpet
beater’’ and ‘‘pincers’’, respectively. Similar results
were obtained for beams in Szekrényes.82 The lobes
appearing in the phase plane show the significant
change in the amplitude and velocity of the points
compared to the free vibration without delamination
buckling. For the second frequency the phase plane
portraits in Figure 12(b) show ‘‘glassware’’ shape tra-
jectories in point P2 (refer to Figure 1). In each por-
trait the delamination buckling means the locally
unstable motion.

The analysis reveals that the material defects can
lead to parametric excitation, amplitude dependent
vibration characteristics and nonlinearites even if the
material is linear elastic in the global sense. The buck-
ling is displacement controlled during the vibration,
and so, it is unlikely that the local delamination buck-
ling leads to catastrophic failure.

Some more examples were solved with different
B.C.s as well. Figure 13 shows the free vibration
mode shapes when the edges at x¼ 0 and x¼L were
built-in ends. The first two frequencies are considered
leading to similar modes shapes to those by Figure 11.
However, it has to be mentioned that the internal force
distribution is different compared to the case of simply
supported edges. The phase plane portraits depicted in
Figure 14 show that the second vibration mode induces
only very small changes for the chosen amplitudes. The
free edges at x¼ 0 and x¼L were also considered and
the corresponding mode shapes can be seen in Figure
15. The relative delamination opening is the smallest in
this case for both frequencies. The phase plane portraits
plotted in Figure 16 involve ‘‘pincers’’, ‘‘nut’’, and
‘‘strawberry’’ shape trajectories for �1, moreover’’nut’’
shape trajectories for �2.

Conclusions

In this paper, it was shown that the natural vibration
induces parametric excitation in laminated elastic
plates with delamination. The analysis was carried
out in two steps. First, the constrained mode model
was applied to investigate the free vibration frequen-
cies and mode shapes without delamination buckling.
It was shown that the distribution of the internal
normal and in-plane shear forces is nonuniform
along the whole plane of the delaminated part. If
the system performs harmonic motion in time then
the internal forces change periodically in the course
of the vibration leading to the oscillatory change in
the stiffness locally. In the second step the delaminated

part was modeled by semi-discrete FE model, wherein
the plate deflection was approximated by cubic
(Hermitian) polynomials and linear interpolation was
applied to the membrane displacements. The continu-
ous solution in the y direction was kept. The stiffness
and mass matrices were determined in the traditional
way formulating the strain and kinetic energy of the
plate. The geometric stiffness matrices because of the
internal normal and in-plane shear forces were calcu-
lated. The stability analysis was carried out for static
condition providing the local buckling mode shapes,
while the dynamic stability analysis was done in order
to obtain the dynamic internal loads and the critical
vibration amplitudes.

The mode shapes with delamination buckling were
calculated for cases when the thickness of the top
plate was relatively small compared to that of the
bottom one. The local amplitude relative to the free
vibration mode shape was computed based on a line-
arized arc length criterion. The kinematically possible
mode shapes showed that the first buckling mode is
the most dominant, and although it is possible that
even higher modes appear during the harmonic
motion, these are in fact not visible at all. In each
case it was shown that the buckling takes place
because of the normal forces and the stability limit
related to the in-plane shear force is significantly
higher. While for the first vibration mode the delam-
ination buckles only in the downward motion of the
plate, the second vibration mode involves the double-
buckling of the delamination in both half periods. The
phase plane portraits of certain points located on the
delaminated part were plotted and several trajectories
were discovered depending on the boundary condi-
tions and the first and second vibration frequencies
of the plate.

The results of this paper show that the material
defects can lead to internal parametric excitation and
this phenomenon makes the vibration amplitude
dependent. It should be mentioned that in general
the dynamic stability calculation module is not
implemented into the commercial FE packages,
such analyses can be carried out only by user-written
codes.
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Appendix 1

Coefficients for the analytical state-space model

The coefficients for equation (18) and the state-space
model given by equation (17) are collected in this
appendix

â1 ¼ A11t þ A11b, â2 ¼ A66t þ A66b,

â3 ¼ A12t þ A12b þ A66t þ A66b

â4 ¼ �
1

2
A11ttb � B11t þ

1

2
A11btt � B11b

â5 ¼ �
1

2
ðA12t þ A66tÞtb � ðB12t þ B66tÞ

þ
1

2
ðA12b þ A66bÞtt � ðB12b þ B66bÞ

â6 ¼ �Î0, â7 ¼ �Î1 ð67Þ

b̂1 ¼ â3, b̂2 ¼ â2, b̂3 ¼ A22t þ A22b, b̂4 ¼ â5

b̂5 ¼ �
1

2
A22ttb � B22t þ

1

2
A22btt � B22b

b̂6 ¼ �Î0, b̂7 ¼ �Î1 ð68Þ

ĉ1 ¼ �â4, ĉ2 ¼ ĉ3 ¼ â5, ĉ4 ¼ �b̂5

ĉ5 ¼ �D11t �D11b � B11ttb

þ B11btt �
1

4
A11tt

2
b �

1

4
A11bt

2
t ð69Þ

ĉ6 ¼ �2ðD12t þD12b þ 2D66t þ 2D66b

� ðB12t þ 2B66tÞtb þ ðB12b þ 2B66bÞttÞ

�
1

2
ððA12t þ 2A66tÞt
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t Þ ð70Þ
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�
1
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A22tt
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A22bt
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ĉ8 ¼ ĉ9 ¼ �Î1, ĉ10 ¼ ĉ11 ¼ Î2, ĉ12 ¼ �Î0 ð71Þ
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ĥ2 ¼
â2�
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â5�
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â1
ð72Þ
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ð73Þ
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�ĉ2�

2 � ĉ3 ĵ1�� ĉ8�
2 þ ĉ1ðĥ1 þ ĥ2 ĵ1Þ
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ð74Þ
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2 þ ĉ1ĥ2 ĵ2
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Appendix 2

Critical static and dynamic loads for cases III and IV

Table 6. Critical static and dynamic Nx� loads of a simply supported plate for the first free vibration frequency – case III (refer to

Table 2 for the notations).

�an
1 �FEM

1 Nstat
xt,cr N

stat,�
xt,cr � N

dyn
xt,cr N

dyn,�
xt,cr �crit

(Hz) (Hz) (N/mm) (N/mm) (1) (N/mm) (N/mm) (mm)

854 854 15.9 22.5 1.414 42.5 60.0 2.17

27.6 39.1 1.414 51.5 72.8 2.63

52.9 74.9 1.414 80.3 113.6 4.10

79.9 113.0 1.414 102.9 145.5 5.25

�an
1 �FEM

1 Nstat
xb,cr N

stat,�
xb,cr � N

dyn
xb,cr N

dyn,�
xb,cr �crit

(Hz) (Hz) (N/mm) (N/mm) (1) (N/mm) (N/mm) (mm)

854 854 627.6 887.5 1.414 643.0 909.2 30.1

Table 7. Critical static and dynamic Nx� loads of a simply supported plate for the second free vibration frequency – case III (refer to

Table 2 for the notations).

�an
1 �FEM

1 Nstat
xt,cr N

stat,�
xt,cr � N

dyn
xt,cr N

dyn,�
xt,cr �crit

(Hz) (Hz) (N/mm) (N/mm) (1) (N/mm) (N/mm) (mm)

1512 1511 115.5 163.3 1.414 88.0 124.4 41.3

176.1 249.0 1.414 209.4 296.1 98.2

473.6 669.8 1.414 275.6 389.8 129.3

925.5 1308.9 1.414 313.4 443.2 147.0

�an
1 �FEM

1 Nstat
xb,cr N

stat,�
xb,cr � N

dyn
xb,cr N

dyn,�
xb,cr �crit

(Hz) (Hz) (N/mm) (N/mm) (1) (N/mm) (N/mm) (mm)

1512 1511 721.3 1020 1.414 568.2 803.4 435.2

Table 8. Critical static and dynamic Nx� loads of a simply supported plate for the first free vibration frequency – case IV (refer to

Table 2 for the notations).

�an
1 �FEM

1 Nstat
xt,cr N

stat,�
xt,cr � N

dyn
xt,cr N

dyn,�
xt,cr �crit

(Hz) (Hz) (N/mm) (N/mm) (1) (N/mm) (N/mm) (mm)

886 887 0.76 1.08 1.414 1.04 1.48 0.57

1.03 1.46 1.414 4.13 5.84 2.25

1.76 2.50 1.414 6.35 8.98 3.46

2.38 3.37 1.414 9.44 13.35 5.15

�an
1 �FEM

1 Nstat
xb,cr N

stat,�
xb,cr � N

dyn
xb,cr N

dyn,�
xb,cr �crit

(Hz) (Hz) (N/mm) (N/mm) (1) (N/mm) (N/mm) (mm)

886 887 888.4 1256 1.414 833.5 1178 479
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Table 9. Critical static and dynamic Nx� loads of a simply supported plate for the second free vibration frequency – case IV (refer to

Table 2 for the notations).

�an
1 �FEM

1 Nstat
xt,cr N

stat,�
xt,cr � N

dyn
xt,cr N

dyn,�
xt,cr �crit

(Hz) (Hz) (N/mm) (N/mm) (1) (N/mm) (N/mm) (mm)

1829 1829 8.0 11.3 1.414 31.4 44.4 7.34

20.6 29.1 1.414 50.0 70.8 11.7

47.1 66.7 1.414 72.8 103.0 17.0

81.1 114.7 1.414 91.0 128.7 21.3

�an
1 �FEM

1 Nstat
xb,cr N

stat,�
xb,cr � N

dyn
xb,cr N

dyn,�
xb,cr �crit

(Hz) (Hz) (N/mm) (N/mm) (1) (N/mm) (N/mm) (mm)

1829 1829 8040 11370 1.414 6856 9694 1122

Table 10. Critical static Nxy� loads of a simply supported plate for the first and second free vibration frequencies – cases I, II, and III.

Case �i Frequency Nstat
xyt,cr N

stat,�
xyt,cr Nstat

xyb,cr N
stat,�
xyb,cr �

(Hz) (N/mm) (N/mm) (N/mm) (N/mm) (1)

Case I �an
1 753 412.5 583.4 2113 2988 1.414

�an
2 1355 543.2 768.3 3930 5570 1.414

Case II �an
1 792 182.7 258.3 2305 3260 1.414

�an
2 1420 270.8 383.0 3748 5300 1.414

Case III �an
1 854 81.0 114.5 2227 3150 1.414

�an
2 1512 148.3 209.8 2551 3609 1.414

�an
i : free vibration frequency by analytical solution.

Nstat
xy�,cr : critical load under static condition and uniform widthwise distribution.

N
stat,�
xy�,cr : critical load under static condition and sinusoidal widthwise distribution.

�: trigonometric load multiplicator.

Table 11. Critical static and dynamic Nxy� loads of a simply supported plate for the first free vibration frequency – case IV.

�an
1 �FEM

1 Nstat
xyt,cr N

stat,�
xyt,cr � N

dyn
xyt,cr N

dyn,�
xyt,cr �crit

(Hz) (Hz) (N/mm) (N/mm) (1) (N/mm) (N/mm) (mm)

886 887 5.81 8.2 1.414 31.4 44.4 6.51

55.6 78.6 1.414 110.5 156.2 24.1

106.9 151.2 1.414 180.4 255.2 39.4

166.9 236.0 1.414 247.6 350.0 54.0

�an
1 �FEM

1 Nstat
xyb,cr N

stat,�
xyb,cr � N

dyn
xyb,cr N

dyn,�
xyb,cr �crit

(Hz) (Hz) (N/mm) (N/mm) (1) (N/mm) (N/mm) (mm)

886 887 8407 11,890 1.414 5936 8394 1253

�an
1 : first free vibration frequency by analytical solution.

�FEM
1 : first free vibration frequency by finite element solution.

Nstat
xy�,cr : critical load under static condition and uniform widthwise distribution.

N
stat,�
xy�,cr : critical load under static condition and sinusoidal widthwise distribution;

�: trigonometric load multiplicator.

N
dyn
xy�,cr : critical load under dynamic condition and uniform widthwise distribution.

N
dyn,�
xy�,cr : estimated critical load under dynamic condition and sinusoidal widthwise distribution; �crit: critical amplitude
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Table 12. Critical static and dynamic Nxy� loads of a simply supported plate for the second free vibration frequency – case IV (refer

to Table 11 for the notations).

�an
1 �FEM

1 Nstat
xt,cr N

stat,�
xt,cr � N

dyn
xt,cr N

dyn,�
xt,cr �crit

(Hz) (Hz) (N/mm) (N/mm) (1) (N/mm) (N/mm) (mm)

1829 1829 10.6 14.9 1.40 150.3 211.3 18.9

81.4 114.0 1.40 204.2 286.0 25.6

194.3 272.7 1.40 328.9 461.6 41.3

313.1 442.8 1.414 513.3 726.0 65.0

�an
1 �FEM

1 Nstat
xb,cr N

stat,�
xb,cr � N

dyn
xb,cr N

dyn,�
xb,cr �crit

(Hz) (Hz) (N/mm) (N/mm) (1) (N/mm) (N/mm) (mm)

1829 1829 24,463 9456 1.414 27,968 39,547 3578
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